CS250: Discrete Math for Computer Science

L25: Binary Relations and Digraphs
Def. A function $f : A \rightarrow B$ is **one-to-one** ($1 : 1$) iff no element has arrows from two elements: \(\forall xy (f(x) = f(y) \rightarrow x = y) \)
Def. A function $f : A \rightarrow B$ is **one-to-one** ($1 : 1$) iff no element has arrows from two elements: $\forall xy \ (f(x) = f(y) \rightarrow x = y)$
Def. A function $f : A \to B$ is one-to-one (1 : 1) iff no element has arrows from two elements: $\forall xy (f(x) = f(y) \to x = y)$
Def. A function \(f : A \rightarrow B \) is **one-to-one** (1:1) iff no element has arrows from two elements: \(\forall xy (f(x) = f(y) \rightarrow x = y) \)

iClicker 25.1 Which functions on the left are 1:1?

A: just \(\text{id}_{[2]} \)

B: just \(g \)

C: both of them

D: neither of them
Def. A function $f : A \to B$ is onto iff every element in B has an arrow to it: \[\forall y \in B \exists x \in A \quad f(x) = y \]
Def. A function $f : A \rightarrow B$ is **onto** iff every element in B has an arrow to it: $\forall y \in B \ \exists x \in A \ f(x) = y$
Def. A function $f : A \rightarrow B$ is **onto** iff every element in B has an arrow to it: $\forall y \in B \ \exists x \in A \ f(x) = y$

\[id_{[2]}(x) = x \]

\[g(x) = 1 \]
Def. A function $f : A \to B$ is **onto** iff every element in B has an arrow to it: $\forall y \in B \exists x \in A \ f(x) = y$

iClicker 25.2 Which functions on the left are onto?

- A: just $id_{[2]}$
- B: just g
- C: both of them
- D: neither of them
Domain, Range, and Co-Domain

For \(f : A \to B \), its **domain** and **range** are well defined.
Domain, Range, and Co-Domain

For $f : A \to B$, its **domain** and **range** are well defined.

Def. The **domain** of f: $\text{dom}(f) \overset{\text{def}}{=} \{ a \mid \exists b \ (a, b) \in f \} = A$

For $g : \{1, 2\} \to \{1, 2\}$, its co-domain is $\{1, 2\}$; g is not onto.

For $g : \{1, 2\} \to \{1\}$, its co-domain is $\{1\}$; g is onto.

The co-domain must be given explicitly, it cannot be determined from the function, g. A function g is onto iff its range is equal to its co-domain.
For $f : A \to B$, its **domain** and **range** are well defined.

Def. The **domain** of f: $\text{dom}(f) \overset{\text{def}}{=} \{ a \mid \exists b (a, b) \in f \} = A$

For $g : \{1, 2\} \to \{1\}$, its co-domain is $\{1\}$; g is **onto**.

For $g : \{1, 2\} \to \{1, 2\}$, its co-domain is $\{1, 2\}$; g is **not onto**.

The co-domain must be given explicitly, it cannot be determined from the function, g. A function g is **onto** iff its **range** is equal to its **co-domain**.
For $f: A \rightarrow B$, its **domain** and **range** are well defined.

Def. The **domain** of f: $\text{dom}(f) \overset{\text{def}}{=} \{ a \mid \exists b \ (a, b) \in f \} = A$

1 \[\rightarrow\] 1

$g = \{(1, 1), (2, 1)\}$

Def. The **range** of f: $\text{rng}(f) \overset{\text{def}}{=} \{ b \mid \exists a \ (a, b) \in f \}$

2 \[\rightarrow\] 2

$\text{dom}(g) = \{1, 2\}$

$\text{rng}(g) = \{1\}$
For $f : A \rightarrow B$, its **domain** and **range** are well defined.

Def. The **domain** of f: \(\text{dom}(f) \overset{\text{def}}{=} \{ a \mid \exists b \ (a, b) \in f \} = A \)

\[
\begin{array}{c}
1 \\
\end{array}
\begin{array}{c}
2 \\
\quad g = \{(1, 1), (2, 1)\} \\
\end{array}
\begin{array}{c}
1 \\
\end{array}
\begin{array}{c}
2 \\
\text{dom}(g) = \{1, 2\} \quad \text{rng}(g) = \{1\} \\
\end{array}
\]

Def. The **range** of f: \(\text{rng}(f) \overset{\text{def}}{=} \{ b \mid \exists a \ (a, b) \in f \} \)

For $g : \{1, 2\} \rightarrow \{1, 2\}$, its co-domain is \{1, 2\}; g is **not onto**.
For $f : A \rightarrow B$, its **domain** and **range** are well defined.

