
CS250: Discrete Math for Computer Science

L24: Functions



Functions Review

We defined function back in L3. Now, we will review what we
know and improve our knowledge and understanding about
functions.



Binary Relations

I For two sets, A,B, a relation from A to B is a subset,
R ⊆ A× B.

I We say that A is the domain and B is the co-domain.
I We say that a is related to b by R, aRb, iff (a,b) ∈ R.
I <N =

{
(i , j) ∈ N× N

∣∣ i < j
}

,

5 <N 17, (5,17) ∈ <N

I <[n]
def
= <N ∩ ([n]× [n]), where [n] def

= {1,2, . . . ,n}
I <[3] = <N ∩ ([3]× [3]) = {(1,2), (1,3), (2,3)}
I Awkwardness of Def. of Domain and Co-Domain: If

R ⊆ A× B, A ⊆ A′, B ⊆ B′ then R is a relation from A to B;
but R ⊆ A′ × B′ is also a relation from A′ to B′ so the
domain and co-domain of R are not uniquely defined.

I We’ll finally talk about this today.
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Arrow Diagram of a Relation

For relation R from A to B, draw an arrow from a to b iff aRb.

<

{(1,2), (1,3), (2,3)}

[3] [3]

1

2

3

1

2

3

=

{(1,1), (2,2), (3,3)}

[3] [3]

1

2

3

1

2

3
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Arrow Diagram of Divides Relation

|
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(2,2), (2,4), (3,3), (4,4), (5,5)}
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Arrow Diagram of Divides Relation
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Functions f : A→ B (a,b) ∈ f iff f (a) = b
Def: f is a function from A to B (f : A→ B) iff f ⊆ A× B, and

f is defined on domain A: ∀a ∈ A ∃b ∈ B (a,b) ∈ f , and

f is single valued: ∀(a,b), (a′,b′) ∈ f (a = a′ → b = b′).

[2]
f : [2]→ [3]

f (x) = x + 1

{(1,2), (2,3)}

[3]

1

2

1

2

3
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1:1 Functions

Def. A function f : A→ B is one-to-one (1 : 1) iff no element in
B has arrows from two elements in A:

∀xy (f (x) = f (y) → x = y)

1 : 1id[2](x) = x

1

2

1

2

g(x) = 1

not 1 : 1

1

2

1

2
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onto Functions

Def. A function f : A→ B is onto iff every element in B has an
arrow to it.

∀y ∈ B ∃x ∈ A f (x) = y

ontoid[2](x) = x

1

2

1

2

g(x) = 1

not onto

1

2

1

2
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Domain, Range, and Co-Domain

For f : A→ B, it’s domain and range are well defined.

Def. The domain of f : dom(f ) def
=

{
a

∣∣ ∃b (a,b) ∈ f
}

= A

g = {(1,1), (2,1)}

dom(g) = {1,2}

rng(g) = {1}

1

2

1

2

Def. The range of f : rng(f ) def
=

{
b

∣∣ ∃a (a,b) ∈ f
}

For g : {1,2} → {1,2}, its co-domain is {1,2}; g is not onto.

For g : {1,2} → {1}, its co-domain is {1}; g is onto.

The co-domain must be given explicitly, it cannot be
determined from the function, g.

A function g is onto iff its range is equal to its co-domain.
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For f ⊆ A× B, we can tell if f is single valued and if it is 1:1.

To tell if f : A→ B, i.e., is f a function, we must know A.

To tell if f is onto, we must know B.
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Composition of Functions

For f : A→ B and g : B → C,

Def. the composition of g and f : g ◦ f (x) def
= g(f (x))

f : N→ N : f (n) = 2 · n g : N→ N : g(n) = n + 1

g ◦ f : N→ N : g ◦ f (n) = g(f (n)) = 2 · n + 1

f ◦ g : N→ N : f ◦ g(n) = f (g(n)) = 2 · (n + 1)
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Inverse of functions

For f : A→ B and g : B → A,

Def. f and g are inverse functions f = g−1 and g = f−1 iff

f ◦ g = idB; and g ◦ f = idA

f1 : Z→ Z f1(x) = x + 1; g1 : Z→ Z g1(x) = x − 1
f1 ◦ g1(x) = f1(g1(x)) = (x − 1) + 1 = x

g1 ◦ f1(x) = g1(f1(x)) = (x + 1)− 1 = x

f2 : Q→ Q f2(x) = x · 2; g2 : Q→ Q g2(x) = x/2

f2 ◦ g2(x) = f2(g2(x)) = (x/2) · 2 = x

g2 ◦ f2(x) = g2(f2(x)) = (x · 2)/2 = x
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When does f : A→ B have an inverse?

Does f1 : N→ N, f1(n) = bn/2c have an inverse?

No, f1 is not 1:1, so no g1 cannot satisfy g1(f1(0)) = 0 and
g1(f1(1)) = 1 because f1(0) = f1(1).

Does f2 : N→ N, f2(n) = n + 1 have an inverse?

No, f2 is not onto, so no g2 can satisfy f2(g2(0)) = 0 because
0 6∈ rng(f2)

Thm. f : A→ B has an inverse iff f is 1:1 and onto.

Proof: Already argued it is necessary that f is 1:1 and onto.

Assume that f is 1:1 and onto.

Let g def
=

{
(b,a)

∣∣ (a,b) ∈ f
}

converse or transpose of f .

Claim: g : B → A and g ◦ f = idA and f ◦ g = idB

Check on your own. We’ll talk about this more next week. �
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