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Lecture 19: Eulerian Graphs

Last time we introduced Mathematical Induction. Today, we
will use induction to prove things about graphs.

Today, all graphs are undirected
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Leonhard Euler (1707–1783) made contributions to number
theory, geometry, numerical analysis, combinatorics, calculus
and complex analysis. His solution to the Königsberg Bridge
Problem is considered the earliest result in graph theory.

Is it possible to traverse each of the seven bridges of the city
of Königsberg returning to your starting point, without
crossing a single bridge twice?
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Walks on Graphs

Def. A walk of length r on graph G from s to t is a sequence of
r + 1 vertices starting at s and ending at t so that each step is
along an edge.

w = (s = v0, v1, v2, . . . , vr−1, vr = t) (vi , vi+1) ∈ EG,0 ≤ i < r

0
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G1

(0, 1, 2, 3) is a walk of length 3 from s to t on G1

(0, 3) is a walk of length 1 from s to t
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Def. A path, p = (v0, v1, . . . , vr ), is a walk with no repeated
vertices or edges (except the start and end points may be
equal).

A path that starts and ends at the same vertex is called a
cycle. A graph that has no cycles is acyclic.

A graph is connected iff it has a path between every pair of
vertices. A connected component, C, of an undirected graph,
G, is a maximal subgraph of G that is connected.

An undirected forest is an acyclic undirected graph. A tree is a
connected forest.

0 1 2 3 4 5 6F1 = T1 ∪ T2

T1

T2
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Walks on Graphs
Today we want to walk from s to t , but never cross the same
edge twice.

We call such a walk a bb walk. (“bb” stands for
“bridge burning”.) (0,1,2,3) is a bb walk from s to t .
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From s, take an

exhaustive bb walk

on G, i.e., until

you can go

no further.

Must you end up

back at s?
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Degree of a Vertex

Def. In an undirected graph, the degree of a vertex v is the
number of neighbors that v has, but loops count as 2:

deg(v) = |
{

w 6= v
∣∣ (v ,w) ∈ EG}| + {

2 if v has a loop
0 otherwise

If all the vertices of G have degree d , then we say that G is
regular of degree d .
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t
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2 2 2 4 2 4
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t
G2

G1 is regular of degree 2, but G2 is not regular because
deg(1) 6= deg(3)



The Parity of the Degrees is Key
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Def. An Eulerian walk in a graph G is a walk from s to t that
traverses every edge exactly once and every vertex at least
once.

EC(G)
def
= G is connected ∧ ∀v 6∈ {s, t} deg(v) is even ∧(

s = t ∧ deg(s) = deg(t) is even ∨
s 6= t ∧ deg(s),deg(t) are odd

)

Thm. [Euler] G has an Eulerian walk from s to t iff EC(G).
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EC(G)
def
= G is connected ∧ ∀v 6∈ {s, t} deg(v) is even ∧(

s = t ∧ deg(s) = deg(t) is even ∨
s 6= t ∧ deg(s),deg(t) are odd

)

Claim G has an Eulerian walk → EC(G).

Proof: For all vertices, v , besides s and t , the walk must
leave v the same number of times that it enters v . Thus, deg(v)
is even.

If s = t , then deg(s) = deg(t) is even for the same reason.

If s 6= t , then s is left once more than it is reached and t is
reached once more than it is left, so their degrees are both odd.

Since an Eulerian walk visits every vertex, G is connected. �



EC(G)
def
= G is connected ∧ ∀v 6∈ {s, t} deg(v) is even ∧(

s = t ∧ deg(s) = deg(t) is even ∨
s 6= t ∧ deg(s),deg(t) are odd

)
Claim G has an Eulerian walk → EC(G).

Proof: For all vertices, v , besides s and t , the walk must
leave v the same number of times that it enters v . Thus, deg(v)
is even.

If s = t , then deg(s) = deg(t) is even for the same reason.

If s 6= t , then s is left once more than it is reached and t is
reached once more than it is left, so their degrees are both odd.

Since an Eulerian walk visits every vertex, G is connected. �



EC(G)
def
= G is connected ∧ ∀v 6∈ {s, t} deg(v) is even ∧(

s = t ∧ deg(s) = deg(t) is even ∨
s 6= t ∧ deg(s),deg(t) are odd

)
Claim G has an Eulerian walk → EC(G).

Proof: For all vertices, v , besides s and t , the walk must
leave v the same number of times that it enters v . Thus, deg(v)
is even.

If s = t , then deg(s) = deg(t) is even for the same reason.

If s 6= t , then s is left once more than it is reached and t is
reached once more than it is left, so their degrees are both odd.

Since an Eulerian walk visits every vertex, G is connected. �



EC(G)
def
= G is connected ∧ ∀v 6∈ {s, t} deg(v) is even ∧(

s = t ∧ deg(s) = deg(t) is even ∨
s 6= t ∧ deg(s),deg(t) are odd

)
Claim G has an Eulerian walk → EC(G).

Proof: For all vertices, v , besides s and t , the walk must
leave v the same number of times that it enters v . Thus, deg(v)
is even.

If s = t , then deg(s) = deg(t) is even for the same reason.

If s 6= t , then s is left once more than it is reached and t is
reached once more than it is left, so their degrees are both odd.

Since an Eulerian walk visits every vertex, G is connected. �



EC(G)
def
= G is connected ∧ ∀v 6∈ {s, t} deg(v) is even ∧(

s = t ∧ deg(s) = deg(t) is even ∨
s 6= t ∧ deg(s),deg(t) are odd

)
Claim G has an Eulerian walk → EC(G).

Proof: For all vertices, v , besides s and t , the walk must
leave v the same number of times that it enters v . Thus, deg(v)
is even.

If s = t , then deg(s) = deg(t) is even for the same reason.

If s 6= t , then s is left once more than it is reached and t is
reached once more than it is left, so their degrees are both odd.

Since an Eulerian walk visits every vertex, G is connected. �



EC(G)
def
= G is connected ∧ ∀v 6∈ {s, t} deg(v) is even ∧(

s = t ∧ deg(s) = deg(t) is even ∨
s 6= t ∧ deg(s),deg(t) are odd

)
Claim G has an Eulerian walk → EC(G).

Proof: For all vertices, v , besides s and t , the walk must
leave v the same number of times that it enters v . Thus, deg(v)
is even.

If s = t , then deg(s) = deg(t) is even for the same reason.

If s 6= t , then s is left once more than it is reached and t is
reached once more than it is left, so their degrees are both odd.

Since an Eulerian walk visits every vertex, G is connected. �



EC(G)
def
= G is connected ∧ ∀v 6∈ {s, t} deg(v) is even ∧(

s = t ∧ deg(s) = deg(t) is even ∨
s 6= t ∧ deg(s),deg(t) are odd

)

Claim EC(G) → G has an Eulerian walk.

We will prove the Claim by induction: N |= ∀x α(x), where

α(x) def
= ∀G (|EG| ≤ x ∧ EC(G) → G has an Eulerian walk )

base case: α(0): Let G be an arbitrary graph with 0 edges and
EC(G). Since G is connected and has no edges it must consist
of a single vertex, s = t . Thus, the empty walk is an Eulerian
walk from s to t .

Next time: we’ll prove the inductive case: α(x0)→ α(x0 + 1).
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