Def. The **domain** of f: $\text{dom}(f) \overset{\text{def}}{=} \{ a \mid \exists b \ (a, b) \in f \} = A$

1 \rightarrow 1 \quad \text{dom}(g) = \{1, 2\}

$g = \{(1, 1), (2, 1)\}$

2 \rightarrow 1 \quad \text{rng}(g) = \{1\}

Def. The **range** of f: $\text{rng}(f) \overset{\text{def}}{=} \{ b \mid \exists a \ (a, b) \in f \}$

For $g : \{1, 2\} \rightarrow \{1, 2\}$, its co-domain is $\{1, 2\}$; g is **not onto**.

For $g : \{1, 2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is **onto**.
Domain, Range, and Co-Domain

For $f : A \rightarrow B$, its **domain** and **range** are well defined.

Def. The **domain** of f: $\text{dom}(f) \overset{\text{def}}{=} \{ a \mid \exists b \ (a, b) \in f \} = A$

$1 \quad 1$

$2 \quad g = \{(1, 1), (2, 1)\} \quad 2$

dom(g) = \{1, 2\}

rng(g) = \{1\}

Def. The **range** of f: $\text{rng}(f) \overset{\text{def}}{=} \{ b \mid \exists a \ (a, b) \in f \}$

For $g : \{1, 2\} \rightarrow \{1, 2\}$, its co-domain is \{1, 2\}; g is **not onto**.

For $g : \{1, 2\} \rightarrow \{1\}$, its co-domain is \{1\}; g is **onto**.

The co-domain must be **given explicitly**, it cannot be determined from the function, g.
Domain, Range, and Co-Domain

For $f : A \rightarrow B$, its **domain** and **range** are well defined.

Def. The **domain** of f: $\text{dom}(f) \overset{\text{def}}{=} \{ a \mid \exists b \ (a, b) \in f \} = A$

```
1
   ___  ___  ___  ___
(1)  -  (2)  -  (1)
   ___  ___  ___  ___
2
```

$g = \{(1, 1), (2, 1)\}$

$\text{dom}(g) = \{1, 2\}$

$\text{rng}(g) = \{1\}$

Def. The **range** of f: $\text{rng}(f) \overset{\text{def}}{=} \{ b \mid \exists a \ (a, b) \in f \}$

For $g : \{1, 2\} \rightarrow \{1, 2\}$, its co-domain is $\{1, 2\}$; g is **not onto**.

For $g : \{1, 2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is **onto**.

The co-domain must be **given explicitly**, it cannot be determined from the function, g.

A function g is **onto** iff its **range** is equal to its **co-domain**.
For $f : A \to B$, its **domain** and **range** are well defined.

Def. The **domain** of f: \(\text{dom}(f) \overset{\text{def}}{=} \{ a \mid \exists b \ (a, b) \in f \} = A \)

Def. The **range** of f: \(\text{rng}(f) \overset{\text{def}}{=} \{ b \mid \exists a \ (a, b) \in f \} \)

For $g : \{1, 2\} \to \{1, 2\}$, its co-domain is \{1, 2\}; g is **not onto**.

For $g : \{1, 2\} \to \{1\}$, its co-domain is \{1\}; g is **onto**.

The co-domain must be **given explicitly**, it cannot be determined from the function, g.

A function g is **onto** iff its **range** is equal to its **co-domain**.
For \(f : A \to B \), its **domain** and **range** are well defined.

Def. The **domain** of \(f \): \(\text{dom}(f) \overset{\text{def}}{=} \{ a \mid \exists b \ (a, b) \in f \} = A \)

Def. The **range** of \(f \): \(\text{rng}(f) \overset{\text{def}}{=} \{ b \mid \exists a \ (a, b) \in f \} \)

For \(g : \{1, 2\} \to \{1, 2\} \), its co-domain is \(\{1, 2\} \); \(g \) is **not onto**.

