Definition 26.1 (string) For any finite alphabet, Σ, a Σ-string is a finite sequence of characters from Σ. The **length** of a string, s, is the number of characters in s: $\text{length}(s) = |s|$. The **empty string**, ϵ, is the unique string of length 0. $0 = |\epsilon|$.

Example 26.2 For $\Sigma_{\text{bin}} = \{0, 1\}$ the following are binary strings, i.e., Σ_{bin}-strings:

<table>
<thead>
<tr>
<th>s</th>
<th>ϵ</th>
<th>0</th>
<th>1</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
<th>000</th>
<th>001</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>s</td>
<td>$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

For $\Sigma_a = \{a\}$ the following are Σ_a-strings:

<table>
<thead>
<tr>
<th>s</th>
<th>ϵ</th>
<th>a</th>
<th>aa</th>
<th>aaa</th>
<th>a^4</th>
<th>a^5</th>
<th>a^6</th>
<th>a^7</th>
<th>a^8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>s</td>
<td>$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

For $\Sigma_{abc} = \{a, b, c\}$ the following are Σ_{abc}-strings:

<table>
<thead>
<tr>
<th>s</th>
<th>ϵ</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>aa</th>
<th>ab</th>
<th>ac</th>
<th>ba</th>
<th>bb</th>
<th>bc</th>
<th>ca</th>
<th>cb</th>
<th>cc</th>
<th>aaa</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>s</td>
<td>$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Definition 26.3 (Concatenation)

The **concatenation** of two strings a, b is written $a \cdot b$, or ab, and consists of a immediately followed by b.

Example 26.4

$$a \cdot a = aa; \quad 00 \cdot 111 = 00111; \quad \epsilon \cdot s = s \cdot \epsilon = s$$

Definition 26.5 (Kleene Star)

For S a set of strings,

$$S^* \overset{\text{def}}{=} \bigcup_{i=0}^{\infty} S^i = S^0 \cup S^1 \cup S^2 \cup \ldots$$

- $S^0 \overset{\text{def}}{=} \{\epsilon\}$
- $S^1 \overset{\text{def}}{=} S$
- $S^2 \overset{\text{def}}{=} S \cdot S$
- $S^n \overset{\text{def}}{=} \underbrace{S \cdots \cdot S}_{n}$

S^* is the **set of all strings** from S.

Example 26.6

- $\Sigma^*_{\text{bin}} = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}$
- $\Sigma^*_{ab} = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$
- $\Sigma^*_{abc} = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, \ldots\}$
- $\emptyset^* = \{\epsilon\}$
Definition 26.7 The set of regular expressions \(\text{regexp}(\Sigma) \) over alphabet \(\Sigma \) is the smallest set of strings such that:

1. **base cases:**

 (a) if \(a \in \Sigma \) then \(a \in \text{regexp}(\Sigma) \)

 (b) \(\emptyset \in \text{regexp}(\Sigma) \)

2. **inductive cases:** if \(e, f \in \text{regexp}(\Sigma) \) then so are the following:

 (a) \((e \cup f) \)

 (b) \((e \cdot f) \)

 (c) \((e^*) \)

\[
\begin{align*}
e_0 &= \emptyset & \in & \text{regexp} \left(\{a, b\} \right) \\
e_1 &= a & \in & \text{regexp} \left(\{a, b\} \right) \\
e_2 &= a^* & \in & \text{regexp} \left(\{a, b\} \right) \\
e_3 &= ((a \cup b) \cdot (a \cup b))^* & \in & \text{regexp} \left(\{a, b\} \right) \\
e_4 &= a^* (ba^* ba^*)^* & \in & \text{regexp} \left(\{a, b, c\} \right) \\
e_5 &= \emptyset^* & \in & \text{regexp} \left(\{a, b\} \right)
\end{align*}
\]

Meanings: \(\mathcal{L}(e) \) is the language denoted by regular expression \(e \):

\[
\begin{align*}
\mathcal{L}(e_0) &= \emptyset \\
\mathcal{L}(e_1) &= \{a\} \\
\mathcal{L}(e_2) &= \{a\}^* \\
&= \{\epsilon, a, aa, a^3, a^4, \ldots\} \\
\mathcal{L}(e_3) &= \{a, b\}^{2*} = \{aa, ab, ba, bb\}^* \\
&= \{w \in \{a, b\}^* \mid |w| \equiv 0 \pmod{2}\} \\
\mathcal{L}(e_4) &= \{a\}^* \cdot (\{b\} \cdot \{a\}^* \cdot \{b\} \cdot \{a\}^*)^* \\
&= \{w \in \{a, b\}^* \mid \#a(w) \equiv 0 \pmod{2}\} \\
\mathcal{L}(e_5) &= \{\epsilon\}
\end{align*}
\]
Definition 26.8 (Meaning of Regular Expressions)

base cases: $a \in \Sigma$:

