CS250: Discrete Math for Computer Science

L28: Searching Undirected Graphs: Depth First Search

Walks versus Paths

A path is a walk that never visits the same edge or vertex
twice, except a path may start and end at the same vertex in
which case it is called a cycle.

0 1 2 0 1 2

Walks versus Paths

A path is a walk that never visits the same edge or vertex
twice, except a path may start and end at the same vertex in
which case it is called a cycle. A loop is a cycle of length 1.
There are no cycles of length 0.

0 1 2 0 1 2

Walks versus Paths

A path is a walk that never visits the same edge or vertex
twice, except a path may start and end at the same vertex in
which case it is called a cycle. A loop is a cycle of length 1.
There are no cycles of length 0.

Note: this definition differs for directed and undirected graphs.
The undirected graph G; is acyclic.

0 1 2 0 1 2

acyclic

Walks versus Paths

A path is a walk that never visits the same edge or vertex
twice, except a path may start and end at the same vertex in
which case it is called a cycle. A loop is a cycle of length 1.
There are no cycles of length 0.

Note: this definition differs for directed and undirected graphs.
The undirected graph G; is acyclic.
However, the directed graph, Dy, has a cycle: (0, 1,0).

o O—C—0) o CO-0

acyclic cyclic

Wy = (0) Wo = (0,1)
wy = (0,1,0) ws=(0,1,2,3)

ws = (0,1,2)
ws = (0,1,2,3,0)

W1:(0) W2:(0,1) W3:(0,1,2)
wy = (0,1,0) ws=1(0,1,2,3) ws=(0,1,2,3,0)

iClicker 28.1 In the above undirected graph, which of the
above walks are paths?

A: all of them B: all except w, C: all except w, and wg

W1:(0) W2:(0,1) W3:(0,1,2)
wy = (0,1,0) ws=1(0,1,2,3) ws=(0,1,2,3,0)

iClicker 28.2 Which of the above walks are cycles?

A: wsand wg B:just wg

Cyclic versus Acyclic

A graph with at at least one cycle is called cyclic.

—O——@ ©® O—@ O

O—0O—0C—0B O0—0 . @—0
Gs T4

Cyclic versus Acyclic

A graph with at at least one cycle is called cyclic.
A graph that has no cycles is called acyclic.

—O——@ ©® O—@ O

O—0O—0C—0B O0—0 . @—0
Gs T4

Cyclic versus Acyclic

A graph with at at least one cycle is called cyclic.
A graph that has no cycles is called acyclic.

—O——@ ©® O—@ O

0 D ® d © ® (2 ®
Gs Ts

Rest of today: all graphs will be undirected and loop free.

Cyclic versus Acyclic

A graph with at at least one cycle is called cyclic.
A graph that has no cycles is called acyclic.

—O——@ ©® O—@ O

0 D ® d © ® (2 ®
Gs Ts

Rest of today: all graphs will be undirected and loop free.
A forest is an undirected acyclic graph.

Cyclic versus Acyclic

A graph with at at least one cycle is called cyclic.

A graph that has no cycles is called acyclic.

—O——@ ©® O—@ O

0 D ® d © ® (2 ®
Gs Ts

Rest of today: all graphs will be undirected and loop free.
A forest is an undirected acyclic graph.

An undirected graph is connected if every pair of vertices has
a path between them.

Cyclic versus Acyclic

A graph with at at least one cycle is called cyclic.

A graph that has no cycles is called acyclic.

—O——@ ©® O—@ O

0 D ® d © ® (2 ®
Gs Ts

Rest of today: all graphs will be undirected and loop free.
A forest is an undirected acyclic graph.

An undirected graph is connected if every pair of vertices has
a path between them.

An undirected tree is a connected forest.

Connected Components

A connected component, C, of an undirected graph, G, is a
maximal connected subgraph of G.

Connected Components

A connected component, C, of an undirected graph, G, is a
maximal connected subgraph of G.

If G is connected then G itself is G's unique connected
component.

Connected Components

A connected component, C, of an undirected graph, G, is a
maximal connected subgraph of G.

If G is connected then G itself is G's unique connected
component.

O—0O—0@—0® ©® O0—©O@ 6

Connected Components

A connected component, C, of an undirected graph, G, is a
maximal connected subgraph of G.

If G is connected then G itself is G's unique connected
component.

O—0O—0@—0® ©® O0—©O@ 6

iClicker 28.3 How many connected components does F»
have? V2 =1{0,1,2,3} ER2={(1,2),(2,1)}

A: 1 B: 2 C:3

Connected Components

A connected component, C, of an undirected graph, G, is a
maximal connected subgraph of G.

