L22: Inductive Definitions and Structural Induction
We define our data structures – or other objects of interest – inductively.

This is useful because we can:

- Prove things about these objects inductively.
- Define operations on these objects inductively, i.e., recursively.
- Examples: lists, trees, XML.
- Modern programming languages allow recursive function definitions on recursively defined datatypes (Python – hw4).
- Main examples today: logical formulas, truth
We define our data structures – or other objects of interest – inductively.

This is useful because we can:

- Prove things about these objects inductively.
We define our data structures – or other objects of interest – inductively.

This is useful because we can:

- Prove things about these objects inductively.
- Define operations on these objects inductively, i.e., \textit{recursively}.
We define our data structures – or other objects of interest – inductively.

This is useful because we can:

- Prove things about these objects inductively.
- Define operations on these objects inductively, i.e., recursively.
- Examples: lists, trees, xml
We define our data structures – or other objects of interest – inductively.

This is useful because we can:

- Prove things about these objects inductively.
- Define operations on these objects inductively, i.e., recursively.
- Examples: lists, trees, xml
- Modern programming languages allow recursive function definitions on recursively defined datatypes (Python – hw4)
We define our data structures – or other objects of interest – inductively.

This is useful because we can:

- Prove things about these objects inductively.
- Define operations on these objects inductively, i.e., recursively.
- Examples: lists, trees, xml
- Modern programming languages allow recursive function definitions on recursively defined datatypes (Python – hw4)
- Main examples today: logical formulas, truth
Def: Let Σ be a PredCalc vocabulary. A **term** $t \in \text{term}(\Sigma)$ is a string of symbols that every world $W \in \text{World}[\Sigma]$ must interpret as an element $t^W \in |W|$. Terms are defined recursively as follows:

base 0.
$v \in \text{VAR} \quad \rightarrow \quad v \in \text{term}(\Sigma)$

variables are terms
Def: Let Σ be a PredCalc vocabulary. A **term** $t \in \text{term}(\Sigma)$ is a string of symbols that every world $W \in \text{World}[\Sigma]$ must interpret as an element $t^W \in |W|$. Terms are defined recursively as follows:

base 0. \hspace{1cm} $v \in \text{VAR} \hspace{3cm} \rightarrow \hspace{1cm} v \in \text{term}(\Sigma)$

variables are terms

base 1. \hspace{1cm} $k \in \Sigma \hspace{3cm} \rightarrow \hspace{1cm} k \in \text{term}(\Sigma)$

constant symbols are terms
Terms in PredCalc

Def: Let Σ be a PredCalc vocabulary. A **term** $t \in \text{term}(\Sigma)$ is a string of symbols that every world $W \in \text{World}[\Sigma]$ must interpret as an element $t^W \in |W|$. Terms are defined recursively as follows:

base 0. $\nu \in \text{VAR}$
$\rightarrow \nu \in \text{term}(\Sigma)$
variables are terms

base 1. $k \in \Sigma$
$\rightarrow k \in \text{term}(\Sigma)$
constant symbols are terms

ind. 2. $t_1, \ldots, t_r \in \text{term}(\Sigma), f^r \in \Sigma$
$\rightarrow f(t_1, \ldots, t_r) \in \text{term}(\Sigma)$
terms are closed under function symbols
Def: Let Σ be a PredCalc vocabulary. A term $t \in \text{term}(\Sigma)$ is a string of symbols that every world $W \in \text{World}[\Sigma]$ must interpret as an element $t^W \in |W|$. Terms are defined recursively as follows:

base 0. $v \in \text{VAR}$ \rightarrow $v \in \text{term}(\Sigma)$
variables are terms

base 1. $k \in \Sigma$ \rightarrow $k \in \text{term}(\Sigma)$
constant symbols are terms

ind. 2. $t_1, \ldots, t_r \in \text{term}(\Sigma), f^r \in \Sigma$ \rightarrow $f(t_1, \ldots, t_r) \in \text{term}(\Sigma)$
terms are closed under function symbols

\[\text{term}(\Sigma_{\text{garst}}) = \text{VAR} \cup \{s, t\} \]
Def: Let Σ be a PredCalc vocabulary. A **term** $t \in \text{term}(\Sigma)$ is a string of symbols that every world $W \in \text{World}[\Sigma]$ must interpret as an element $t^W \in |W|$. Terms are defined recursively as follows:

