CS250: Discrete Math for Computer Science

L29: DFS on Directed Graphs



Depth First Search

(undirected graphs)

DFSmain(G)
foreachuinV:
color[u] = white
parent[u] = NULL
time=0
foreachuinV:
if (color[u] == white):
DFSVisit(u)

DFSVisit(u)
color[u] = red // in process
d[u] = ++time /I discover

for each v in Adj(u) :

if (color[v] == white) : // unseen

parent[v] =u // tree edge
DFSVisit(v)
color[u] = black // done

flu] = ++time // finish



black Treeedge brownBackedge

DFSVisit(u)
color[u] = red a Q e G

d[u] = ++time

for each v in Adj(u) :
if (color[v] == white) :
parent[v] = u
DFSVisit(v)
color[u] = black

flu] = ++time



black Treeedge brownBackedge

DFSVisit(u) ]
color[u] = red e Q e °

d[u] = ++time

for each v in Adj(u) :
if (color[v] == white) : @
parent[v] = u 1
DFSVisit(v)
color[u] = black

flu] = ++time



black Treeedge brownBackedge

. O—® o1

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time



black Treeedge brownBackedge

. O—® o1

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time



black Treeedge brownBackedge

DFSVisit(u)

color[u] = red

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time



black Treeedge brownBackedge

DFSVisit(u)

color[u] = red

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time



black Treeedge brownBackedge

DFSVisit(u) ]
colorl[z;t:red 0 Q e

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time



black Treeedge brownBackedge

DFSVisit(u)
color;z;t:red e Q e

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time



black Treeedge brownBackedge

DFSVisit(u)
color;z;t:red e Q e

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time



black Tree edge

DFSVisit(u) '
color[u] = red e o e “
d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time



black Tree edge

DFSVisit(u)
color[u] = red e o e a

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :

RO,

parent[v] = u
DFSVisit(v)
color[u] = black

flu] = ++time



black Treeedge brownBackedge

DFSVisit(u)
colorfu] = red e Q G ﬁ

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :

parent[v] = u 9
DFSVisit(v) o
color[u] = black
10

flu] = ++time



black Tree edge

DFSVisit(u) '
colorfu] = red e o G 0

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time



black Tree edge

DFSVisit(u) '
colorfu] = red e o G “

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

12 |9

11 10
flu] = ++time



Depth First Search

(undirected graphs)

DFSmain(G)
foreachuinV:
color[u] = white
parent[u] = NULL
time=0
foreachuinV:
if (color[u] == white):
DFSVisit(u)

DFSVisit(u)
color[u] = red // in process
d[u] = ++time /I discover

for each v in Adj(u) :

if (color[v] == white) : // unseen

parent[v] =u // tree edge
DFSVisit(v)
color[u] = black // done

flu] = ++time // finish



Thm. (Properties of DFS on Undirected Graphs)
Let G be an undirected graph with n vertices and m edges.
Then:



Thm. (Properties of DFS on Undirected Graphs)
Let G be an undirected graph with n vertices and m edges.
Then:

1. DFS(G) runs in linear time, i.e., O(n+ m).



Thm. (Properties of DFS on Undirected Graphs)
Let G be an undirected graph with n vertices and m edges.
Then:

1. DFS(G) runs in linear time, i.e., O(n+ m).

2. DFS computes connected components of G.



Thm. (Properties of DFS on Undirected Graphs)
Let G be an undirected graph with n vertices and m edges.
Then:

1. DFS(G) runs in linear time, i.e., O(n+ m).
2. DFS computes connected components of G.

3. DFS determines which of these components is cyclic: a
component is cyclic iff it has a backedge.



black brown cyan fuchsia
tree edge back edge cross edge forward edge




black brown cyan fuchsia
tree edge back edge cross edge forward edge

®




black brown cyan fuchsia
tree edge back edge cross edge forward edge




black brown cyan fuchsia
tree edge back edge cross edge forward edge

N



black brown cyan fuchsia
tree edge back edge cross edge forward edge

OumO

N
w



black brown cyan fuchsia
tree edge back edge cross edge forward edge

=)

(6]
N

N
w



black brown cyan fuchsia
tree edge back edge cross edge forward edge




black brown cyan fuchsia
tree edge back edge cross edge forward edge




black brown cyan fuchsia
tree edge back edge cross edge forward edge




black brown cyan fuchsia
tree edge back edge cross edge forward edge




black brown cyan fuchsia
tree edge back edge cross edge forward edge




black brown cyan fuchsia
tree edge back edge cross edge forward edge




black brown cyan fuchsia
tree edge back edge cross edge forward edge




black brown cyan
tree edge back edge cross edge

fuchsia
forward edge




black brown cyan fuchsia
tree edge back edge cross edge forward edge




black brown cyan fuchsia
tree edge back edge cross edge forward edge




black brown cyan fuchsia
tree edge back edge cross edge forward edge




black
tree edge

cyan fuchsia
cross edge forward edge




Depth First Search

DFSmain(G)
foreachuinV:
color[u] = white
parent[u] = NULL
time=0

foreachuinV:

DFSVisit(u)

if (color[u] == white):

DFSVisit(u)

color[u] = red

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :

parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time

// in process

// discover

// unseen

// tree edge

// done
// finish



Thm. (Properties of DFS on directed Graphs)
Let G be an directed graph with n vertices and m edges. Then:



Thm. (Properties of DFS on directed Graphs)
Let G be an directed graph with n vertices and m edges. Then:

1. DFS(G) runs in linear time, i.e., O(n+ m).



Thm. (Properties of DFS on directed Graphs)
Let G be an directed graph with n vertices and m edges. Then:

1. DFS(G) runs in linear time, i.e., O(n+ m).

2. When a DFS tree T is completed all the vertices reachable
from any vertex in T have been visited either in T, or in

previous trees.