If G is connected then G itself is G's unique connected
component.

O—0—o—0 0 O0—0 O

0 O, @ d O ® (2 ©
Gs Ta

Connected Components

A connected component, C, of an undirected graph, G, is a
maximal connected subgraph of G.

If G is connected then G itself is G's unique connected
component.

O—0—o—0 0 O0—0 O

0®G®3

3 T4

Recall E* is the reflexive transitive closure of E. For undirected
graphs, E* is an equivalence relation and it partitions the
vertices into connected components:

Vle- = {ue V| E*(u,v)}

Wanted: fast algorithm to

» search a graph

Wanted: fast algorithm to

» search a graph

» compute its connected components

Wanted: fast algorithm to

» search a graph
» compute its connected components

» determine if it is cyclic or acyclic

Depth First Search

(undirected graphs)

DFSmain(G)
foreachuinV:
color[u] = white
parent[u] = NULL
time=0
foreachuinV:
if (color[u] == white):
DFSVisit(u)

DFSVisit(u)
color[u] = red // in process
d[u] = ++time /I discover

for each v in Adj(u) :

if (color[v] == white) : // unseen

parent[v] =u // tree edge
DFSVisit(v)
color[u] = black // done

flu] = ++time // finish

black Treeedge brownBackedge

DFSVisit(u)
color[u] = red a Q e G

d[u] = ++time

for each v in Adj(u) :
if (color[v] == white) :
parent[v] = u
DFSVisit(v)
color[u] = black

flu] = ++time

black Treeedge brownBackedge

DFSVisit(u)]
color[u] = red e Q e °

d[u] = ++time

for each v in Adj(u) :
if (color[v] == white) : @
parent[v] = u 1
DFSVisit(v)
color[u] = black

flu] = ++time

black Treeedge brownBackedge

. O—® o1

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time

black Treeedge brownBackedge

. O—® o1

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time

black Treeedge brownBackedge

DFSVisit(u)

color[u] = red

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time

black Treeedge brownBackedge

DFSVisit(u)

color[u] = red

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time

black Treeedge brownBackedge

DFSVisit(u)]
colorl[z;t:red 0 Q e

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time

black Treeedge brownBackedge

DFSVisit(u)
color;z;t:red e Q e

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time

black Treeedge brownBackedge

DFSVisit(u)
color;z;t:red e Q e

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time

black Tree edge

DFSVisit(u) '
color[u] = red e o e “
d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time

black Tree edge

DFSVisit(u)
color[u] = red e o e a

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :

RO,

parent[v] = u
DFSVisit(v)
color[u] = black

flu] = ++time

black Treeedge brownBackedge

DFSVisit(u)
colorfu] = red e Q G ﬁ

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :

parent[v] = u 9
DFSVisit(v) o
color[u] = black
10

flu] = ++time

black Tree edge

DFSVisit(u) '
colorfu] = red e o G 0

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time

black Tree edge

DFSVisit(u) '
colorfu] = red e o G “

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

12 |9

11 10
flu] = ++time

Depth First Search

(undirected graphs)

DFSmain(G)
foreachuinV:
color[u] = white
parent[u] = NULL
time=0
foreachuinV:
if (color[u] == white):
DFSVisit(u)

DFSVisit(u)
color[u] = red // in process
d[u] = ++time /I discover

for each v in Adj(u) :

if (color[v] == white) : // unseen

parent[v] =u // tree edge
DFSVisit(v)
color[u] = black // done

flu] = ++time // finish

Thm. (Properties of DFS on Undirected Graphs)
Let G be an undirected graph with n vertices and m edges.
Then:

Thm. (Properties of DFS on Undirected Graphs)
Let G be an undirected graph with n vertices and m edges.
Then:

1. DFS(G) runs in linear time, i.e., O(n+ m).

Thm. (Properties of DFS on Undirected Graphs)
Let G be an undirected graph with n vertices and m edges.
Then:

1. DFS(G) runs in linear time, i.e., O(n+ m).

2. DFS computes connected components of G.

Thm. (Properties of DFS on Undirected Graphs)
Let G be an undirected graph with n vertices and m edges.
Then:

1. DFS(G) runs in linear time, i.e., O(n+ m).
2. DFS computes connected components of G.

3. DFS determines which of these components is cyclic: a
component is cyclic iff it has a backedge.

Proof:
1. DFS runs in linear time, i.e., O(n + m) time.

DFSmain has constant number of steps per vertex. O(n)

Proof:
1. DFS runs in linear time, i.e., O(n + m) time.
DFSmain has constant number of steps per vertex.