$\mathcal{L}(a) \overset{\text{def}}{=} \{a\}$

$\mathcal{L}(\emptyset) \overset{\text{def}}{=} \emptyset$

inductive cases:

$\mathcal{L}(e \cup f) \overset{\text{def}}{=} \mathcal{L}(e) \cup \mathcal{L}(f)$

$\mathcal{L}(e \cdot f) \overset{\text{def}}{=} \mathcal{L}(e) \cdot \mathcal{L}(f)$

$\mathcal{L}(e^*) \overset{\text{def}}{=} (\mathcal{L}(e))^*$
Precedence for Regular Operators

The order of precedence for the regular operators is the following:

1. \(*\), \(+\)
2. \(*\)
3. \(\cup\)

Example 26.9

\[a \cup b \cdot c^* = a \cup (b \cdot (c^*)) \]

Definition 26.10 A set, \(A\), is regular iff there exists a regular expression that denotes it. In symbols, the set of regular sets over \(\Sigma\) is, \(\text{Regular}(\Sigma) = \{L(e) \mid e \in \text{regexp}(\Sigma)\}\).

Theorem 26.11 \(\text{Regular}(\Sigma)\) is the smallest set of languages that contains \(\emptyset, \{a\}, a \in \Sigma\) and is closed under \(\cup, \cdot, ^*\).
Clicker Question 26.1 What is $L(a^*ba^*)$?

A: \[\{ w \in \{a,b\}^* \mid w \text{ contains at least one “b”} \} \]

B: \[\{ w \in \{a,b\}^* \mid w \text{ contains exactly one “b”} \} \]
Clicker Question 26.2 What is $\mathcal{L}((0 \cup 1)^*001(0 \cup 1)^*)$?

A: $\{w \in \{0, 1\}^* \mid w \text{ contains the substring } 001\}$

B: $\{w \in \{0, 1\}^* \mid w \text{ does not contain the substring } 11\}$
Example 26.12

\[L(0^+) = \{0, 0^2, 0^3 \ldots\} \]
\[L((aa)^+) = \{aa, a^4, a^6, \ldots\} = \{ w \in \{a\}^* \mid |w| \equiv 0 \pmod{2} \land w \neq \epsilon\} \]
Clicker Question 26.3 What is $L(1^*(01^+)^*)$?

A: $\{w \in \{0, 1\}^* \mid w \text{ does not contain } 00 \text{ as a substring}\}$

B: $\{w \in \{0, 1\}^* \mid \text{Every } 0 \text{ in } w \text{ is immediately followed by a } 1\}$
Theorem 26.13 *Regular*(Σ) is the *smallest set of languages* that contains $\emptyset, \{a\}, a \in \Sigma$ and is closed under \cup, \cdot, \ast.

Proof: Recall that $\text{Regular}(\Sigma) \overset{\text{def}}{=} \{L(e) \mid e \in \text{regexp}(\Sigma)\}$. Thus, $\text{Regular}(\Sigma)$ contains $\emptyset, \{a\}, a \in \Sigma$.

Let $L_0, L_1 \in \text{Regular}(\Sigma)$ be arbitrary. Therefore for some regular expressions, $e_0, e_1, L_0 = L(e_0)$ and $L_1 = L(e_1)$. Thus the following languages are also in $\text{Regular}(\Sigma)$,

\[
\begin{align*}
L_0 \cup L_1 &= L(e_0 \cup e_1) \\
L_0 \cdot L_1 &= L(e_0 \cdot e_1) \\
L_0^* &= L(e_0^*)
\end{align*}
\]

thus $\text{Regular}(\Sigma)$ is closed under the regular operations.

Conversely, suppose that \mathcal{R} contains $\emptyset, \{a\}, a \in \Sigma$ and is closed under \cup, \cdot, \ast.

We must show that $\text{Regular}(\Sigma) \subseteq \mathcal{R}$.

We prove by induction on $e \in \text{regexp}(\Sigma)$ that $L(e) \in \mathcal{R}$.

base case: This holds because \mathcal{R} contains $\emptyset, \{a\}, a \in \Sigma$.

inductive case: assume that $L(e_0), L(e_1) \in \mathcal{R}$.

It follows that

\[
\begin{align*}
L(e_0 \cup e_1) &= L(e_0) \cup L(e_1) \in \mathcal{R} \quad \text{because } \mathcal{R} \text{ is closed under } \cup \\
L(e_0 \cdot e_1) &= L(e_0) \cdot L(e_1) \in \mathcal{R} \quad \text{because } \mathcal{R} \text{ is closed under } \cdot \\
L(e_0^*) &= L(e_0)^* \in \mathcal{R} \quad \text{because } \mathcal{R} \text{ is closed under } \ast.
\end{align*}
\]

Thus, by induction, every language in $\text{Regular}(\Sigma)$ is in \mathcal{R}. \(\square\)