L24: Connectivity in Graphs and Digraphs
A path is a walk that never visits the same edge or vertex twice. [Rosen calls paths “simple paths”]

Note: this definition differs for directed and undirected graphs. The undirected graph, G_1, below is acyclic. However, the directed graph, D_1, has a cycle: $(0, 1, 0)$. This is because in the undirected graph, the edges $(0, 1)$ and $(1, 0)$ are considered the same edge, so a path may not traverse this edge twice. However, they are different edges in the directed graph.
A **path** is a **walk** that **never visits the same edge or vertex twice**. [Rosen calls paths “simple paths”] except a path may **start and end** at the **same vertex** in which case it is called a **cycle**.

Note: this definition differs for directed and undirected graphs. The undirected graph, G_1, below is acyclic. However, the directed graph, D_1, has a cycle: $(0, 1, 0)$. This is because in the undirected graph, the edges $(0, 1)$ and $(1, 0)$ are considered the same edge, so a path may not traverse this edge twice. However, they are different edges in the directed graph.
A path is a walk that never visits the same edge or vertex twice. [Rosen calls paths “simple paths”] except a path may start and end at the same vertex in which case it is called a cycle. A loop is a cycle of length 1. There are no cycles of length 0.

Note: this definition differs for directed and undirected graphs. The undirected graph, G_1, below is acyclic. However, the directed graph, D_1, has a cycle: $(0, 1, 0)$. This is because in the undirected graph, the edges $(0, 1)$ and $(1, 0)$ are considered the same edge, so a path may not traverse this edge twice. However, they are different edges in the directed graph.

L24: Connectivity in Graphs and Digraphs
$w_1 = (0)$ \hspace{1cm} w_2 = (0, 1)$ \hspace{1cm} w_3 = (0, 1, 2)$

$w_4 = (0, 1, 0)$ \hspace{1cm} w_5 = (0, 1, 2, 3)$ \hspace{1cm} w_6 = (0, 1, 2, 3, 0)$
In the above undirected graph, which of the above walks are paths?

A: all of them B: all except w_4 C: all except w_4 and w_6
\(w_1 = (0) \quad w_2 = (0, 1) \quad w_3 = (0, 1, 2) \)
\(w_4 = (0, 1, 0) \quad w_5 = (0, 1, 2, 3) \quad w_6 = (0, 1, 2, 3, 0) \)

iClicker: In the above undirected graph, which of the above walks are paths?

A: all of them
B: all except \(w_4 \)
C: all except \(w_4 \) and \(w_6 \)

iClicker: which of the above walks are cycles?

A: \(w_4 \) and \(w_6 \)
B: just \(w_6 \)
Cyclic versus Acyclic

A graph that has \textbf{at least one cycle} is called \textbf{cyclic}.

\begin{itemize}
 \item \textbf{G}₁
 \begin{tikzpicture}
 \node (s) at (0,0) {s};
 \node (1) at (1,0) {1};
 \node (2) at (2,0) {2};
 \node (3) at (3,0) {3};
 \node (t) at (4,0) {t};
 \path (s) edge (1);
 \path (1) edge (2);
 \path (2) edge (3);
 \path (3) edge (t);
 \end{tikzpicture}

 \item \textbf{G}₂
 \begin{tikzpicture}
 \node (0) at (0,0) {0};
 \node (1) at (1,0) {1};
 \node (2) at (2,0) {2};
 \node (3) at (3,0) {3};
 \node (t) at (4,0) {t};
 \path (0) edge (1);
 \path (1) edge (2);
 \path (2) edge (3);
 \path (3) edge[bend left] (0);
 \path (t) edge[bend right] (0);
 \end{tikzpicture}

 \item \textbf{G}₃
 \begin{tikzpicture}
 \node (0) at (0,0) {0};
 \node (1) at (1,0) {1};
 \node (2) at (2,0) {2};
 \node (3) at (3,0) {3};
 \node (s) at (4,0) {s};
 \node (t) at (5,0) {t};
 \path (s) edge (0);
 \path (0) edge (1);
 \path (1) edge (2);
 \path (2) edge (3);
 \path (3) edge (s);
 \path (3) edge (t);
 \end{tikzpicture}