For \(g : \{1, 2\} \to \{1\} \), its co-domain is \(\{1\} \); \(g \) is **onto**.

The co-domain must be **given explicitly**, it cannot be determined from the function, \(g \).

A function \(g \) is **onto** iff its **range** is equal to its **co-domain**.

For \(f \subseteq A \times B \), we can tell if \(f \) is **single valued** and if it is **1:1**.
For $f : A \rightarrow B$, its **domain** and **range** are well defined.

Def. The **domain** of f: \(\text{dom}(f) \overset{\text{def}}{=} \{ a \mid \exists b \ (a, b) \in f \} = A \)

Def. The **range** of f: \(\text{rng}(f) \overset{\text{def}}{=} \{ b \mid \exists a \ (a, b) \in f \} \)

For $g : \{1, 2\} \rightarrow \{1, 2\}$, its co-domain is $\{1, 2\}$; g is **not onto**.

For $g : \{1, 2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is **onto**.

The co-domain must be **given explicitly**, it cannot be determined from the function, g.

A function g is **onto** iff its **range** is equal to its **co-domain**.

For $f \subseteq A \times B$, we can tell if f is **single valued** and if it is **1:1**.

To tell if $f : A \rightarrow B$, i.e., is f a **function**, we must know A.
For \(f : A \to B \), its **domain** and **range** are well defined.

Def. The **domain** of \(f \): \(\text{dom}(f) \overset{\text{def}}{=} \{ a \mid \exists b (a, b) \in f \} = A \)

Def. The **range** of \(f \): \(\text{rng}(f) \overset{\text{def}}{=} \{ b \mid \exists a (a, b) \in f \} \)

For \(g : \{1, 2\} \to \{1, 2\} \), its co-domain is \(\{1, 2\} \); \(g \) is **not onto**.

For \(g : \{1, 2\} \to \{1\} \), its co-domain is \(\{1\} \); \(g \) is **onto**.

The co-domain must be **given explicitly**, it cannot be determined from the function, \(g \).

A function \(g \) is **onto** iff its **range** is equal to its **co-domain**.

For \(f \subseteq A \times B \), we can tell if \(f \) is **single valued** and if it is **1:1**.

To tell if \(f : A \to B \), i.e., is \(f \) a **function**, we must know \(A \).

To tell if \(f \) is **onto**, we must know \(B \).
Composition of Functions

For \(f : A \rightarrow B \) and \(g : B \rightarrow C \),

\[
(g \circ f)(x) = g(f(x))
\]

\[
f \circ g : N \rightarrow N:
f \circ g(n) = 2 \cdot n + 1
\]
Composition of Functions

For $f : A \to B$ and $g : B \to C$,

Def. the **composition** of g and f: \[g \circ f(x) \stackrel{\text{def}}{=} g(f(x)) \]
For $f : A \rightarrow B$ and $g : B \rightarrow C$,

Def. the **composition** of g and f:
$g \circ f(x) \overset{\text{def}}{=} g(f(x))$

$f : \mathbb{N} \rightarrow \mathbb{N}$:
$f(n) = 2 \cdot n$
$g : \mathbb{N} \rightarrow \mathbb{N}$:
$g(n) = n + 1$
Composition of Functions

For $f : A \rightarrow B$ and $g : B \rightarrow C$,

Def. the composition of g and f: $g \circ f(x) \overset{\text{def}}{=} g(f(x))$

$f : \mathbb{N} \rightarrow \mathbb{N} : f(n) = 2 \cdot n$

$g : \mathbb{N} \rightarrow \mathbb{N} : g(n) = n + 1$

$g \circ f : \mathbb{N} \rightarrow \mathbb{N} : g \circ f(n) = g(f(n)) = 2 \cdot n + 1$
Composition of Functions

For $f : A \rightarrow B$ and $g : B \rightarrow C$,

Def. the **composition** of g and f: \(g \circ f(x) \overset{\text{def}}{=} g(f(x)) \)

- $f : \mathbb{N} \rightarrow \mathbb{N}$: \(f(n) = 2 \cdot n \)
- $g : \mathbb{N} \rightarrow \mathbb{N}$: \(g(n) = n + 1 \)

- $(g \circ f) : \mathbb{N} \rightarrow \mathbb{N}$: \(g \circ f(n) = g(f(n)) = 2 \cdot n + 1 \)

