CS250: Discrete Math for Computer Science

L29: DFS on Directed Graphs



Depth First Search

(undirected graphs)

DFSmain(G)
foreachuinV:
color[u] = white
parent[u] = NULL
time=0
foreachuinV:
if (color[u] == white):
DFSVisit(u)

DFSVisit(u)
color[u] = red // in process
d[u] = ++time /I discover

for each v in Adj(u) :

if (color[v] == white) : // unseen

parent[v] =u // tree edge
DFSVisit(v)
color[u] = black // done

flu] = ++time // finish
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Thm. (Properties of DFS on Undirected Graphs)
Let G be an undirected graph with n vertices and m edges.
Then:

1. DFS(G) runs in linear time, i.e., O(n+ m).
2. DFS computes connected components of G.

3. DFS determines which of these components is cyclic: a
component is cyclic iff it has a backedge.
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Depth First Search

DFSmain(G)
foreachuinV:
color[u] = white
parent[u] = NULL
time=0

foreachuinV:

DFSVisit(u)

if (color[u] == white):

DFSVisit(u)

color[u] = red

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :

parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time

// in process

// discover

// unseen

// tree edge

// done
// finish
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Thm. (Properties of DFS on directed Graphs)

Let G be an directed graph with n vertices and m edges. Then:

1.

2.

DFS(G) runs in linear time, i.e., O(n+ m).

When a DFS tree T is completed all the vertices reachable
from any vertex in T have been visited either in T, or in
previous trees.

G is cyclic iff DFS(G) finds backedge.

If G is acyclic, then the reverse finish times provide a
topological ordering of G.

A second run of DFS on G — with roots chosen in reverse
finish time of the first search — computes the strongly
connected components of G.

Proof: 1. 2., and 3. are similar as for undirected graphs.
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Def. A topological ordering of a DAG G, is an ordering of
VG = {vy,...,vp} such that for all (v;, vj) € EC, i <.

A topological ordering of a pert chart, is a valid ordering for
doing the tasks such that no task is done before any of its
prerequisites.

If G has a cycle, then G has not topological ordering.

4. If G is acyclic, then the reverse finish times provide a
topological ordering of G.
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