DFSVisit(v) called once for each vertex v.

Proof:

1. DFS runs in linear time, i.e., O(n + m) time.
DFSmain has constant number of steps per vertex.
DFSVisit(v) called once for each vertex v.
DFSVisit(v) performs a bounded number of steps,

Proof:

1. DFS runs in linear time, i.e., O(n + m) time.
DFSmain has constant number of steps per vertex.
DFSVisit(v) called once for each vertex v.

DFSVisit(v) performs a bounded number of steps,
except for walking down v’s adjacency list,

Proof:

1. DFS runs in linear time, i.e., O(n + m) time.
DFSmain has constant number of steps per vertex.
DFSVisit(v) called once for each vertex v.

DFSVisit(v) performs a bounded number of steps,
except for walking down v’s adjacency list,
one step for each outgoing edge.

Proof:

1. DFS runs in linear time, i.e., O(n + m) time.
DFSmain has constant number of steps per vertex.
DFSVisit(v) called once for each vertex v.

DFSVisit(v) performs a bounded number of steps,
except for walking down v’s adjacency list,
one step for each outgoing edge.

Each edge examined once in each direction.

Proof:

1. DFS runs in linear time, i.e., O(n + m) time.
DFSmain has constant number of steps per vertex.
DFSVisit(v) called once for each vertex v.

DFSVisit(v) performs a bounded number of steps,
except for walking down v’s adjacency list,
one step for each outgoing edge.

Each edge examined once in each direction.

2. Claim The trees of the DFS forest are exactly the
connected components of G.

2. Claim The trees of the DFS forest are exactly the
connected components of G.

We show that all the vertices reachable from r are included in
the DFS tree whose root is r.

2. Claim The trees of the DFS forest are exactly the
connected components of G.

We show that all the vertices reachable from r are included in
the DFS tree whose root is r.

Prove by induction on the number of vertices in [r].

2. Claim The trees of the DFS forest are exactly the
connected components of G.

We show that all the vertices reachable from r are included in
the DFS tree whose root is r.

Prove by induction on the number of vertices in [r].
base case: 1 = |[r]| = {r} visited first step of DFSVisit(r).

inductive case: Assume indHyp: for all H,r ¢ V",
|VH| < ny = if we start at r then DFSVisit(r) visits all of [r].

inductive case: Assume indHyp: for all H,r ¢ V",
|VH| < ny = if we start at r then DFSVisit(r) visits all of [r].

Let G be arbitrary connected, |VC| = ng + 1, r € VC.

inductive case: Assume indHyp: for all H,r ¢ V",
|VH| < ny = if we start at r then DFSVisit(r) visits all of [r].

Let G be arbitrary connected, |VC| = ng + 1, r € VC.
Call DFSVisit(r),

inductive case: Assume indHyp: for all H,r ¢ V",
|VH| < ny = if we start at r then DFSVisit(r) visits all of [r].

Let G be arbitrary connected, |VC&| = ny + 1, r € VC.
Call DFSVisit(r), let a be first neighbor of r.

inductive case: Assume indHyp: for all H,r ¢ V",
|VH| < ny = if we start at r then DFSVisit(r) visits all of [r].

Let G be arbitrary connected, |VC&| = ny + 1, r € VC.
Call DFSVisit(r), let a be first neighbor of r.

H; &I Vertices reachable from a without
going through r.

inductive case: Assume indHyp: for all H,r ¢ V",
|VH| < ny = if we start at r then DFSVisit(r) visits all of [r].

Let G be arbitrary connected, |VC| = ng + 1, r € VC.
Call DFSVisit(r), let a be first neighbor of r.
H; &I Vertices reachable from a without

going through r. Hy is connected and
has at most ny vertices. o

inductive case: Assume indHyp: for all H,r ¢ V",
|VH| < ny = if we start at r then DFSVisit(r) visits all of [r].

Let G be arbitrary connected, |VC&| = ny + 1, r € VC.
Call DFSVisit(r), let a be first neighbor of r.

H; &I Vertices reachable from a without
going through r. Hy is connected and
has at most ng vertices. By indHyp, o

DFSVisit(a) visits all of Hy.

inductive case: Assume indHyp: for all H,r ¢ V",
|VH| < ny = if we start at r then DFSVisit(r) visits all of [r].

Let G be arbitrary connected, |VC| = ng + 1, r € VC.

Call DFSVisit(r), let a be first neighbor of r.
H; &I Vertices reachable from a without
going through r. Hy is connected and

has at most ng vertices. By indHyp, o
DFSVisit(a) visits all of Hy.

