Depth First Search (undirected graphs)

DFSmain(G) {
 for each u in V do // Initialize
 color[u] = white;
 parent[u] = NULL;
 time = 0;
 for each u in V do
 if (color[u] == white) DFSVisit(u); // start a new tree
 }

DFSVisit(u) {
 color[u] = red; // u is discovered
 d[u] = ++time; // set u’s discover time
 for each v in Adj(u) do
 if (color[v] == white) {
 parent[v] = u; // edge (u,v) is a tree edge
 DFSVisit(v); // visit unvisited vertices
 }
 color[u] = black; // u has finished
 f[u] = ++time; // set u’s finish time
 }

Theorem 26.1 (Properties of DFS on Undirected Graphs)

Let G be an undirected graph with n vertices and m edges. Then $\text{DFS}(G)$ runs in linear time, i.e., $O(n + m)$. DFS computes connected components of G and determines which of these components is cyclic.

A component is cyclic iff DFS discovers a backedge.

Proof: To see that DFS runs in linear time, i.e., $O(n + m)$, note that DFSmain performs a constant number of steps per vertex, i.e., a total of $O(n)$ steps. Furthermore, DFSVisit is called exactly once for each vertex either from DFSmain or from DFSVisit. DFSVisit(v) performs a bounded number of steps except for walking down v’s adjacency list, which is done once for each vertex v. Thus each edge is examined once in each direction, for a total of $O(m)$ steps.

We claim that the trees of the DFS forest are exactly the connected components of G. To see this, it suffices to show that all the vertices reachable from r are included in the DFS tree whose root is r. We prove this by induction on the number of vertices in r’s connected component.

base case: If r’s connect component has size 1, then the whole connected component is visited at the first step of DFSVisit(r).

inductive case: Assume the indHyp which says that for all connected undirected graphs, H, with at most n_0 vertices, and all vertices v from H, if we start with all vertices white, then DFSVisit(v) visits all of H.

Assume that G is an arbitrary connected undirected graph with $n_0 + 1$ vertices. With all vertices white, call DFSVisit(r), for some vertex r of G. Let a be the first neighbor of r. Let H_1 be the set of vertices reachable from a without going through r. Then H_1 is connected and has at most n_0 vertices, so by the indHyp the call to DFSVisit(a) visits all of H_1. When we return to r, let $H_2 = G - H_1$. Then the remainder of DFSVisit(r) is the same as if H_1 didn’t exist and we are just doing the DFS of H_2. By the indHyp, this remaining DFS visits all of H_2. Thus the initial call of DFSVisit(r) visits all of $G = H_1 \cup H_2$.

Finally, we show that G is cyclic iff $\text{DFS}(G)$ finds a backedge. One direction is obvious: if there is a backedge from b to a, then there is a path in the tree from a down to b, so this path plus the backedge forms a cycle.

Conversely, suppose that G contains a cycle $C = a_1, a_2, \ldots, a_{k-1}, a_1$ and let a_1 be the first vertex of the cycle that is visited in $\text{DFS}(G)$. By the previous argument, we know that a_{k-1} is visited during the call of DFSVisit(a_1). But when a_{k-1} is visited, a_1 is red, and thus the edge (a_{k-1}, a_1) is a backedge. \square