- $(f \circ g) : \mathbb{N} \rightarrow \mathbb{N}$: \(f \circ g(n) = f(g(n)) = 2 \cdot (n + 1) \)
Inverse of functions

For $f : A \rightarrow B$ and $g : B \rightarrow A$,

$f_1 : \mathbb{Z} \rightarrow \mathbb{Z}$
$f_1(x) = x + 1$;
$g_1 : \mathbb{Z} \rightarrow \mathbb{Z}$
$g_1(x) = x - 1$;

$f_1 \circ g_1(x) = f_1(g_1(x)) = (x - 1) + 1 = x$
$g_1 \circ f_1(x) = g_1(f_1(x)) = (x + 1) - 1 = x$

$f_2 : \mathbb{Q} \rightarrow \mathbb{Q}$
$f_2(x) = x \cdot 2$;
$g_2 : \mathbb{Q} \rightarrow \mathbb{Q}$
$g_2(x) = x / 2$;

$f_2 \circ g_2(x) = f_2(g_2(x)) = (x / 2) \cdot 2 = x$
$g_2 \circ f_2(x) = g_2(f_2(x)) = (x \cdot 2) / 2 = x$
For $f : A \to B$ and $g : B \to A$,

Def. f and g are **inverse functions** $f = g^{-1}$ and $g = f^{-1}$ iff

$$f \circ g = \text{id}_B; \quad \text{and} \quad g \circ f = \text{id}_A$$
Inverse of functions

For \(f : A \rightarrow B \) and \(g : B \rightarrow A \),

Def. \(f \) and \(g \) are **inverse functions** \(f = g^{-1} \) and \(g = f^{-1} \) iff

\[
f \circ g = \text{id}_B; \quad \text{and} \quad g \circ f = \text{id}_A
\]

\(f_1 : \mathbb{Z} \rightarrow \mathbb{Z} \quad f_1(x) = x + 1; \quad g_1 : \mathbb{Z} \rightarrow \mathbb{Z} \quad g_1(x) = x - 1 \)
Inverse of functions

For \(f : A \rightarrow B \) and \(g : B \rightarrow A \),

Def. \(f \) and \(g \) are **inverse functions** \(f = g^{-1} \) and \(g = f^{-1} \) iff

\[
f \circ g = \text{id}_B; \quad \text{and} \quad g \circ f = \text{id}_A
\]

\(f_1 : \mathbb{Z} \rightarrow \mathbb{Z} \) \(f_1(x) = x + 1 \); \(g_1 : \mathbb{Z} \rightarrow \mathbb{Z} \) \(g_1(x) = x - 1 \)

\[
f_1 \circ g_1(x) = f_1(g_1(x)) = (x - 1) + 1 = x
\]
Inverse of functions

For $f : A \to B$ and $g : B \to A$,

Def. f and g are **inverse functions** $f = g^{-1}$ and $g = f^{-1}$ iff

$$f \circ g = \text{id}_B; \quad \text{and} \quad g \circ f = \text{id}_A$$

$f_1 : \mathbb{Z} \to \mathbb{Z} \quad f_1(x) = x + 1; \quad g_1 : \mathbb{Z} \to \mathbb{Z} \quad g_1(x) = x - 1$

$$f_1 \circ g_1(x) = f_1(g_1(x)) = (x - 1) + 1 = x$$

$$g_1 \circ f_1(x) = g_1(f_1(x)) = (x + 1) - 1 = x$$
Inverse of functions

For $f : A \rightarrow B$ and $g : B \rightarrow A$,

Def. f and g are **inverse functions** $f = g^{-1}$ and $g = f^{-1}$ iff

$$f \circ g = \text{id}_B; \quad \text{and} \quad g \circ f = \text{id}_A$$

$f_1 : \mathbb{Z} \rightarrow \mathbb{Z} \quad f_1(x) = x + 1; \quad g_1 : \mathbb{Z} \rightarrow \mathbb{Z} \quad g_1(x) = x - 1$

$$f_1 \circ g_1(x) = f_1(g_1(x)) = (x - 1) + 1 = x$$

$$g_1 \circ f_1(x) = g_1(f_1(x)) = (x + 1) - 1 = x$$

$f_2 : \mathbb{Q} \rightarrow \mathbb{Q} \quad f_2(x) = x \cdot 2; \quad g_2 : \mathbb{Q} \rightarrow \mathbb{Q} \quad g_2(x) = x/2$
Inverse of functions