H, & G — H;. Remainder of DFSVisit(r) (a)
is the same as if H; didn’t exist and we

are just doing the DFS of Ho.

inductive case: Assume indHyp: for all H,r ¢ V",
|VH| < ny = if we start at r then DFSVisit(r) visits all of [r].

Let G be arbitrary connected, |VC&| = ny + 1, r € VC.
Call DFSVisit(r), let a be first neighbor of r.

H; &I Vertices reachable from a without
going through r. Hy is connected and
has at most ny vertices. By indHyp,
DFSVisit(a) visits all of Hj.

H, & G — H;. Remainder of DFSVisit(r)
is the same as if H; didn’t exist and we
are just doing the DFS of Ho.

By indHyp, DFSVisit(r) visits all of H..

inductive case: Assume indHyp: for all H,r ¢ V",
|VH| < ny = if we start at r then DFSVisit(r) visits all of [r].

Let G be arbitrary connected, |VC&| = ny + 1, r € VC.
Call DFSVisit(r), let a be first neighbor of r.

H; &I Vertices reachable from a without
going through r. Hy is connected and
has at most ng vertices. By indHyp,
DFSVisit(a) visits all of Hy.

H, & G — H;. Remainder of DFSVisit(r)
is the same as if H; didn’t exist and we
are just doing the DFS of Ho.

By indHyp, DFSVisit(r) visits all of H..

Thus initial call of DFSVisit(r) visits all of G = Hy U Hz.

3. Claim G is cyclic iff DFS(G) finds a backedge.

3. Claim G is cyclic iff DFS(G) finds a backedge.

If there is a backege from b to a, then there
is a path in the tree from a down to b, so this
path plus the backedge forms a cycle.

3. Claim G is cyclic iff DFS(G) finds a backedge.

If there is a backege from b to a, then there
is a path in the tree from a down to b, so this
path plus the backedge forms a cycle.

Conversely, suppose that G contains a cy-
cle and let C = ay,a0,...,ax_1,a; be a cy-
cle. Let a; be the first vertex of the cycle
that is visited in DFS(G).

3. Claim G is cyclic iff DFS(G) finds a backedge.

If there is a backege from b to a, then there

is a path in the tree from a down to b, so this
path plus the backedge forms a cycle. e

Conversely, suppose that G contains a cy-
cleand let C = aq,a,...,ak_1, a1 be a cy-

cle. Let a; be the first vertex of the cycle @
that is visited in DFS(G). By (2), we know

that a> and a,_4 are visited during the call of
DFSVisit(ay). Assume that a, is visited first,
the other case is symmetrical.

3. Claim G is cyclic iff DFS(G) finds a backedge.

If there is a backege from b to a, then there
is a path in the tree from a down to b, so this
path plus the backedge forms a cycle.

Conversely, suppose that G contains a cy-
cle and let C = ay,a0,...,ax_1,a; be a cy-
cle. Let a; be the first vertex of the cycle
that is visited in DFS(G). By (2), we know
that a> and a,_4 are visited during the call of
DFSVisit(a1). Assume that ay is visited first,
the other case is symmetrical.

By (2), we know that a,_4 is visited during
the call of DFSVisit(ay).

3. Claim G is cyclic iff DFS(G) finds a backedge.

If there is a backege from b to a, then there

is a path in the tree from a down to b, so this

path plus the backedge forms a cycle. e
Conversely, suppose that G contains a cy-

cle and let C = ay,a0,...,ax_1,a; be a cy-

cle. Let a; be the first vertex of the cycle

that is visited in DFS(G). By (2), we know =
that a> and a,_4 are visited during the call of

DFSVisit(a1). Assume that ay is visited first, "

the other case is symmetrical.
By (2), we know that a,_1 is visited during
the call of DFSVisit(ay).

When a,_1 is visited, aj is red and not a,_4’s parent.

3. Claim G is cyclic iff DFS(G) finds a backedge.

If there is a backege from b to a, then there

is a path in the tree from a down to b, so this

path plus the backedge forms a cycle. e
Conversely, suppose that G contains a cy-

cle and let C = ay,a0,...,ax_1,a; be a cy-

cle. Let a; be the first vertex of the cycle

that is visited in DFS(G). By (2), we know =
that a> and a,_4 are visited during the call of

DFSVisit(a1). Assume that ay is visited first, "

the other case is symmetrical.
By (2), we know that a,_1 is visited during
the call of DFSVisit(ay).

When a,_1 is visited, aj is red and not a,_4’s parent.
Thus the edge (ax_1, ai) is a backedge.

