
CS250: Discrete Math for Computer Science

L29: DFS on Directed Graphs



Depth First Search (undirected graphs)

DFSmain(G)

for each u in V :

color[u] = white

parent[u] = NULL

time=0

for each u in V :

if (color[u] == white):

DFSVisit(u)

DFSVisit(u)

color[u] = red // in process

d[u] = ++time // discover

for each v in Adj(u) :

if (color[v] == white) : // unseen

parent[v] = u // tree edge

DFSVisit(v)

color[u] = black // done

f[u] = ++time // finish
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Depth First Search (undirected graphs)

DFSmain(G)

for each u in V :

color[u] = white

parent[u] = NULL

time=0

for each u in V :

if (color[u] == white):

DFSVisit(u)

DFSVisit(u)

color[u] = red // in process

d[u] = ++time // discover

for each v in Adj(u) :

if (color[v] == white) : // unseen

parent[v] = u // tree edge

DFSVisit(v)

color[u] = black // done

f[u] = ++time // finish



Thm. (Properties of DFS on Undirected Graphs)
Let G be an undirected graph with n vertices and m edges.
Then:

1. DFS(G) runs in linear time, i.e., O(n + m).

2. DFS computes connected components of G.

3. DFS determines which of these components is cyclic: a
component is cyclic iff it has a backedge.
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Depth First Search

DFSmain(G)

for each u in V :

color[u] = white

parent[u] = NULL

time=0

for each u in V :

if (color[u] == white):

DFSVisit(u)

DFSVisit(u)

color[u] = red // in process

d[u] = ++time // discover

for each v in Adj(u) :

if (color[v] == white) : // unseen

parent[v] = u // tree edge

DFSVisit(v)

color[u] = black // done

f[u] = ++time // finish



Thm. (Properties of DFS on directed Graphs)

Let G be an directed graph with n vertices and m edges. Then:

1. DFS(G) runs in linear time, i.e., O(n + m).

2. When a DFS tree T is completed all the vertices reachable
from any vertex in T have been visited either in T , or in
previous trees.

3. G is cyclic iff DFS(G) finds backedge.

4. If G is acyclic, then the reverse finish times provide a
topological ordering of G.

5. A second run of DFS on GR – with roots chosen in reverse
finish time of the first search – computes the strongly
connected components of G.

Proof: 1. 2., and 3. are similar as for undirected graphs.



Thm. (Properties of DFS on directed Graphs)

Let G be an directed graph with n vertices and m edges. Then:

1. DFS(G) runs in linear time, i.e., O(n + m).

2. When a DFS tree T is completed all the vertices reachable
from any vertex in T have been visited either in T , or in
previous trees.

3. G is cyclic iff DFS(G) finds backedge.

4. If G is acyclic, then the reverse finish times provide a
topological ordering of G.

5. A second run of DFS on GR – with roots chosen in reverse
finish time of the first search – computes the strongly
connected components of G.

Proof: 1. 2., and 3. are similar as for undirected graphs.



Thm. (Properties of DFS on directed Graphs)

Let G be an directed graph with n vertices and m edges. Then:

1. DFS(G) runs in linear time, i.e., O(n + m).

2. When a DFS tree T is completed all the vertices reachable
from any vertex in T have been visited either in T , or in
previous trees.

3. G is cyclic iff DFS(G) finds backedge.

4. If G is acyclic, then the reverse finish times provide a
topological ordering of G.

5. A second run of DFS on GR – with roots chosen in reverse
finish time of the first search – computes the strongly
connected components of G.

Proof: 1. 2., and 3. are similar as for undirected graphs.



Thm. (Properties of DFS on directed Graphs)

Let G be an directed graph with n vertices and m edges. Then:

1. DFS(G) runs in linear time, i.e., O(n + m).

2. When a DFS tree T is completed all the vertices reachable
from any vertex in T have been visited either in T , or in
previous trees.

3. G is cyclic iff DFS(G) finds backedge.

4. If G is acyclic, then the reverse finish times provide a
topological ordering of G.

5. A second run of DFS on GR – with roots chosen in reverse
finish time of the first search – computes the strongly
connected components of G.

Proof: 1. 2., and 3. are similar as for undirected graphs.



Thm. (Properties of DFS on directed Graphs)

Let G be an directed graph with n vertices and m edges. Then:

1. DFS(G) runs in linear time, i.e., O(n + m).

2. When a DFS tree T is completed all the vertices reachable
from any vertex in T have been visited either in T , or in
previous trees.

3. G is cyclic iff DFS(G) finds backedge.

4. If G is acyclic, then the reverse finish times provide a
topological ordering of G.

5. A second run of DFS on GR – with roots chosen in reverse
finish time of the first search – computes the strongly
connected components of G.

Proof: 1. 2., and 3. are similar as for undirected graphs.



Thm. (Properties of DFS on directed Graphs)

Let G be an directed graph with n vertices and m edges. Then:

1. DFS(G) runs in linear time, i.e., O(n + m).

2. When a DFS tree T is completed all the vertices reachable
from any vertex in T have been visited either in T , or in
previous trees.

3. G is cyclic iff DFS(G) finds backedge.

4. If G is acyclic, then the reverse finish times provide a
topological ordering of G.

5. A second run of DFS on GR – with roots chosen in reverse
finish time of the first search – computes the strongly
connected components of G.

Proof: 1. 2., and 3. are similar as for undirected graphs.



Thm. (Properties of DFS on directed Graphs)

Let G be an directed graph with n vertices and m edges. Then:

1. DFS(G) runs in linear time, i.e., O(n + m).

2. When a DFS tree T is completed all the vertices reachable
from any vertex in T have been visited either in T , or in
previous trees.

3. G is cyclic iff DFS(G) finds backedge.

4. If G is acyclic, then the reverse finish times provide a
topological ordering of G.

5. A second run of DFS on GR – with roots chosen in reverse
finish time of the first search – computes the strongly
connected components of G.

Proof: 1. 2., and 3. are similar as for undirected graphs.



wake
up

get
up

choose
tie

drink
coffee

get
dressed

make
coffee

go

Def. A topological ordering of a DAG G, is an ordering of
V G = {v1, . . . , vn} such that for all (vi , vj) ∈ EG, i < j .

A topological ordering of a pert chart, is a valid ordering for
doing the tasks such that no task is done before any of its
prerequisites.

If G has a cycle, then G has not topological ordering.

4. If G is acyclic, then the reverse finish times provide a
topological ordering of G.
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