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L21: Euler's Formula and Well Ordering
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Proof: Show by induction that Z* |= Vx a(x)
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base case: a(1): Sincev+e=1,v =1and e =0 and thus
f=1.Thusv—-e+f=2. v
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Let G’ be G with ¢ and (a, ¢)removed.

By indHyp, G’ satisfies v/ — € + f =2 where v/ = v — 1,
€ =e—1,f=f Thus,v—e+f=2.
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EC(G) = Gisconnected A Vv ¢ {s,t} deg(v)iseven A
(s =t A deg(s) =deg(t)iseven Vv
s#t A deg(s),deg(t) are odd )

Lemma For any undirected graph, G, if EC(G) then any
exhautive bb walk from s must end at t.

Proof: By induction on e(G). We will prove N = Vx a(x).

a(x) & VG (EC(G)Ae(G)=x —
any exhaustive bb walk from s ends in t)

base case: If e(G) = 0 A EC(G), then G is a single vertex with
no edges. It's only walk is the empty walk which starts at s and
ends att.
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a(x) & VG (EC(G)Ae(G) =x —
any exhaustive bb walk from s ends in t)
inductive case: Assume

a(Xp). Let G be an G

arbitrary graph s.t. st

EC(G)re(G) =x 11 (GCr—2—2—a—2)—2)
0o 1 2 3 4 5

Start at s, take 1 step. G

s
Let G’ be the result, t —
s% the new point. ‘ m (4) (2
1

EC(G) A e(G) = xo
why?

Thus, by indHyp the walk 0 1 2 3 4 5
from G’ mustend att. O
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N is well ordered

Thm. Let S be a non-empty subset of N. Then S has a least
element min(S).

Proof: Let S C N be arbitrary and assume that S has no least
element.

Claim S = 0.
Proof: We prove N = Vx a(x) where a(x) &f Vy<x(y ¢5S).

base case: a(0). 0 ¢ S because otherwise 0 would be the
least element of S.

inductive case: Assume «a(xp), i.e.,Vy < xo (y € S).

Thus, xp + 1 ¢ S, because otherwise xp + 1 would be the least
elementof S.  Thus, a(xg + 1). O

Thus, if S # (), then S has a least element. O
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We proved well ordering from induction; now show converse.
Suppose N = «(0) and N = Vy (a(y) — a(y +1)).

Let S {neN |~a(n)}.

Assume for the sake of a contradiction that S # 0.

Let m = min(S). We know that m # 0 because we know «(0).
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Thus, a(p).

But, a(p) — a(p+ 1) by V-e.

Thus, a(p+ 1) by —-e, i.e, a(m). Thus, m¢ S.

F

Thus, S =10, i.e, N = Vx (a(x)). O