base 0. \(\forall \in \text{VAR} \quad \rightarrow \quad \forall \in \text{term}(\Sigma) \)
variables are terms

base 1. \(k \in \Sigma \quad \rightarrow \quad k \in \text{term}(\Sigma) \)
constant symbols are terms

ind. 2. \(t_1, \ldots, t_r \in \text{term}(\Sigma), f^r \in \Sigma \quad \rightarrow \quad f(t_1, \ldots, t_r) \in \text{term}(\Sigma) \)
terms are closed under function symbols

\[
\text{term}(\Sigma_{\text{garst}}) = \text{VAR} \cup \{s, t\} = \{s, t, x, y, z, u, v, w, x_1, \ldots\}
\]

\[
\text{term}(\Sigma_{\text{#thy}}) = \{0, 1, x, \ldots, \ldots, x \cdot y, \ldots (x + 1) \cdot (y + 0), \ldots\}
\]
Default Interpretation of variables: Unless explicitly stated otherwise, \(v^W = 0 \), (or the min value in \(|W|\) if \(0 \notin |W|\)).
Default Interpretation of variables: Unless explicitly stated otherwise, $v^W = 0$, (or the min value in $|W|$ if $0 \not\in |W|$).

Notation: $W[e/v]$ is same as W, except $v^{W[e/v]} = e$.
Default Interpretation of variables: Unless explicitly stated otherwise, \(v^W = 0 \), (or the min value in \(|W|\) if \(0 \not\in |W|\)).

Notation: \(W[e/v] \) is same as \(W \), except \(v^{W[e/v]} = e \).

\(x^{G_1} = 0 \)
Default Interpretation of variables: Unless explicitly stated otherwise, \(v^W = 0 \), (or the min value in \(|W| \) if \(0 \not\in |W| \)).

Notation: \(W[e/v] \) is same as \(W \), except \(v^{W[e/v]} = e \).

\(x^{G_1} = 0 \quad y^{G_1} = 0 \)
Default Interpretation of variables: Unless explicitly stated otherwise, $\nu^W = 0$, (or the min value in $|W|$ if $0 \not\in |W|$).

Notation: $W[e/v]$ is same as W, except $\nu^{W[e/v]} = e$.

$x^{G_1} = 0 \quad y^{G_1} = 0 \quad x^{G_1[1/x \ 4/y]} = 1$
Default Interpretation of variables: Unless explicitly stated otherwise, \(v^W = 0 \), (or the min value in \(|W| \) if \(0 \not\in |W| \)).

Notation: \(W[e/v] \) is same as \(W \), except \(v^{W[e/v]} = e \).

\[
\begin{align*}
\chi^{G_1} & = 0 \\
y^{G_1} & = 0 \\
x^{G_1[1/x \ 4/y]} & = 1
\end{align*}
\]

iClicker 22.1 What is \(y^{G_1[1/x \ 4/y]} \)?

A: 0 B: 1 C: 3 D: 4
Default Interpretation of variables: Unless explicitly stated otherwise, $v^W = 0$, (or the min value in $|W|$ if $0 \not\in |W|$).

Notation: $W[e/v]$ is same as W, except $v^{W[e/v]} = e$.

$x^{G_1} = 0 \quad y^{G_1} = 0 \quad x^{G_1[1/x \ 4/y]} = 1$

iClicker 22.2 What is $t^{G_1[1/x \ 4/y]}$

A: 0 B: 1 C: 3 D: 4
For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, recursively define t^W.

Proposition 1

For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, $t^W \in |W|$.

Proof: By structural induction on t.

Base cases:
- For $v \in \text{VAR}$, $v^W \in |W|$;
- For $k \in \Sigma$, $k^W \in |W|$.

Inductive case: indHyp: $t^W_1, \ldots, t^W_r \in |W|$.

$f^W: |W|^r \rightarrow |W|$, so $(f(t^W_1, \ldots, t^W_r))^W \in |W|$.