For \(f : A \to B \) and \(g : B \to A \),

Def. \(f \) and \(g \) are **inverse functions** \(f = g^{-1} \) and \(g = f^{-1} \) iff

\[
f \circ g = \text{id}_B; \quad \text{and} \quad g \circ f = \text{id}_A
\]

\(f_1 : \mathbb{Z} \to \mathbb{Z} \quad f_1(x) = x + 1; \quad g_1 : \mathbb{Z} \to \mathbb{Z} \quad g_1(x) = x - 1 \)

\[
f_1 \circ g_1(x) = f_1(g_1(x)) = (x - 1) + 1 = x
\]

\[
g_1 \circ f_1(x) = g_1(f_1(x)) = (x + 1) - 1 = x
\]

\(f_2 : \mathbb{Q} \to \mathbb{Q} \quad f_2(x) = x \cdot 2; \quad g_2 : \mathbb{Q} \to \mathbb{Q} \quad g_2(x) = x/2 \)

\[
f_2 \circ g_2(x) = f_2(g_2(x)) = (x/2) \cdot 2 = x
\]
Inverse of functions

For \(f : A \to B \) and \(g : B \to A \),

Def. \(f \) and \(g \) are **inverse functions** \(f = g^{-1} \) and \(g = f^{-1} \) iff

\[
f \circ g = \text{id}_B; \quad \text{and} \quad g \circ f = \text{id}_A
\]

\(f_1 : \mathbb{Z} \to \mathbb{Z} \quad f_1(x) = x + 1; \quad g_1 : \mathbb{Z} \to \mathbb{Z} \quad g_1(x) = x - 1 \)

\[
f_1 \circ g_1(x) = f_1(g_1(x)) = (x - 1) + 1 = x
\]

\[
g_1 \circ f_1(x) = g_1(f_1(x)) = (x + 1) - 1 = x
\]

\(f_2 : \mathbb{Q} \to \mathbb{Q} \quad f_2(x) = x \cdot 2; \quad g_2 : \mathbb{Q} \to \mathbb{Q} \quad g_2(x) = x/2 \)

\[
f_2 \circ g_2(x) = f_2(g_2(x)) = (x/2) \cdot 2 = x
\]

\[
g_2 \circ f_2(x) = g_2(f_2(x)) = (x \cdot 2)/2 = x
\]
For $f : A \rightarrow B$ and $g : B \rightarrow A$,

f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff

$f(x) = (x + 1) \% 3$
Inverse of functions

For $f : A \to B$ and $g : B \to A$, f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ g = \text{id}_B$

$g(x) = (x + 2) \% 3$ \hspace{1cm} $f(x) = (x + 1) \% 3$
Inverse of functions

For $f : A \to B$ and $g : B \to A$,

f and g are **inverse functions** $f = g^{-1}$ and $g = f^{-1}$ iff

$f \circ g = \text{id}_B$ and $g \circ f = \text{id}_A$

\[
g(x) = (x + 2) \% 3 \quad f(x) = (x + 1) \% 3 \quad g(x) = (x + 2) \% 3
\]
When does $f : A \rightarrow B$ have an inverse?

Does $f_1 : \mathbb{N} \rightarrow \mathbb{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?
When does $f : A \rightarrow B$ have an inverse?

Does $f_1 : \mathbb{N} \rightarrow \mathbb{N}, \quad f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Thm. $f : A \rightarrow B$ has an inverse iff f is 1:1 and onto.

Proof: Already argued it is necessary that f is 1:1 and onto. Assume that f is 1:1 and onto. Let $f^T \text{def}= \{ (b, a) \mid (a, b) \in f \}$ transpose of f. $f^T : B \rightarrow A$ and $f^T \circ f = \text{id}_A$ and $f \circ f^T = \text{id}_B \Box$
When does \(f : A \rightarrow B \) have an inverse?

Does \(f_1 : \mathbb{N} \rightarrow \mathbb{N}, \quad f_1(n) = \lfloor n/2 \rfloor \) have an inverse?

No, \(f_1 \) is not 1:1, so no \(g_1 \) cannot satisfy \(g_1(f_1(0)) = 0 \) and \(g_1(f_1(1)) = 1 \) because \(f_1(0) = f_1(1) \).

