CS250: Discrete Math for Computer Science

L24: Functions



Functions Review

We defined function back in L3. Now, we will review what we
know and improve our knowledge and understanding about
functions.
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» For two sets, A, B, a relation from Ato B is a subset,
RC AxB.

» We say that A is the domain and B is the co-domain.

» We say that ais related to b by R, aRb, iff (a, b) € R.

» <y= {(i,))eENxN |i<j},5<y17, (5,17) € <y

> < & <y n([n] x [n]), where [n] £ {1,2,....n}

> <= <nN([3] x[3]) ={(1,2),(1,3),(2,3)}

» Awkwardness of Def. of Domain and Co-Domain: If
RCAxB,ACA, BC B then R is a relation from A to B;
but R C A x B’ is also a relation from A’ to B’ so the
domain and co-domain of R are not uniquely defined.

» We’ll finally talk about this today.
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For relation R from A to B, draw an arrow from a to b iff aRb.
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Arrow Diagram of a Relation

For relation R from A to B, draw an arrow from a to b iff aRb.

Bl < [3] Bl = [3]

(A © O—0
OQNE (—0
OO O—0

{(1,2),(1,3),(2,3)} {(1,1),(2,2),(3,3)}



Arrow Diagram of Divides Relation
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{(1,1),(1,2),(1,3),(1,4),(1,5),(2,2), (2, 4),



Arrow Diagram of Divides Relation

{(1,1),(1,2),(1,3),(1,4),(1,5),(2,2),(2,4),(3,3),(4,4), (5,5)}
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f:A—-B iff fCAxB, and
f is defined on domain A: Vae A3dbe B(a,b) € f, and
f is single valued: V(a, b),(&,b') e f (a=a — b=1"1).
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Functions f:A— B (a,b)ef iff f(a)=>b

f:A—-B iff fCAxB, and
f is defined on domain A: Vae A3dbe B(a,b) € f, and
f is single valued: V(a, b),(&,b') e f (a=a — b=1"1).

iClicker 3.3 Leth={(1,1),(1,2),(2,3)}.1s h:[2] = [3] ?
B: No
not a function

[2] 3]
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For f: A — B, it's domain and range are well defined.
Def. The domain of f: dom(f) & {a | 3b(a,b)ecf} = A

Def. The range of f: mg(f) & {b | 3a(a,b) € f}
Forg: {1,2} — {1,2}, its co-domain is {1,2}; g is not onto.
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determined from the function, g.

A function g is onto iff its range is equal to its co-domain.
For f C A x B, we can tell if f is single valued and if it is 1:1.
Totellif f: A— B, i.e., is f a function, we must know A.

To tell if f is onto, we must know B.
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Does fi :N— N, fi(n) = |n/2] have an inverse?

No, f; is not 1:1, so no g4 cannot satisfy g{(f1(0)) = 0 and
91(fi(1)) = 1 because £;(0) = f;(1).

Does b : N— N, f£(n)=n+1 have aninverse?

No, f is not onto, so no g» can satisfy f(g2(0)) = 0 because

0 ¢ mg(>)

Thm. f:A— Bhasaninverseiff fis 1:1 and onto.

Proof: Already argued it is necessary that f is 1:1 and onto.
Assume that f is 1:1 and onto.

Let g def {(b,a) | (a,b) € f} converse or transpose of f.
Claim: g: B— Aandgof=idsand fog=idg

Check on your own. We'll talk about this more next week. [J