□
For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, recursively define t^W.

base case 0: For $v \in \text{VAR}$, v^W already has default value.
Worlds Recursively Interpret Terms

For \(t \in \text{term}(\Sigma); \ W \in \text{World}[\Sigma] \), **recursively define** \(t^W \)

base case 0: For \(v \in \text{VAR} \), \(v^W \) already has default value.

base case 1: For constant symbol, \(k \in \Sigma \), \(k^W \) already defined.
For $t \in \text{term}(\Sigma); W \in \text{World}[\Sigma]$, recursively define t^W

base case 0: For $v \in \text{VAR}$, v^W already has default value.

base case 1: For constant symbol, $k \in \Sigma$, k^W already defined.

inductive case: For $t_1, \ldots, t_r \in \text{term}(\Sigma), f^r \in \Sigma$

\[
(f(t_1, \ldots, t_r))^W \overset{\text{def}}{=} f^W(t_1^W, \ldots, t_r^W)
\]
For \(t \in \text{term}(\Sigma) \); \(W \in \text{World}[\Sigma] \), **recursively define** \(t^W \)

base case 0: For \(v \in \text{VAR} \), \(v^W \) already has default value.

base case 1: For constant symbol, \(k \in \Sigma \), \(k^W \) already defined.

inductive case: For \(t_1, \ldots, t_r \in \text{term}(\Sigma) \), \(f^r \in \Sigma \)

\[
(f(t_1, \ldots, t_r))^W \overset{\text{def}}{=} f^W(t_1^W, \ldots, t_r^W)
\]

Prop. For \(t \in \text{term}(\Sigma) \); \(W \in \text{World}[\Sigma] \), \(t^W \in |W| \)
Worlds Recursively Interpret Terms

For \(t \in \text{term}(\Sigma); \ W \in \text{World}[\Sigma], \) **recursively define** \(t^W \)

base case 0: For \(v \in \text{VAR}, \ v^W \) already has default value.

base case 1: For constant symbol, \(k \in \Sigma, \ k^W \) already defined.

inductive case: For \(t_1, \ldots, t_r \in \text{term}(\Sigma), \ f^r \in \Sigma \)

\[
\left(f(t_1, \ldots, t_r) \right)^W \overset{\text{def}}{=} f^W(t_1^W, \ldots, t_r^W)
\]

Prop. For \(t \in \text{term}(\Sigma); \ W \in \text{World}[\Sigma], \ t^W \in |W| \)

Proof: By structural induction on \(t \).
For \(t \in \text{term}(\Sigma) ; W \in \text{World}[\Sigma] \), \textbf{recursively define} \(t^W \)

base case 0: For \(\nu \in \text{VAR}, \nu^W \) already has default value.

base case 1: For constant symbol, \(k \in \Sigma, k^W \) already defined.

inductive case: For \(t_1, \ldots, t_r \in \text{term}(\Sigma), f^r \in \Sigma \)

\[
(f(t_1, \ldots, t_r))^W \overset{\text{def}}{=} f^W(t_1^W, \ldots, t_r^W)
\]

Prop. For \(t \in \text{term}(\Sigma) ; W \in \text{World}[\Sigma], t^W \in \mid W \mid \)

Proof: By structural induction on \(t \).

base cases: For \(\nu \in \text{VAR}, \nu^W \in \mid W \mid ; \) for \(k \in \Sigma, k^W \in \mid W \mid \)
Worlds Recursively Interpret Terms

For \(t \in \text{term}(\Sigma) \); \(W \in \text{World}[\Sigma] \), recursively define \(t^W \)

base case 0: For \(v \in \text{VAR} \), \(v^W \) already has default value.

base case 1: For constant symbol, \(k \in \Sigma \), \(k^W \) already defined.

inductive case: For \(t_1, \ldots, t_r \in \text{term}(\Sigma) \), \(f^r \in \Sigma \)

\[
(f(t_1, \ldots, t_r))^W \overset{\text{def}}{=} f^W(t_1^W, \ldots, t_r^W)
\]

Prop. For \(t \in \text{term}(\Sigma) \); \(W \in \text{World}[\Sigma] \), \(t^W \in |W| \)

Proof: By structural induction on \(t \).

base cases: For \(v \in \text{VAR} \), \(v^W \in |W| \); for \(k \in \Sigma \), \(k^W \in |W| \)

inductive case: indHyp: \(t_1^W, \ldots, t_r^W \in |W| \).
Worlds Recursively Interpret Terms

