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def
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a

b’ is in lowest terms iff gcd(a, b) = 1.

Def. We say the rational,

3 .
g is not in lowest terms,  but 2 is.

Prop. Every rational number, g, with b # 0 may be written in
lowest terms.

Proof.

a _ (a/gcd(a b)) o
a _ \a/gcala o)) I | .
b (b/ gcd(a, b)) and the latter is in lowest terms
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