Does \(f_2 : \mathbb{N} \rightarrow \mathbb{N}, \quad f_2(n) = n + 1 \) have an inverse?
When does \(f : A \rightarrow B \) have an inverse?

Does \(f_1 : \mathbb{N} \rightarrow \mathbb{N}, \quad f_1(n) = \lfloor n/2 \rfloor \) have an inverse?

No, \(f_1 \) is not 1:1, so no \(g_1 \) cannot satisfy \(g_1(f_1(0)) = 0 \) and \(g_1(f_1(1)) = 1 \) because \(f_1(0) = f_1(1) \).

Does \(f_2 : \mathbb{N} \rightarrow \mathbb{N}, \quad f_2(n) = n + 1 \) have an inverse?

No, \(f_2 \) is not onto, so no \(g_2 \) can satisfy \(f_2(g_2(0)) = 0 \) because \(0 \not\in \text{rng}(f_2) \).
When does \(f : A \rightarrow B \) have an inverse?

Does \(f_1 : \mathbb{N} \rightarrow \mathbb{N} \), \(f_1(n) = \lfloor n/2 \rfloor \) have an inverse?

No, \(f_1 \) is not 1:1, so no \(g_1 \) cannot satisfy \(g_1(f_1(0)) = 0 \) and \(g_1(f_1(1)) = 1 \) because \(f_1(0) = f_1(1) \).

Does \(f_2 : \mathbb{N} \rightarrow \mathbb{N} \), \(f_2(n) = n + 1 \) have an inverse?

No, \(f_2 \) is not onto, so no \(g_2 \) can satisfy \(f_2(g_2(0)) = 0 \) because \(0 \not\in \text{rng}(f_2) \).

Thm. \(f : A \rightarrow B \) has an inverse iff \(f \) is 1:1 and onto.
When does \(f : A \rightarrow B \) have an inverse?

Does \(f_1 : \mathbb{N} \rightarrow \mathbb{N}, \quad f_1(n) = \lfloor n/2 \rfloor \) have an inverse?

No, \(f_1 \) is not 1:1, so no \(g_1 \) cannot satisfy \(g_1(f_1(0)) = 0 \) and \(g_1(f_1(1)) = 1 \) because \(f_1(0) = f_1(1) \).

Does \(f_2 : \mathbb{N} \rightarrow \mathbb{N}, \quad f_2(n) = n + 1 \) have an inverse?

No, \(f_2 \) is not onto, so no \(g_2 \) can satisfy \(f_2(g_2(0)) = 0 \) because \(0 \not\in \text{rng}(f_2) \).

Thm. \(f : A \rightarrow B \) has an inverse iff \(f \) is 1:1 and onto.

Proof: Already argued it is necessary that \(f \) is 1:1 and onto.
When does $f : A \rightarrow B$ have an inverse?

Does $f_1 : \mathbb{N} \rightarrow \mathbb{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbb{N} \rightarrow \mathbb{N}$, $f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \not\in \text{rng}(f_2)$.

Thm. $f : A \rightarrow B$ has an inverse iff f is 1:1 and onto.

Proof: Already argued it is necessary that f is 1:1 and onto.

Assume that f is 1:1 and onto.
When does $f : A \to B$ have an inverse?

Does $f_1 : \mathbb{N} \to \mathbb{N}, \quad f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbb{N} \to \mathbb{N}, \quad f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \notin \text{rng}(f_2)$

Thm. $f : A \to B$ has an inverse iff f is 1:1 and onto.

Proof: Already argued it is necessary that f is 1:1 and onto.

Assume that f is 1:1 and onto.

Let $f^T \overset{\text{def}}{=} \{(b, a) \mid (a, b) \in f\}$ transpose of f.
When does $f : A \rightarrow B$ have an inverse?

Does $f_1 : \mathbb{N} \rightarrow \mathbb{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbb{N} \rightarrow \mathbb{N}$, $f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \notin \text{rng}(f_2)$.

Thm. $f : A \rightarrow B$ has an inverse iff f is 1:1 and onto.

Proof: Already argued it is necessary that f is 1:1 and onto.

Assume that f is 1:1 and onto.

Let $f^T \overset{\text{def}}{=} \{(b, a) \mid (a, b) \in f\}$ transpose of f.