 \item \textbf{G}₄
 \begin{tikzpicture}
 \node (0) at (0,0) {0};
 \node (1) at (1,0) {1};
 \node (2) at (2,0) {2};
 \node (3) at (3,0) {3};
 \node (s) at (4,0) {s};
 \node (t) at (5,0) {t};
 \path (s) edge (0);
 \path (0) edge (1);
 \path (1) edge (2);
 \path (2) edge (3);
 \path (3) edge (s);
 \path (3) edge (t);
 \end{tikzpicture}
\end{itemize}
Cyclic versus Acyclic

A graph that has **at least one cycle** is called **cyclic**.

A graph that has **no cycles** is called **acyclic**.
Cyclic versus Acyclic

A graph that has **at least one cycle** is called **cyclic**.

A graph that has **no cycles** is called **acyclic**.

\[G_1, G_2, G_3, G_4 \]

iClicker: which of the above graphs are acyclic?

A: all of them **B**: all except \(G_3 \) **C**: all except \(G_2 \) and \(G_3 \)
A graph that has **at least one cycle** is called **cyclic**.

A graph that has **no cycles** is called **acyclic**.

\[\text{G}_1 \quad \text{G}_2 \quad \text{G}_3 \quad \text{G}_4 \]

iClicker: which of the above graphs are acyclic?

A: all of them **B:** all except \(\text{G}_3 \) **C:** all except \(\text{G}_2 \) and \(\text{G}_3 \)

To emphasize that it might not be undirected, we sometimes call a directed graph a **digraph**.
A graph that has at least one cycle is called cyclic.
A graph that has no cycles is called acyclic.

\[G_1 \quad G_2 \quad G_3 \quad G_4 \]

iClicker: which of the above graphs are acyclic?

A: all of them **B:** all except \(G_3 \) **C:** all except \(G_2 \) and \(G_3 \)

To emphasize that it might not be undirected, we sometimes call a directed graph a digraph. A Directed Acyclic Graph is called a DAG.
reflexive \equiv \forall x \ E(x, x)

symmetric \equiv \forall xy \ (E(x, y) \rightarrow E(y, x))

transitive \equiv \forall xyz \ (E(x, y) \land E(y, z) \rightarrow E(x, z))
reflexive \equiv \forall x \ E(x, x)

symmetric \equiv \forall xy \ (E(x, y) \rightarrow E(y, x))

transitive \equiv \forall xyz \ (E(x, y) \land E(y, z) \rightarrow E(x, z))

G_1

G_2

G_3

G_4
reflexive $\equiv \forall x \ E(x, x)$

symmetric $\equiv \forall xy \ (E(x, y) \rightarrow E(y, x))$

transitive $\equiv \forall xyz \ (E(x, y) \land E(y, z) \rightarrow E(x, z))$

G_1

G_2

G_3

G_4

iClicker: which graphs above are reflexive?, $G \models \text{reflexive}$

A: none of them B: just G_3 C: just G_2 and G_3
reflexive \equiv \forall x \ E(x, x)

symmetric \equiv \forall xy \ (E(x, y) \to E(y, x))

transitive \equiv \forall xyz \ (E(x, y) \land E(y, z) \to E(x, z))
reflexive \equiv \forall x \ E(x, x) \\
symmetric \equiv \forall xy \ (E(x, y) \rightarrow E(y, x)) \\
transitive \equiv \forall xyz \ (E(x, y) \wedge E(y, z) \rightarrow E(x, z))

\begin{itemize}
 \item \textbf{iClicker:} which graphs above are reflexive? \hspace{1cm} G \models \text{reflexive}
 \begin{enumerate}
 \item A: none of them
 \item B: just G_3
 \item C: just G_2 and G_3
 \end{enumerate}
 \item \textbf{iClicker:} which are symmetric? \hspace{1cm} G \models \text{symmetric}
 \begin{enumerate}
 \item A: none of them
 \item B: just G_3
 \item C: just G_3 and G_4
 \end{enumerate}
 \item \textbf{iClicker:} which are transitive? \hspace{1cm} G \models \text{transitive}
 \begin{enumerate}
 \item A: none of them
 \item B: just G_3
 \item C: all but G_4
 \end{enumerate}
\end{itemize}
Transitive Closure

