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» For two sets, A, B, a relation from Ato B is a subset,
RC AxB.

» We say that A is the domain and B is the co-domain.

» We say that ais related to b by R, aRb, iff (a,b) € R.

» iff means “if and only if”

» <y= {(i,j))eENxN |i<j},5<y17, (5,17) € <y

> < & <y n([n] x [n]), where [n] £ {1,2,....n}
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» Awkwardness of Def. of Domain and Co-Domain: If
RCAxB,ACA, BC B then R is a relation from A to B;
but R C A x B’ is also a relation from A’ to B’ so the
domain and co-domain of R are not uniquely defined.

» We’ll talk about this later.
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Arrow Diagram of a Relation

For relation R from A to B, draw an arrow from a to b iff aRb.

Bl < [3] Bl = [3]

(A © O—0
OQNE (—0
OO O—0

{(1,2),(1,3),(2,3)} {(1,1),(2,2),(3,3)}
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Arrow Diagram of Divides Relation

5

| (1)
® (®)
® ()
O ($)
® (>

[5] |

1,4),(1,5),

—~
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{(1,1),(1,2),(1,3),(1,4),(1,5),(2,2), (2, 4),
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{(1,1),(1,2),(1,3),(1,4),(1,5),(2,2),(2,4),(3,3),(4,4), (5,5)}
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Functions f:A— B (a,b)ef iff f(a)=>b

f is a function from Ato B iff fCAx B, and

f is defined on domain A: Vae A3dbe B(a,b) € f, and

f is single valued: V(a, b),(&,b') e f (a=a — b=1"1).
iClicker 3.3 Leth={(1,1),(1,2),(2,3)}.1s h:[2] = [3] ?
A: Yes B: No

not a function
2] [3]

not single valued

| 0




R3 Quiz Answers

1. D2Ds from[3]to [3] |D2Ds3| = 5
2. D2D3:[3] —[3]? False: not single valued
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3. D2D2’3 from [2] to [3] |D2D2,3‘ =3
4. D2Dy3:[2] = [3] ? False: not single valued

[2] 3]
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5. D2D3’2 from [3] to [2] |D2D3,2‘ =3
6. D2D3’2 : [3] — [2] ? True
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7. D2D4 from[4]to [4] |D2D4| = 8
8. D2D4:[4] — [4]?  False: not single valued

[4] [4]
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9. D2D > from Zt to[2] |ID2D, 2| = No (infinite)
10. D2Dy2:Z+ —[2]? True
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11. D2D3 from[3]to[1] |D2D3| = 2
12. D2D34 :[3] — [1] ? False: not defined on 2 < [3]

[3] [1]

A 1

OO
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13. D3Dj from [3] to [3]
14. D3Dj3:[3] — [3] ?

[3]

ID3D3| = 3

3]
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15.
16.

17.
18.

19.
20.

Rs = {(a,b) € (R")? | b? = a}
Rs C R x RT |Rs| = |R| (infinite)
Rs:R—R? True: Rg(a) = va

Rs = {(a,b) € (R)? | b* = a}
Ry CR xR |Ry| = |R| (infinite)
Ry :R— R ? False: Ry(a) is undefined when a < 0

Rio = {(a,b) € (R)? | & = b}
Rio CRxR  |Rio| = |R| (infinite)
Rio:R—R? True: Ryy(a) = &



