CS250: Discrete Math for Computer Science

L28: Searching Undirected Graphs: Depth First Search



Walks versus Paths

A path is a walk that never visits the same edge or vertex
twice, except a path may start and end at the same vertex in
which case it is called a cycle.
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Walks versus Paths

A path is a walk that never visits the same edge or vertex
twice, except a path may start and end at the same vertex in
which case it is called a cycle. A loop is a cycle of length 1.
There are no cycles of length 0.

Note: this definition differs for directed and undirected graphs.
The undirected graph G; is acyclic.
However, the directed graph, Dy, has a cycle: (0, 1,0).
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Wy = (0) Wo = (0,1)
wy = (0,1,0) ws=(0,1,2,3)

ws = (0,1,2)
ws = (0,1,2,3,0)



W1:(0) W2:(0,1) W3:(0,1,2)
wy = (0,1,0) ws=1(0,1,2,3) ws=(0,1,2,3,0)

iClicker 28.1 In the above undirected graph, which of the
above walks are paths?

A: all of them B: all except w, C: all except w, and wg



W1:(0) W2:(0,1) W3:(0,1,2)
wy = (0,1,0) ws=1(0,1,2,3) ws=(0,1,2,3,0)

iClicker 28.2 Which of the above walks are cycles?

A: wsand wg B:just wg



Cyclic versus Acyclic

A graph with at at least one cycle is called cyclic.
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Cyclic versus Acyclic

A graph with at at least one cycle is called cyclic.

A graph that has no cycles is called acyclic.
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Rest of today: all graphs will be undirected and loop free.
A forest is an undirected acyclic graph.

An undirected graph is connected if every pair of vertices has
a path between them.

An undirected tree is a connected forest.
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Connected Components

A connected component, C, of an undirected graph, G, is a
maximal connected subgraph of G.

If G is connected then G itself is G's unique connected
component.
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iClicker 28.3 How many connected components does F»
have? V2 =1{0,1,2,3} ER2={(1,2),(2,1)}

A: 1 B: 2 C:3



Connected Components

A connected component, C, of an undirected graph, G, is a
maximal connected subgraph of G.

If G is connected then G itself is G's unique connected
component.
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Connected Components

A connected component, C, of an undirected graph, G, is a
maximal connected subgraph of G.

If G is connected then G itself is G's unique connected
component.
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Recall E* is the reflexive transitive closure of E. For undirected
graphs, E* is an equivalence relation and it partitions the
vertices into connected components:

Vle- = {ue V| E*(u,v)}



Wanted: fast algorithm to
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Wanted: fast algorithm to

» search a graph
» compute its connected components

» determine if it is cyclic or acyclic



Depth First Search

(undirected graphs)

DFSmain(G)
foreachuinV:
color[u] = white
parent[u] = NULL
time=0
foreachuinV:
if (color[u] == white):
DFSVisit(u)

DFSVisit(u)
color[u] = red // in process
d[u] = ++time /I discover

for each v in Adj(u) :

if (color[v] == white) : // unseen

parent[v] =u // tree edge
DFSVisit(v)
color[u] = black // done

flu] = ++time // finish



black Treeedge brownBackedge

DFSVisit(u)
color[u] = red a Q e G

d[u] = ++time

for each v in Adj(u) :
if (color[v] == white) :
parent[v] = u
DFSVisit(v)
color[u] = black

flu] = ++time



black Treeedge brownBackedge

DFSVisit(u) ]
color[u] = red e Q e °

d[u] = ++time

for each v in Adj(u) :
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parent[v] = u 1
DFSVisit(v)
color[u] = black

flu] = ++time



black Treeedge brownBackedge
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black Treeedge brownBackedge

DFSVisit(u) ]
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black Treeedge brownBackedge

DFSVisit(u)
color;z;t:red e Q e

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)
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flu] = ++time



black Tree edge

DFSVisit(u) '
color[u] = red e o e “
d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time



black Tree edge

DFSVisit(u)
color[u] = red e o e a

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :

RO,

parent[v] = u
DFSVisit(v)
color[u] = black

flu] = ++time



black Treeedge brownBackedge

DFSVisit(u)
colorfu] = red e Q G ﬁ

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :

parent[v] = u 9
DFSVisit(v) o
color[u] = black
10

flu] = ++time



black Tree edge

DFSVisit(u) '
colorfu] = red e o G 0

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black

flu] = ++time



black Tree edge

DFSVisit(u) '
colorfu] = red e o G “

d[u] = ++time

for each v in Adj(u) :

if (color[v] == white) :
parent[v] = u
DFSVisit(v)

color[u] = black
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flu] = ++time



Depth First Search

(undirected graphs)

DFSmain(G)
foreachuinV:
color[u] = white
parent[u] = NULL
time=0
foreachuinV:
if (color[u] == white):
DFSVisit(u)

DFSVisit(u)
color[u] = red // in process
d[u] = ++time /I discover

for each v in Adj(u) :

if (color[v] == white) : // unseen

parent[v] =u // tree edge
DFSVisit(v)
color[u] = black // done

flu] = ++time // finish
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Thm. (Properties of DFS on Undirected Graphs)
Let G be an undirected graph with n vertices and m edges.
Then:

1. DFS(G) runs in linear time, i.e., O(n+ m).
2. DFS computes connected components of G.

3. DFS determines which of these components is cyclic: a
component is cyclic iff it has a backedge.
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Proof:

1. DFS runs in linear time, i.e., O(n + m) time.
DFSmain has constant number of steps per vertex.
DFSVisit(v) called once for each vertex v.

DFSVisit(v) performs a bounded number of steps,
except for walking down v’s adjacency list,
one step for each outgoing edge.
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2. Claim The trees of the DFS forest are exactly the
connected components of G.

We show that all the vertices reachable from r are included in
the DFS tree whose root is r.

Prove by induction on the number of vertices in [r].
base case: 1 = |[r]| = {r} visited first step of DFSVisit(r).
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Let G be arbitrary connected, |VC&| = ny + 1, r € VC.
Call DFSVisit(r), let a be first neighbor of r.

H; &I Vertices reachable from a without
going through r. Hy is connected and
has at most ny vertices. By indHyp,
DFSVisit(a) visits all of Hj.
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inductive case: Assume indHyp: for all H,r ¢ V",
|VH| < ny = if we start at r then DFSVisit(r) visits all of [r].

Let G be arbitrary connected, |VC&| = ny + 1, r € VC.
Call DFSVisit(r), let a be first neighbor of r.

H; &I Vertices reachable from a without
going through r. Hy is connected and
has at most ng vertices. By indHyp,
DFSVisit(a) visits all of Hy.

H, & G — H;. Remainder of DFSVisit(r)
is the same as if H; didn’t exist and we
are just doing the DFS of Ho.

By indHyp, DFSVisit(r) visits all of H..

Thus initial call of DFSVisit(r) visits all of G = Hy U Hz.
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3. Claim G is cyclic iff DFS(G) finds a backedge.

If there is a backege from b to a, then there

is a path in the tree from a down to b, so this

path plus the backedge forms a cycle. e
Conversely, suppose that G contains a cy-

cle and let C = ay,a0,...,ax_1,a; be a cy-

cle. Let a; be the first vertex of the cycle

that is visited in DFS(G). By (2), we know =
that a> and a,_4 are visited during the call of

DFSVisit(a1). Assume that ay is visited first, "

the other case is symmetrical.
By (2), we know that a,_1 is visited during
the call of DFSVisit(ay).

When a,_1 is visited, aj is red and not a,_4’s parent.
Thus the edge (ax_1, ai) is a backedge.



