L19: Eulerian Graphs
Last time we introduced Mathematical Induction. Today, we will use induction to prove things about graphs.
Last time we introduced Mathematical Induction. Today, we will use induction to prove things about graphs.

Today, all graphs are undirected

![Diagram of undirected graph with vertices 0, 1, and 2 connected in a cycle with blue lines.]
Leonhard Euler (1707–1783) made contributions to number theory, geometry, numerical analysis, combinatorics, calculus and complex analysis. His solution to the Königsberg Bridge Problem is considered the earliest result in graph theory.
Leonhard Euler (1707–1783) made contributions to number theory, geometry, numerical analysis, combinatorics, calculus and complex analysis. His solution to the Königsberg Bridge Problem is considered the earliest result in graph theory.

Is it possible to traverse each of the seven bridges of the city of Königsberg returning to your starting point, without crossing a single bridge twice?
Leonhard Euler (1707–1783) made contributions to number theory, geometry, numerical analysis, combinatorics, calculus and complex analysis. His solution to the Königsberg Bridge Problem is considered the earliest result in graph theory.

Is it possible to traverse each of the seven bridges of the city of Königsberg returning to your starting point, without crossing a single bridge twice?
Def. A walk of length r on graph G from s to t is a sequence of $r + 1$ vertices starting at s and ending at t so that each step is along an edge.

$$w = (s = v_0, v_1, v_2, \ldots, v_{r-1}, v_r = t) \quad (v_i, v_{i+1}) \in E^G, 0 \leq i < r$$
Def. A walk of length r on graph G from s to t is a sequence of $r + 1$ vertices starting at s and ending at t so that each step is along an edge.

$$w = (s = v_0, v_1, v_2, \ldots, v_{r-1}, v_r = t) \quad (v_i, v_{i+1}) \in E^G, 0 \leq i < r$$

$(0, 1, 2, 3)$ is a walk of length 3 from s to t on G_1
Def. A walk of length \(r \) on graph \(G \) from \(s \) to \(t \) is a sequence of \(r + 1 \) vertices starting at \(s \) and ending at \(t \) so that each step is along an edge.

\[w = (s = v_0, v_1, v_2, \ldots, v_{r-1}, v_r = t) \quad (v_i, v_{i+1}) \in E^G, \ 0 \leq i < r \]

\(G_1 \)

(0, 1, 2, 3) \ is a walk of length 3 from \(s \) to \(t \) on \(G_1 \)

(0, 3) \ is a walk of length 1 from \(s \) to \(t \)
Def. A path, \(p = (v_0, v_1, \ldots, v_r) \), is a walk with no repeated vertices or edges (except the start and end points may be equal).

\[
F_1 = T_1 \cup T_2
\]
Def. A path, \(p = (v_0, v_1, \ldots, v_r) \), is a walk with no repeated vertices or edges (except the start and end points may be equal).

A path that starts and ends at the same vertex is called a cycle. A graph that has no cycles is acyclic.

\[
F_1 = T_1 \cup T_2
\]
Def. A path, \(p = (v_0, v_1, \ldots, v_r) \), is a walk with no repeated vertices or edges (except the start and end points may be equal).

A path that starts and ends at the same vertex is called a cycle. A graph that has no cycles is acyclic.

A graph is connected iff it has a path between every pair of vertices. A connected component, \(C \), of an undirected graph, \(G \), is a maximal subgraph of \(G \) that is connected.

\[
F_1 = T_1 \cup T_2
\]
Def. A path, $p = (v_0, v_1, \ldots, v_r)$, is a walk with no repeated vertices or edges (except the start and end points may be equal).

A path that starts and ends at the same vertex is called a cycle. A graph that has no cycles is acyclic.

A graph is connected iff it has a path between every pair of vertices. A connected component, C, of an undirected graph, G, is a maximal subgraph of G that is connected.

An undirected forest is an acyclic undirected graph. A tree is a connected forest.

$$F_1 = T_1 \cup T_2$$
Walks on Graphs

Today we want to walk from s to t, but never cross the same edge twice.
Today we want to walk from s to t, but **never cross the same edge twice.** We call such a walk a **bb** walk. (“bb” stands for “bridge burning”.) $(0, 1, 2, 3)$ is a **bb** walk from s to t.
Today we want to walk from s to t, but never cross the same edge twice. We call such a walk a **bb** walk. ("bb" stands for "bridge burning"). $(0, 1, 2, 3)$ is a **bb** walk from s to t.
Walks on Graphs

Today we want to walk from s to t, but never cross the same edge twice. We call such a walk a \textbf{bb} walk. ("bb" stands for "bridge burning"). $(0, 1, 2, 3)$ is a \textbf{bb} walk from s to t.