For $t \in \text{term}(\Sigma); \ W \in \text{World}[\Sigma]$, **recursively define** t^W

base case 0: For $v \in \text{VAR}, \ v^W$ already has default value.

base case 1: For constant symbol, $k \in \Sigma, \ k^W$ already defined.

inductive case: For $t_1, \ldots, t_r \in \text{term}(\Sigma), \ f^r \in \Sigma$

$$ (f(t_1, \ldots, t_r))^W \overset{\text{def}}{=} f^W(t_1^W, \ldots, t_r^W) $$

Prop. For $t \in \text{term}(\Sigma); \ W \in \text{World}[\Sigma]$, $t^W \in |W|$

Proof: By structural induction on t.

base cases: For $v \in \text{VAR}, \ v^W \in |W|; \text{ for } k \in \Sigma, \ k^W \in |W|$

inductive case: indHyp: $t_1^W, \ldots, t_r^W \in |W|$. \n
$f^W : |W|^r \rightarrow |W|$, so $(f(t_1, \ldots, t_r))^W = f^W(t_1^W, \ldots, t_r^W) \in |W|$. □
Tarski’s Recursive Definition of Truth

For every $G \in \text{World}[\Sigma]$ and $t \in \text{term}(\Sigma)$

$t^G \in |G|$
Tarski’s Recursive Definition of Truth

For every $G \in \text{World}[\Sigma]$ and $t \in \text{term}(\Sigma)$, $t^G \in |G|$

$G \models t_1 = t_2$ iff $t_1^G = t_2^G$
Tarski’s Recursive Definition of Truth

For every $G \in \text{World}[\Sigma]$ and $t \in \text{term}(\Sigma)$, $t^G \in |G|$.

$G \models t_1 = t_2$ iff $t_1^G = t_2^G$

$G \models P(t_1, \ldots, t_a)$ iff $(t_1^G, \ldots, t_a^G) \in P^G$

$P^a \in \Sigma$
Tarski’s Recursive Definition of Truth

For every \(G \in \text{World}[\Sigma] \) and \(t \in \text{term}(\Sigma) \)

\[
G \models t_1 = t_2 \quad \text{iff} \quad t_1^G = t_2^G
\]

\[
G \models P(t_1, \ldots, t_a) \quad \text{iff} \quad (t_1^G, \ldots, t_a^G) \in P^G
\]

\[
G \models \sim \alpha \quad \text{iff} \quad G \not\models \alpha
\]
Tarski’s Recursive Definition of Truth

For every $G \in \text{World}[\Sigma]$ and $t \in \text{term}(\Sigma)$, $t^G \in |G|$

$G \models t_1 = t_2 \iff t_1^G = t_2^G$

$G \models P(t_1, \ldots, t_a) \iff (t_1^G, \ldots, t_a^G) \in P^G$ $P^a \in \Sigma$

$G \models \sim \alpha \iff G \not\models \alpha$ PropCalc

$G \models \alpha \land \beta \iff G \models \alpha \text{ and } G \models \beta$ PropCalc
Tarski’s Recursive Definition of Truth

For every $G \in \text{World}[\Sigma]$ and $t \in \text{term}(\Sigma)$

- $G \models t_1 = t_2$ iff $t_1^G = t_2^G$
- $G \models P(t_1, \ldots, t_a)$ iff $(t_1^G, \ldots, t_a^G) \in P^G$
- $G \models \sim \alpha$ iff $G \not\models \alpha$
- $G \models \alpha \land \beta$ iff $G \models \alpha$ and $G \models \beta$
- $G \models \alpha \lor \beta$ iff $G \models \alpha$ or $G \models \beta$

$t^G \in |G|$
Tarski’s Recursive Definition of Truth

For every $G \in \text{World}[\Sigma]$ and $t \in \text{term}(\Sigma)$, $t^G \in |G|$

