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L28: Searching Undirected Graphs: Depth First Search



Walks versus Paths

A path is a walk that never visits the same edge or vertex
twice, except a path may start and end at the same vertex in
which case it is called a cycle.

A loop is a cycle of length 1.
There are no cycles of length 0.

Note: this definition differs for directed and undirected graphs.
The undirected graph G1 is acyclic.
However, the directed graph, D1, has a cycle: (0,1,0).
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0 1 2 3

w1 = (0) w2 = (0,1) w3 = (0,1,2)

w4 = (0,1,0) w5 = (0,1,2,3) w6 = (0,1,2,3,0)

iClicker 28.1 In the above undirected graph, which of the
above walks are paths?

A: all of them B: all except w4 C: all except w4 and w6

iClicker 28.2 Which of the above walks are cycles?

A: w4 and w6 B: just w6
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Cyclic versus Acyclic

A graph with at at least one cycle is called cyclic.

A graph that has no cycles is called acyclic.
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Rest of today: all graphs will be undirected and loop free.

A forest is an undirected acyclic graph.

An undirected graph is connected if every pair of vertices has
a path between them.

An undirected tree is a connected forest.
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Connected Components
A connected component, C, of an undirected graph, G, is a
maximal connected subgraph of G.

If G is connected then G itself is G’s unique connected
component.
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0 1 2 3
G3

0 1 2 3
T4

iClicker 28.3 How many connected components does F2
have? V F2 = {0,1,2,3} EF2 = {(1,2), (2,1)}

A: 1 B: 2 C: 3

Recall E∗ is the reflexive transitive closure of E . For undirected
graphs, E∗ is an equivalence relation and it partitions the
vertices into connected components:

[v ]E∗ =
{

u ∈ V
∣∣ E∗(u, v)

}
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Wanted: fast algorithm to

I search a graph

I compute its connected components

I determine if it is cyclic or acyclic
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Depth First Search (undirected graphs)

DFSmain(G)

for each u in V :

color[u] = white

parent[u] = NULL

time=0

for each u in V :

if (color[u] == white):

DFSVisit(u)

DFSVisit(u)

color[u] = red // in process

d[u] = ++time // discover

for each v in Adj(u) :

if (color[v] == white) : // unseen

parent[v] = u // tree edge

DFSVisit(v)

color[u] = black // done

f[u] = ++time // finish
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Depth First Search (undirected graphs)
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for each u in V :
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Thm. (Properties of DFS on Undirected Graphs)
Let G be an undirected graph with n vertices and m edges.
Then:

1. DFS(G) runs in linear time, i.e., O(n + m).

2. DFS computes connected components of G.

3. DFS determines which of these components is cyclic: a
component is cyclic iff it has a backedge.
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Proof:

1. DFS runs in linear time, i.e., O(n + m) time.

DFSmain has constant number of steps per vertex. O(n)

DFSVisit(v) called once for each vertex v . O(n)

DFSVisit(v) performs a bounded number of steps, O(n)
except for walking down v ’s adjacency list,
one step for each outgoing edge.
Each edge examined once in each direction. O(m)

O(n+m)
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2. Claim The trees of the DFS forest are exactly the
connected components of G.

We show that all the vertices reachable from r are included in
the DFS tree whose root is r .

Prove by induction on the number of vertices in [r ].

base case: 1 = |[r ]| = {r} visited first step of DFSVisit(r).
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inductive case: Assume indHyp: for all H, r ∈ V H ,
|V H | ≤ n0 ⇒ if we start at r then DFSVisit(r) visits all of [r ].

Let G be arbitrary connected, |V G| = n0 + 1, r ∈ V G.

Call DFSVisit(r), let a be first neighbor of r .

H1
def
= vertices reachable from a without

going through r . H1 is connected and
has at most n0 vertices. By indHyp,
DFSVisit(a) visits all of H1.

H2
def
= G − H1. Remainder of DFSVisit(r)

is the same as if H1 didn’t exist and we
are just doing the DFS of H2.

By indHyp, DFSVisit(r) visits all of H2.

r

a
H1

H2

Thus initial call of DFSVisit(r) visits all of G = H1 ∪ H2.
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3. Claim G is cyclic iff DFS(G) finds a backedge.

If there is a backege from b to a, then there
is a path in the tree from a down to b, so this
path plus the backedge forms a cycle.

Conversely, suppose that G contains a cy-
cle and let C = a1,a2, . . . ,ak−1,a1 be a cy-
cle. Let a1 be the first vertex of the cycle
that is visited in DFS(G). By (2), we know
that a2 and ak−1 are visited during the call of
DFSVisit(a1). Assume that a2 is visited first,
the other case is symmetrical.
By (2), we know that ak−1 is visited during

the call of DFSVisit(a2).

a1

a2

ak−1

When ak−1 is visited, a1 is red and not ak−1’s parent.
Thus the edge (ak−1,a1) is a backedge. �
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