![Diagram of a graph with nodes 0, 1, 2, 3 and edges between them, illustrating the bb walk from s to t.]
Walks on Graphs

Today we want to walk from s to t, but never cross the same edge twice. We call such a walk a bb walk. (“bb” stands for “bridge burning”.) $(0, 1, 2, 3)$ is a bb walk from s to t.

\[s \quad 0 \quad 1 \quad 2 \quad 3 \quad t \]

\[s \quad 0 \quad 1 \quad 2 \quad 3 \quad t \]

\[s \quad 0 \quad 1 \quad 2 \quad 3 \quad t \]
Walks on Graphs

Today we want to walk from s to t, but never cross the same edge twice. We call such a walk a **bb** walk. (“bb” stands for “bridge burning”.) $(0, 1, 2, 3)$ is a **bb** walk from s to t.
From s, take an

exhaustive bb walk

on G, i.e., **until**

you can go

no further.
From s, take an **exhaustive** bb walk on G, i.e., until you can go no further.

Must you end up back at s?
From s, take an exhaustive bb walk on G, i.e., until you can go no further.

Must you end up back at s?
From s, take an exhaustive bb walk on G, i.e., until you can go no further.

Must you end up back at s?
From s, take an exhaustive bb walk on G, i.e., until you can go no further. Must you end up back at s?
From s, take an exhaustive bb walk on G, i.e., until you can go no further. Must you end up back at s?
Must you end up back at s?
Must you end up back at s?
Must you end up back at s?
Must you end up back at s?
Must you end up back at s?
Must you end up back at s?
Must you end up back at s?
Must you end up back at s?
Degree of a Vertex

Def. In an undirected graph, the *degree* of a vertex v is the number of neighbors that v has, but loops count as 2:

$$\deg(v) = \left| \{ w \neq v \mid (v, w) \in E^G \} \right| + \begin{cases} 2 & \text{if } v \text{ has a loop} \\ 0 & \text{otherwise} \end{cases}$$

If all the vertices of G have degree d, then we say that G is *regular* of degree d.

Consider graph G_1 and graph G_2. Graph G_1 is regular of degree 2, but graph G_2 is not regular because $\deg(1) \neq \deg(3)$.
The Parity of the Degrees is Key

Def. An **Eulerian walk** in a graph G is a walk from s to t that traverses every edge exactly once and every vertex at least once.

$$\text{EC}(G) \overset{\text{def}}{=} G \text{ is connected } \land \forall v \not\in \{s, t\} \text{ \ deg}(v) \text{ is even } \land \left(s = t \land \text{deg}(s) = \text{deg}(t) \text{ is even} \lor s \neq t \land \text{deg}(s), \text{deg}(t) \text{ are odd} \right)$$
The Parity of the Degrees is Key

Def. An **Eulerian walk** in a graph G is a walk from s to t that traverses every edge exactly once and every vertex at least once.

\[
\text{EC}(G) \overset{\text{def}}{=} G \text{ is connected } \land \forall v \not\in \{s, t\} \text{ deg}(v) \text{ is even } \land \\
(s = t \land \text{deg}(s) = \text{deg}(t) \text{ is even}) \lor \\
(s \neq t \land \text{deg}(s), \text{deg}(t) \text{ are odd})
\]

Thm. [Euler] G has an Eulerian walk from s to t iff $\text{EC}(G)$.
EC(G) \overset{\text{def}}{=} G \text{ is connected} \wedge \forall v \not\in \{s, t\} \text{ deg}(v) \text{ is even} \wedge \\
(s = t \wedge \text{deg}(s) = \text{deg}(t) \text{ is even} \vee \\
s \neq t \wedge \text{deg}(s), \text{deg}(t) \text{ are odd})
Claim G has an Eulerian walk \rightarrow EC(G).
EC(G) \stackrel{\text{def}}{=} G \text{ is connected } \land \forall v \not\in \{s, t\} \deg(v) \text{ is even } \land \\
(s = t \land \deg(s) = \deg(t) \text{ is even } \lor \\
s \neq t \land \deg(s), \deg(t) \text{ are odd })

Claim G has an Eulerian walk \(\rightarrow \) EC(G).

Proof: For all vertices, \(v \), besides \(s \) and \(t \), the walk must leave \(v \) the same number of times that it enters \(v \). Thus, \(\deg(v) \) is even.
EC(G) \overset{\text{def}}{=} G \text{ is connected } \land \forall v \notin \{s, t\} \text{ deg}(v) \text{ is even } \land \\
(s = t \land \text{deg}(s) = \text{deg}(t) \text{ is even} \lor \\
 s \neq t \land \text{deg}(s), \text{deg}(t) \text{ are odd}) \\

\textbf{Claim} \ G \text{ has an Eulerian walk } \rightarrow \ EC(G). \\

\textbf{Proof:} \quad \text{For all vertices, } v, \text{ besides } s \text{ and } t, \text{ the walk must leave } v \text{ the same number of times that it enters } v. \text{ Thus, } \text{deg}(v) \text{ is even.} \\
\text{If } s = t, \text{ then } \text{deg}(s) = \text{deg}(t) \text{ is even for the same reason.}
EC(G) \overset{\text{def}}{=} G \text{ is connected} \land \forall v \notin \{s, t\} \deg(v) \text{ is even} \land
(s = t \land \deg(s) = \deg(t) \text{ is even}) \lor
(s \neq t \land \deg(s), \deg(t) \text{ are odd})

\textbf{Claim} \ G \text{ has an Eulerian walk } \rightarrow \ \text{EC}(G).