$f^T : B \rightarrow A$ and $f^T \circ f = \text{id}_A$ and $f \circ f^T = \text{id}_B$.
Claim: $f \circ f^T = \text{id}_R$ and $f^T \circ f = \text{id}_A$

$f \circ f^T = \text{id}_R$

$f^T \circ f = \text{id}_A$
Claim: \[f \circ f^T = \text{id}_R \quad \text{and} \quad f^T \circ f = \text{id}_A \]

Proof: \[f \text{ is onto: } \forall y \in R \ \exists x \in A \ (y, x) \in f^T, \text{ thus } f \circ f^T(y) = y \]
Claim: \[f \circ f^T = \text{id}_R \quad \text{and} \quad f^T \circ f = \text{id}_A \]

Proof: \(f \) is onto: \(\forall y \in R \exists x \in A (y, x) \in f^T \), thus \(f \circ f^T(y) = y \)

\(f \) is 1:1: \(\forall x \in A \ f^T \circ f(x) = x \) \qquad \Box
Def. A directed graph (digraph), $G = (V^G, E^G)$ is a world of vocabulary $\Sigma_g = (E^2;)$. Thus a digraph, G, is just a binary relation, E^G, from V^G to V^G.
Def. A directed graph (digraph), $G = (V^G, E^G)$ is a world of vocabulary $\Sigma_g = (E^2;)$. Thus a digraph, G, is just a binary relation, E^G, from V^G to V^G.

![Diagram of a directed graph with nodes 1, 2, and 3 connected by directed edges]
Def. A directed graph (digraph), $G = (V^G, E^G)$ is a world of vocabulary $\Sigma_g = (E^2;)$. Thus a digraph, G, is just a binary relation, E^G, from V^G to V^G.
Def. A directed graph (digraph), $G = (V^G, E^G)$ is a world of vocabulary $\Sigma_g = (E^2;)$. Thus a digraph, G, is just a binary relation, E^G, from V^G to V^G.

![Diagram of directed graphs]
Def. A directed graph (digraph), $G = (V^G, E^G)$ is a world of vocabulary $\Sigma_g = (E^2;)$. Thus a digraph, G, is just a binary relation, E^G, from V^G to V^G.

\[1 \leq [3] \]

\[1 \leq [3] \]

\[1 \equiv (\text{mod } 2) \]
reflexive \equiv \forall x \ E(x, x)

\[
\begin{array}{c}
\equiv \left[3\right] \\
1 & \rightarrow & 2 & \rightarrow & 3 \\
\equiv \left[3\right] \\
\end{array}
\quad
\begin{array}{c}
\equiv \left[3\right] \\
1 & \rightarrow & 2 & \rightarrow & 3 \\
\equiv (\text{mod } 2) \\
\end{array}
\]
reflexive \equiv \forall x \ E(x, x)

symmetric \equiv \forall xy \ (E(x, y) \rightarrow E(y, x))
reflexive \equiv \forall x \; E(x, x)

symmetric \equiv \forall xy \; (E(x, y) \rightarrow E(y, x))

transitive \equiv \forall xyz \; (E(x, y) \land E(y, z) \rightarrow E(x, z))
reflexive ≡ ∀x \ E(x, x)

symmetric ≡ ∀xy (E(x, y) → E(y, x))

transitive ≡ ∀xyz (E(x, y) ∧ E(y, z) → E(x, z))

Which are Reflexive, Symmetric and Transitive?

A: all
B: just \equiv (\text{mod } 2)
C: \equiv^{[3]} \text{ and } \equiv (\text{mod } 2)
D: all but <^{[3]}
Def. Transitive Closure E^+ is the smallest *transitive* relation containing E.

![Diagram](attachment:image.png)
Def. Transitive Closure E^+ is the smallest **transitive** relation containing E.
Def. Transitive Closure E^+ is the smallest transitive relation containing E. The Reflexive Transitive Closure E^* is the smallest reflexive and transitive relation containing E.
Def. Transitive Closure E^+ is the smallest transitive relation containing E. The **Reflexive Transitive Closure** E^* is the smallest reflexive and transitive relation containing E.
Def. Transitive Closure E^+ is the smallest transitive relation containing E. The Reflexive Transitive Closure E^* is the smallest reflexive and transitive relation containing E.
Connectivity

\[\text{conn} \equiv \forall xy \ E^*(x, y) \]

Undirected graph \(G \) is **connected** iff \(G \models \text{conn} \).