- $G \models t_1 = t_2$ iff $t_1^G = t_2^G$
- $G \models P(t_1, \ldots, t_a)$ iff $(t_1^G, \ldots, t_a^G) \in P^G$
- $G \models \sim \alpha$ iff $G \not\models \alpha$
- $G \models \alpha \land \beta$ iff $G \models \alpha$ and $G \models \beta$
- $G \models \alpha \lor \beta$ iff $G \models \alpha$ or $G \models \beta$
- $G \models \forall x(\alpha)$ iff for all $a \in |G|$ $G[a/x] \models \alpha$
Tarski’s Recursive Definition of Truth

For every $G \in \text{World}[\Sigma]$ and $t \in \text{term}(\Sigma)$

$G \models t_1 = t_2$ iff $t_1^G = t_2^G$

$G \models P(t_1, \ldots, t_a)$ iff $(t_1^G, \ldots, t_a^G) \in P^G$

$G \models \sim \alpha$ iff $G \not\models \alpha$

$G \models \alpha \land \beta$ iff $G \models \alpha$ and $G \models \beta$

$G \models \alpha \lor \beta$ iff $G \models \alpha$ or $G \models \beta$

$G \models \forall x(\alpha)$ iff for all $a \in |G|$ $G[a/x] \models \alpha$

$G \models \exists x(\alpha)$ iff exists $a \in |G|$ $G[a/x] \models \alpha$
Tarski’s Recursive Definition of Truth

\[G(t_1 = t_2) \overset{\text{def}}{=} t_1^G = t_2^G \]
Tarski’s Recursive Definition of Truth

\[G(t_1 = t_2) \overset{\text{def}}{=} t_1^G == t_2^G \]

\[G(P(t_1, \ldots, t_a)) \overset{\text{def}}{=} (t_1^G, \ldots, t_a^G) \in P^G \]
Tarski’s Recursive Definition of Truth

\[G(t_1 = t_2) \overset{\text{def}}{=} t_1^G = t_2^G \]

\[G(P(t_1, \ldots, t_a)) \overset{\text{def}}{=} (t_1^G, \ldots, t_a^G) \in P^G \]

\[G(\sim \alpha) \overset{\text{def}}{=} 1 - G(\alpha) \]
Tarski’s Recursive Definition of Truth

\[
G(t_1 = t_2) \overset{\text{def}}{=} t_1^G = t_2^G \\
G(P(t_1, \ldots, t_a)) \overset{\text{def}}{=} (t_1^G, \ldots, t_a^G) \in P^G \\
G(\sim \alpha) \overset{\text{def}}{=} 1 - G(\alpha) \\
G(\alpha \land \beta) \overset{\text{def}}{=} \min(G(\alpha), G(\beta))
\]
Tarski’s Recursive Definition of Truth

\[G(t_1 = t_2) \overset{\text{def}}{=} t_1^G \iff t_2^G \]

\[G(P(t_1, \ldots, t_a)) \overset{\text{def}}{=} (t_1^G, \ldots, t_a^G) \in P^G \]

\[G(\sim \alpha) \overset{\text{def}}{=} 1 - G(\alpha) \]

\[G(\alpha \land \beta) \overset{\text{def}}{=} \min(G(\alpha), G(\beta)) \]

\[G(\alpha \lor \beta) \overset{\text{def}}{=} \max(G(\alpha), G(\beta)) \]
Tarski’s Recursive Definition of Truth

\[
G(t_1 = t_2) \overset{\text{def}}{=} t_1^G = t_2^G
\]

\[
G(P(t_1, \ldots, t_a)) \overset{\text{def}}{=} (t_1^G, \ldots, t_a^G) \in P^G
\]

\[
G(\sim \alpha) \overset{\text{def}}{=} 1 - G(\alpha)
\]

\[
G(\alpha \land \beta) \overset{\text{def}}{=} \min(G(\alpha), G(\beta))
\]

\[
G(\alpha \lor \beta) \overset{\text{def}}{=} \max(G(\alpha), G(\beta))
\]

\[
G(\forall x(\alpha)) \overset{\text{def}}{=} \min_{a \in |G|} G[a/x](\alpha)
\]
Tarski’s Recursive Definition of Truth

\[G(t_1 = t_2) \overset{\text{def}}{=} t_1^G = t_2^G \]

\[G(P(t_1, \ldots, t_a)) \overset{\text{def}}{=} (t_1^G, \ldots, t_a^G) \in P^G \]