\textbf{Proof:} \ For all vertices, \(v \), besides \(s \) and \(t \), the walk must leave \(v \) the same number of times that it enters \(v \). Thus, \(\deg(v) \) is even.

If \(s = t \), then \(\deg(s) = \deg(t) \) is even for the same reason.

If \(s \neq t \), then \(s \) is left once more than it is reached and \(t \) is reached once more than it is left, so their degrees are both odd.
\[\text{EC}(G) \overset{\text{def}}{=} G \text{ is connected} \land \forall v \notin \{s, t\} \, \deg(v) \text{ is even} \land \]
\[
(s = t \land \deg(s) = \deg(t) \text{ is even} \lor \\
 s \neq t \land \deg(s), \deg(t) \text{ are odd}
\]

Claim \(G \) has an Eulerian walk \(\rightarrow \) \(\text{EC}(G) \).

Proof: For all vertices, \(v \), besides \(s \) and \(t \), the walk must leave \(v \) the same number of times that it enters \(v \). Thus, \(\deg(v) \) is even.

If \(s = t \), then \(\deg(s) = \deg(t) \) is even for the same reason.

If \(s \neq t \), then \(s \) is left once more than it is reached and \(t \) is reached once more than it is left, so their degrees are both odd.

Since an Eulerian walk visits every vertex, \(G \) is connected. \(\square \)
EC(\(G\)) \overset{\text{def}}{=} G \text{ is connected } \land \forall v \not\in \{s, t\} \text{ deg}(v) \text{ is even } \land
(s = t \land \text{ deg}(s) = \text{ deg}(t) \text{ is even} \lor
s \neq t \land \text{ deg}(s), \text{ deg}(t) \text{ are odd} \)
\[\text{EC}(G) \overset{\text{def}}{=} G \text{ is connected} \land \forall v \notin \{s, t\} \deg(v) \text{ is even} \land (s = t \land \deg(s) = \deg(t) \text{ is even} \lor s \neq t \land \deg(s), \deg(t) \text{ are odd}) \]

Claim \(\text{EC}(G) \rightarrow G \text{ has an Eulerian walk.} \)
EC(G) \overset{\text{def}}{=} G \text{ is connected } \land \forall v \notin \{s, t\} \ \text{deg}(v) \text{ is even } \land \\
(s = t \land \text{deg}(s) = \text{deg}(t) \text{ is even} \lor \\
s \neq t \land \text{deg}(s), \text{deg}(t) \text{ are odd})

\textbf{Claim} \ EC(G) \rightarrow G \text{ has an Eulerian walk.} \\

We will prove the Claim by induction: \(\mathbb{N} \models \forall x \ \alpha(x), \) where \\

\[\alpha(x) \overset{\text{def}}{=} \forall G (|E^G| \leq x \land EC(G) \rightarrow G \text{ has an Eulerian walk}) \]
Claim $EC(G) \rightarrow G$ has an Eulerian walk.

We will prove the Claim by induction: $\mathbb{N} \models \forall x \; \alpha(x)$, where

$$\alpha(x) \overset{\text{def}}{=} \forall G \; (|E^G| \leq x \land EC(G) \rightarrow G \text{ has an Eulerian walk})$$

base case: $\alpha(0)$: Let G be an arbitrary graph with 0 edges and $EC(G)$. Since G is connected and has no edges it must consist of a single vertex, $s = t$. Thus, the empty walk is an Eulerian walk from s to t.
EC(G) \overset{\text{def}}{=} \ G \text{ is connected } \land \ \forall v \notin \{s, t\} \ \deg(v) \text{ is even } \land \ (s = t \land \deg(s) = \deg(t) \text{ is even} \lor s \neq t \land \deg(s), \deg(t) \text{ are odd})

Claim \ EC(G) \rightarrow G \text{ has an Eulerian walk.}

We will prove the Claim by induction: \(\mathbb{N} \models \forall x \ \alpha(x) \), where

\[\alpha(x) \overset{\text{def}}{=} \ \forall G \ (|E^G| \leq x \land EC(G) \rightarrow G \text{ has an Eulerian walk}) \]

base case: \(\alpha(0) \): Let \(G \) be an arbitrary graph with 0 edges and \(EC(G) \). Since \(G \) is connected and has no edges it must consist of a single vertex, \(s = t \). Thus, the empty walk is an Eulerian walk from \(s \) to \(t \).

Next time: we’ll prove the **inductive case:** \(\alpha(x_0) \rightarrow \alpha(x_0 + 1) \).