Thm. (Properties of DFS on directed Graphs)
Let G be an directed graph with n vertices and m edges. Then:

1. DFS(G) runs in linear time, i.e., O(n+ m).

2. When a DFS tree T is completed all the vertices reachable
from any vertex in T have been visited either in T, or in
previous trees.

3. Gis cyclic iff DFS(G) finds



Thm. (Properties of DFS on directed Graphs)
Let G be an directed graph with n vertices and m edges. Then:

1. DFS(G) runs in linear time, i.e., O(n+ m).

2. When a DFS tree T is completed all the vertices reachable
from any vertex in T have been visited either in T, or in
previous trees.

3. Gis cyclic iff DFS(G) finds

4. If Gis acyclic, then the reverse finish times provide a
topological ordering of G.



Thm. (Properties of DFS on directed Graphs)

Let G be an directed graph with n vertices and m edges. Then:

1.

2.

DFS(G) runs in linear time, i.e., O(n+ m).

When a DFS tree T is completed all the vertices reachable
from any vertex in T have been visited either in T, or in
previous trees.

G is cyclic iff DFS(G) finds backedge.

If G is acyclic, then the reverse finish times provide a
topological ordering of G.

A second run of DFS on G — with roots chosen in reverse
finish time of the first search — computes the strongly
connected components of G.



Thm. (Properties of DFS on directed Graphs)

Let G be an directed graph with n vertices and m edges. Then:

1.

2.

DFS(G) runs in linear time, i.e., O(n+ m).

When a DFS tree T is completed all the vertices reachable
from any vertex in T have been visited either in T, or in
previous trees.

G is cyclic iff DFS(G) finds backedge.

If G is acyclic, then the reverse finish times provide a
topological ordering of G.

A second run of DFS on G — with roots chosen in reverse
finish time of the first search — computes the strongly
connected components of G.

Proof: 1. 2., and 3. are similar as for undirected graphs.



choose
tie



make
coffee

choose .

tie

Def. A topological ordering of a DAG G, is an ordering of
VG = {vy,...,vp} such that for all (v;, vj) € EC, i <.



make
coffee

choose .

tie

Def. A topological ordering of a DAG G, is an ordering of
VG = {vy,...,vp} such that for all (v;, vj) € EC, i <.

A topological ordering of a pert chart, is a valid ordering for
doing the tasks such that no task is done before any of its

prerequisites.



make
coffee

choose .

tie

Def. A topological ordering of a DAG G, is an ordering of
VG = {vy,...,vp} such that for all (v;, vj) € EC, i <.

A topological ordering of a pert chart, is a valid ordering for
doing the tasks such that no task is done before any of its
prerequisites.

If G has a cycle, then G has not topological ordering.



make
coffee

choose .

tie

Def. A topological ordering of a DAG G, is an ordering of
VG = {vy,...,vp} such that for all (v;, vj) € EC, i <.

A topological ordering of a pert chart, is a valid ordering for
doing the tasks such that no task is done before any of its
prerequisites.

If G has a cycle, then G has not topological ordering.

4. If G is acyclic, then the reverse finish times provide a
topological ordering of G.



choose
tie

make

coffee
get

dressed

drink
coffee




make

coffee
get

dressed

choose
tie

drink
coffee

(O 60



choose
tie

make

coffee
get

dressed

drink
coffee

1O 060



On0:0

N
w

choose
tie

make

coffee
get

dressed

drink
coffee




026
N -y

&

N
w

choose
tie

make

coffee
get

dressed

drink
coffee




D,
—_

(6}
N

N
w

choose
tie

make

coffee
get

dressed

drink
coffee




D,
—_

(6}
N

N

w

choose .

tie

make
coffee

get
dressed

drink
coffee




make
coffee

drink
coffee

choose .

get
tie dressed




make
coffee

drink
coffee

choose .

get
tie dressed




make
coffee

drink
coffee

choose .

tie

get
dressed




make
coffee

drink
coffee

get
tie dressed

611 3 9
© D
572 10



drink
coffee



drink
coffee



drink
coffee



drink
coffee




drink
coffee




drink
coffee




make
coffee
choose . get

tie dressed

drink
coffee




make
coffee
choose . get

tie dressed

drink
coffee




make
coffee
choose . get

tie dressed

drink
coffee




make
coffee
choose . get

tie dressed

drink
coffee




make
coffee

drink
coffee



