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Thm. Euler’s Formula [1750] Let G be an undirected,
connected graph, drawn in the plane. Then v − e + f = 2.

Proof: Show by induction that Z+ |= ∀x α(x)

α(x) def
= ∀G (G a connected plane graph ∧ v(G) + e(G) ≤ x

→ v − e + f = 2)

base case: α(1): Since v + e = 1, v = 1 and e = 0 and thus
f = 1. Thus v − e + f = 2.
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α(x) def
= ∀G (G a connected plane graph ∧ v(G) + e(G) ≤ x

→ v − e + f = 2)

inductive case: Assume indHyp: α(x0): For any connected,
plane graph G with v + e ≤ x0, v − e + f = 2.

Let G be an arbitrary connected plane graph s.t. v +e = x0 +1.

case 1: G is a tree. Let ` be a leaf of G, and let (a, `) be the
unique edge to a.

G a
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G′ a

b

Let G′ be G with ` and (a, `)removed.

By indHyp, G′ satisfies v ′ − e′ + f ′ = 2 where v ′ = v − 1,
e′ = e − 1, f ′ = f . Thus, v − e + f = 2.
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EC(G)
def
= G is connected ∧ ∀v 6∈ {s, t} deg(v) is even ∧(

s = t ∧ deg(s) = deg(t) is even ∨
s 6= t ∧ deg(s),deg(t) are odd

)
Lemma For any undirected graph, G, if EC(G) then any
exhautive bb walk from s must end at t.

Proof: By induction on e(G). We will prove N |= ∀x α(x).

α(x) def
= ∀G (EC(G) ∧ e(G) = x →

any exhaustive bb walk from s ends in t)

base case: If e(G) = 0 ∧ EC(G), then G is a single vertex with
no edges. It’s only walk is the empty walk which starts at s and
ends at t.
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α(x) def
= ∀G (EC(G) ∧ e(G) = x →

any exhaustive bb walk from s ends in t)
inductive case: Assume
α(x0).

Let G be an
arbitrary graph s.t.
EC(G) ∧ e(G) = x0 + 1

Start at s, take 1 step.
Let G′ be the result,
sG′

the new point.

EC(G′) ∧ e(G) = x0
why?

Thus, by indHyp the walk
from G′ must end at t. �
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N is well ordered

Thm. Let S be a non-empty subset of N. Then S has a least
element min(S).

Proof: Let S ⊆ N be arbitrary and assume that S has no least
element.

Claim S = ∅.

Proof: We prove N |= ∀x α(x) where α(x) def
= ∀y ≤ x (y 6∈ S).

base case: α(0). 0 6∈ S because otherwise 0 would be the
least element of S.

inductive case: Assume α(x0), i.e., ∀y ≤ x0 (y 6∈ S).

Thus, x0 + 1 6∈ S, because otherwise x0 + 1 would be the least
element of S. Thus, α(x0 + 1). �

Thus, if S 6= ∅, then S has a least element. �
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Well Ordering is Equivalent to Induction

We proved well ordering from induction; now show converse.

Suppose N |= α(0) and N |= ∀y (α(y)→ α(y + 1)).

Let S def
=

{
n ∈ N

∣∣∼α(n)}.

Assume for the sake of a contradiction that S 6= ∅.

Let m = min(S). We know that m 6= 0 because we know α(0).

Let p = m − 1. p ∈ N but p 6∈ S because m = min(S).

Thus, α(p).

But, α(p)→ α(p + 1) by ∀-e.

Thus, α(p + 1) by→-e, i.e, α(m). Thus, m 6∈ S.

F

Thus, S = ∅, i.e, N |= ∀x (α(x)). �
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