Directed graph \(G \) is **strongly connected** iff \(G \models \text{conn} \).

\(G_1 \) is not strongly connected and \(G_4 \) is not connected.
Recall: Transitive Closure

\[E^+ = \text{smallest transitive relation containing } E \]

\[E^* = \text{smallest reflexive } \land \text{transitive relation containing } E \]
Recall: Transitive Closure

\[E^+ \overset{\text{def}}{=} \text{smallest transitive relation containing } E \]
Recall: Transitive Closure

\[E^+ \overset{\text{def}}{=} \text{smallest } \textit{transitive} \text{ relation containing } E \]
Recall: Transitive Closure

\[E^+ \overset{\text{def}}{=} \text{smallest } \textbf{transitive} \text{ relation containing } E \]

\[E^* \overset{\text{def}}{=} \text{smallest } \textbf{reflexive} \land \textbf{transitive} \text{ relation containing } E \]
Recall: Transitive Closure

\[E^+ \overset{\text{def}}{=} \text{smallest } \text{transitive} \text{ relation containing } E \]

\[E^* \overset{\text{def}}{=} \text{smallest } \text{reflexive} \land \text{ transitive} \text{ relation containing } E \]
\[\text{conn} \equiv \forall xy \ E^*(x, y) \]

Undirected graph \(G \) is **connected** iff \(G \models \text{conn} \).

Directed graph \(D \) is **strongly connected** iff \(D \models \text{conn} \).
\[\text{conn} \equiv \forall xy \ E^*(x, y) \]

Undirected graph \(G \) is \textit{connected} iff \(G \models \text{conn} \).

Directed graph \(D \) is \textit{strongly connected} iff \(D \models \text{conn} \).
\text{conn} \equiv \forall xy \ E^*(x, y)

Undirected graph \(G \) is \textbf{connected} iff \(G \models \text{conn} \).
\(G_1 \) is \textbf{not connected}.

Directed graph \(D \) is \textbf{strongly connected} iff \(D \models \text{conn} \).
\(D_1 \) is \textbf{not strongly connected}.

\begin{figure}[h]
\begin{center}
\begin{tikzpicture}
 \node (0) at (0,0) {0};
 \node (1) at (2,0) {1};
 \node (2) at (4,0) {2};
 \node (3) at (6,0) {3};
 \draw[blue, thick] (0) to (3);
 \draw[blue, thick] (3) to (2);
 \draw[blue, thick] (2) to (1);
 \draw[blue, thick] (1) to (0);
 \end{tikzpicture}
\end{center}
\end{figure}

\begin{figure}[h]
\begin{center}
\begin{tikzpicture}
 \node (0) at (0,0) {0};
 \node (1) at (2,0) {1};
 \node (2) at (4,0) {2};
 \node (3) at (6,0) {3};
 \draw[blue, thick] (0) to (3);
 \draw[blue, thick] (3) to (2);
 \draw[blue, thick] (2) to (1);
 \draw[blue, thick] (1) to (0);
 \draw[purple, thick] (0) to (1);
 \draw[purple, thick] (1) to (2);
 \draw[purple, thick] (2) to (3);
 \draw[purple, thick] (3) to (0);
 \draw[green, thick, bend right=45] (0) to (1);
 \draw[green, thick, bend right=45] (1) to (2);
 \draw[green, thick, bend right=45] (2) to (3);
 \draw[green, thick, bend right=45] (3) to (0);
 \end{tikzpicture}
\end{center}
\end{figure}
Def: A connected component of an undirected graph G is a maximal induced subgraph of G that is connected.
Def: A connected component of an undirected graph G is a maximal induced subgraph of G that is connected.
Def: A strongly connected component of a directed graph G is a maximal induced subgraph of G that is strongly connected.
Def: A strongly connected component of a directed graph G is a maximal induced subgraph of G that is strongly connected.
Def: An undirected forest is an acyclic undirected graph
Def: An undirected forest is an acyclic undirected graph

Def: An undirected tree is a connected forest
Def: An undirected forest is an acyclic undirected graph

Def: An undirected tree is a connected forest

\[F = T_1 \cup T_2 \]