\[G(\sim \alpha) \overset{\text{def}}{=} 1 - G(\alpha) \]

\[G(\alpha \land \beta) \overset{\text{def}}{=} \min(G(\alpha), G(\beta)) \]

\[G(\alpha \lor \beta) \overset{\text{def}}{=} \max(G(\alpha), G(\beta)) \]

\[G(\forall x(\alpha)) \overset{\text{def}}{=} \min_{a \in |G|} G[a/x](\alpha) \]

\[G(\exists x(\alpha)) \overset{\text{def}}{=} \max_{a \in |G|} G[a/x](\alpha) \]
Truth Game: a two player game that is an equivalent but more fun way to tell whether $\mathcal{W} \models \varphi$. First put φ into NNF.
Truth Game: a two player game that is an equivalent but more fun way to tell whether \(W \models \varphi \). First put \(\varphi \) into NNF.

Dumbledore wants to show that \(W \models \varphi \)
Truth Game: a two player game that is an equivalent but more fun way to tell whether $\mathcal{W} \models \varphi$. First put φ into NNF.

Dumbledore wants to show that $\mathcal{W} \models \varphi$

Gandalf wants to show that $\mathcal{W} \not\models \varphi$.
Truth Game: a two player game that is an equivalent but more fun way to tell whether $\mathcal{W} \models \varphi$. First put φ into NNF.

Dumbledore wants to show that $\mathcal{W} \models \varphi$.

Gandalf wants to show that $\mathcal{W} \not\models \varphi$.

base case: if φ is a literal, then D wins iff $\mathcal{W} \models \varphi$.
Truth Game: a two player game that is an equivalent but more fun way to tell whether $W \models \varphi$. First put φ into NNF.

Dumbledore wants to show that $W \models \varphi$.

Gandalf wants to show that $W \not\models \varphi$.

base case: if φ is a literal, then D wins iff $W \models \varphi$.

inductive cases:
Truth Game: a two player game that is an equivalent but more fun way to tell whether $W \models \varphi$. First put φ into NNF.

Dumbledore wants to show that $W \models \varphi$

Gandalf wants to show that $W \not\models \varphi$.

base case: if φ is a literal, then D wins iff $W \models \varphi$.

inductive cases:

$W \models \varphi \land \psi$ \hspace{1cm} G chooses $\alpha \in \{\varphi, \psi\}$ continue on: \hspace{1cm} $W \models \alpha$
Truth Game: a two player game that is an equivalent but more fun way to tell whether \(W \models \varphi \). First put \(\varphi \) into NNF.

Dumbledore wants to show that \(W \models \varphi \).

Gandalf wants to show that \(W \not\models \varphi \).

base case: if \(\varphi \) is a literal, then \(D \) wins iff \(W \models \varphi \).

inductive cases:

- \(W \models \varphi \land \psi \)
 \(G \) chooses \(\alpha \in \{ \varphi, \psi \} \) continue on: \(W \models \alpha \)

- \(W \models \varphi \lor \psi \)
 \(D \) chooses \(\alpha \in \{ \varphi, \psi \} \) continue on: \(W \models \alpha \)
Truth Game: a two player game that is an equivalent but more fun way to tell whether $W \models \varphi$. First put φ into NNF.

Dumbledore wants to show that $W \models \varphi$

Gandalf wants to show that $W \not\models \varphi$.

base case: if φ is a literal, then D wins iff $W \models \varphi$.

inductive cases:

- $W \models \varphi \land \psi\quad G$ chooses $\alpha \in \{\varphi, \psi\}$ continue on: $W \models \alpha$
- $W \models \varphi \lor \psi\quad D$ chooses $\alpha \in \{\varphi, \psi\}$ continue on: $W \models \alpha$
- $W \models \forall x \varphi\quad G$ chooses $a \in |W|$ continue on: $W a/x \models \varphi$
Truth Game: a two player game that is an equivalent but more fun way to tell whether $W \models \varphi$. First put φ into NNF.