G_1 G_4

$L24$: Connectivity in Graphs and Digraphs
CS250: Discrete Math for Computer Science
Transitive Closure

\[E^+ \overset{\text{def}}{=} \text{smallest transitive relation containing } E \]
Transitive Closure

\[E^+ \overset{\text{def}}{=} \text{smallest transitive relation containing } E \]

Graphs:

- \(G_1^+ \)
 - Vertices: \(s, t \)
 - Edges: \(s \rightarrow t \)

- \(G_4^+ \)
 - Vertices: \(0, 1, 2, 3, s, t \)
 - Edges: \(s \rightarrow t, 0 \rightarrow 1, 1 \rightarrow 2, 2 \rightarrow 3 \)
Transitive Closure

\[E^+ \overset{\text{def}}{=} \text{smallest transitive relation containing } E \]

\[E^* \overset{\text{def}}{=} \text{smallest reflexive } \land \text{ transitive relation containing } E \]
Transitive Closure

\[E^+ \overset{\text{def}}{=} \text{smallest transitive relation containing } E \]

\[E^* \overset{\text{def}}{=} \text{smallest reflexive } \land \text{ transitive relation containing } E \]
Connectivity

\[
\text{conn} \equiv \forall xy \ E^*(x, y)
\]

Undirected graph \(G \) is **connected** iff \(G \models \text{conn} \).

Directed graph \(G \) is **strongly connected** iff \(G \models \text{conn} \).

\[G_1 \] is not strongly connected and \(G_4 \) is not connected.
Recall: Transitive Closure

\[G\]

\[D\]
Recall: Transitive Closure

\[E^+ \overset{\text{def}}{=} \text{smallest transitive relation containing } E \]
Recall: Transitive Closure

\[E^+ \overset{\text{def}}{=} \text{smallest transitive relation containing } E \]
Recall: Transitive Closure

\[E^+ \overset{\text{def}}{=} \text{smallest transitive relation containing } E \]

\[E^* \overset{\text{def}}{=} \text{smallest reflexive } \land \text{ transitive relation containing } E \]
Recall: Transitive Closure

\[E^+ \overset{\text{def}}{=} \text{smallest transitive relation containing } E \]

\[E^* \overset{\text{def}}{=} \text{smallest reflexive } \wedge \text{ transitive relation containing } E \]

Diagram of \(G^* \)

Diagram of \(D^* \)
\[\text{conn} \equiv \forall xy E^*(x, y) \]

Undirected graph G is \textbf{connected} iff $G \models \text{conn}$.

Directed graph D is \textbf{strongly connected} iff $D \models \text{conn}$.
\[\text{conn} \equiv \forall xy E^*(x, y) \]

Undirected graph \(G \) is \textit{connected} iff \(G \models \text{conn} \).

Directed graph \(D \) is \textit{strongly connected} iff \(D \models \text{conn} \).
conn \equiv \forall xy E^*(x, y)

Undirected graph \(G \) is connected iff \(G \models \text{conn} \).
\(G_1 \) is not connected.

Directed graph \(D \) is strongly connected iff \(D \models \text{conn} \).
\(D_1 \) is not strongly connected.
Def: A connected component of an undirected graph G is a maximal induced subgraph of G that is connected.
Def: A connected component of an undirected graph G is a maximal induced subgraph of G that is connected.
Def: A strongly connected component of a directed graph G is a maximal induced subgraph of G that is strongly connected.
Def: A strongly connected component of a directed graph G is a maximal induced subgraph of G that is strongly connected.

$$G_1$$

0 1 2 3 4
Def: An undirected forest is an acyclic undirected graph
Def: An undirected forest is an acyclic undirected graph

Def: An undirected tree is a connected forest
Def: An undirected forest is an acyclic undirected graph

Def: An undirected tree is a connected forest

\[F = T_1 \cup T_2 \]