Dumbledore wants to show that $W \models \varphi$

Gandalf wants to show that $W \not\models \varphi$.

base case: if φ is a literal, then D wins iff $W \models \varphi$.

inductive cases:

- $W \models \varphi \land \psi$ \quad G chooses $\alpha \in \{\varphi, \psi\}$ continue on: $W \models \alpha$
- $W \models \varphi \lor \psi$ \quad D chooses $\alpha \in \{\varphi, \psi\}$ continue on: $W \models \alpha$
- $W \models \forall x \ \varphi$ \quad G chooses $a \in |W|$ continue on: $W a/x \models \varphi$
- $W \models \exists x \ \varphi$ \quad D chooses $a \in |W|$ continue on: $W a/x \models \varphi$
Truth Game Example

Does $W \models \forall x (x = s \lor \exists y \ E(y, x))$?
Truth Game Example

Does $W \models \forall x (x = s \lor \exists y E(y, x))$?

G moves, chooses $x = 4$
Truth Game Example

Does $W \models \forall x \ (x = s \lor \exists y \ E(y, x))$?

G moves, chooses $x = 4$

Does $W[4/x] \models x = s \lor \exists y \ E(y, x)$?
Truth Game Example

Does $\mathcal{W} \models \forall x (x = s \lor \exists y E(y, x))$?
\begin{itemize}
 \item \textbf{G} moves, chooses $x = 4$
\end{itemize}

Does $\mathcal{W}[4/x] \models x = s \lor \exists y E(y, x)$?
\begin{itemize}
 \item \textbf{D} moves, chooses $\exists y E(y, x)$
\end{itemize}
Truth Game Example

Does $W \models \forall x (x = s \lor \exists y E(y, x))$?

G moves, chooses $x = 4$

Does $W[4/x] \models x = s \lor \exists y E(y, x)$?

D moves, chooses $\exists y E(y, x)$

Does $W[4/x] \models \exists y E(y, x)$?
Truth Game Example

Does $W \models \forall x \ (x = s \lor \exists y \ E(y, x))$?
G moves, chooses $x = 4$

Does $W[4/x] \models x = s \lor \exists y \ E(y, x)$?
D moves, chooses $\exists y \ E(y, x)$

Does $W[4/x] \models \exists y \ E(y, x)$?
D moves, chooses $y = 1$
Truth Game Example

Does $W \models \forall x (x = s \lor \exists y E(y, x))$?
- G moves, chooses $x = 4$

Does $W[4/x] \models x = s \lor \exists y E(y, x)$?
- D moves, chooses $\exists y E(y, x)$

Does $W[4/x] \models \exists y E(y, x)$?
- D moves, chooses $y = 1$

Does $W[4/x, 1/y] \models E(y, x)$?
Truth Game Example

Does $\mathcal{W} \models \forall x (x = s \lor \exists y E(y, x))$?
G moves, chooses $x = 4$

Does $\mathcal{W}[4/x] \models x = s \lor \exists y E(y, x)$?
D moves, chooses $\exists y E(y, x)$

Does $\mathcal{W}[4/x] \models \exists y E(y, x)$?
D moves, chooses $y = 1$

Does $\mathcal{W}[4/x, 1/y] \models E(y, x)$?
Yes, **D** wins!
Thm. For any Σ, $\varphi \in \text{PredCalc}\Sigma$, in NNF, $\mathcal{W} \in \text{World}[\Sigma]$,

- D wins the truth game on \mathcal{W}, φ iff $\mathcal{W} \models \varphi$
- G wins the truth game on \mathcal{W}, φ iff $\mathcal{W} \models \neg \varphi$

Proof: By induction on the structure of φ. Details in hw4 □
Thm. For any $\Sigma, \varphi \in \text{PredCalc}\Sigma$, in NNF, $\mathcal{W} \in \text{World}[\Sigma]$,

- D wins the truth game on \mathcal{W}, φ iff $\mathcal{W} \models \varphi$

- G wins the truth game on \mathcal{W}, φ iff $\mathcal{W} \models \neg \varphi$

Proof: By induction on the structure of φ.

Details in hw4
Thm. For any Σ, $\varphi \in \text{PredCalc}\Sigma$, in NNF, $\mathcal{W} \in \text{World}[\Sigma]$,

- D wins the truth game on \mathcal{W}, φ iff $\mathcal{W} \models \varphi$
- G wins the truth game on \mathcal{W}, φ iff $\mathcal{W} \models \neg \varphi$

Proof: By induction on the structure of φ.

Details in hw4