CS250: Discrete Math for Computer Science

L16: $\sqrt{2} \notin \mathbf{Q}$ & |Primes| = \aleph_0

For postive integers, a, b, $CD(a, b) \stackrel{\text{def}}{=} \{d \ge 1 \mid d | a \land d | b\}$

For postive integers, $a, b, CD(a, b) \stackrel{\text{def}}{=} \{d \ge 1 \mid d | a \land d | b\}$ $CD(6, 45) = \{1, 3\}$

For postive integers, a, b, $CD(a, b) \stackrel{\text{def}}{=} \{d \ge 1 \mid d | a \land d | b\}$

$$\begin{array}{rcl} \mathsf{CD}(6,45) &=& \{1,3\} \\ \mathsf{CD}(12,100) &=& \{1,2,4\} \end{array}$$

For postive integers, a, b, $CD(a, b) \stackrel{\text{def}}{=} \{d \ge 1 \mid d | a \land d | b\}$

$$\begin{array}{rcl} \mathsf{CD}(6,45) &=& \{1,3\}\\ \mathsf{CD}(12,100) &=& \{1,2,4\}\\ \mathsf{CD}(12,49) &=& \{1\} \end{array}$$

For postive integers, a, b, $CD(a, b) \stackrel{\text{def}}{=} \{ d \ge 1 \mid d | a \land d | b \}$

$$\begin{array}{rcl} \mathsf{CD}(6,45) &=& \{1,3\}\\ \mathsf{CD}(12,100) &=& \{1,2,4\}\\ \mathsf{CD}(12,49) &=& \{1\} \end{array}$$

Def. greatest common divisor, $gcd(a, b) \stackrel{\text{def}}{=} max(CD(a, b))$

For postive integers, a, b, $CD(a, b) \stackrel{\text{def}}{=} \{d \ge 1 \mid d | a \land d | b\}$

Def. greatest common divisor, $gcd(a, b) \stackrel{\text{def}}{=} max(CD(a, b))$

For postive integers, a, b, $CD(a, b) \stackrel{\text{def}}{=} \{ d \ge 1 \mid d | a \land d | b \}$

Def. greatest common divisor, $gcd(a, b) \stackrel{\text{def}}{=} max(CD(a, b))$ **Def.** Integers *a*, *b* are **relatively prime** iff gcd(a, b) = 1

For postive integers, a, b, $CD(a, b) \stackrel{\text{def}}{=} \{d \ge 1 \mid d | a \land d | b\}$

Def. greatest common divisor, $gcd(a, b) \stackrel{\text{def}}{=} max(CD(a, b))$ **Def.** Integers a, b are **relatively prime** iff gcd(a, b) = 1**Prop.** If $a = p_1^{i_1} \cdots p_k^{i_k}$ and $b = p_1^{j_1} \cdots p_k^{j_k}$ are already factored into products of powers of distinct primes, then

$$gcd(a,b) = p_1^{\min(i_1,j_1)} \cdots p_k^{\min(i_k,j_k)}$$

For postive integers, a, b, $CD(a, b) \stackrel{\text{def}}{=} \{ d \ge 1 \mid d | a \land d | b \}$

Def. greatest common divisor, $gcd(a, b) \stackrel{\text{def}}{=} max(CD(a, b))$ **Def.** Integers *a*, *b* are **relatively prime** iff gcd(a, b) = 1**Prop.** If $a = p_1^{i_1} \cdots p_k^{i_k}$ and $b = p_1^{j_1} \cdots p_k^{j_k}$ are already factored into products of powers of distinct primes, then

$$gcd(a,b) = p_1^{\min(i_1,j_1)} \cdots p_k^{\min(i_k,j_k)}$$
$$gcd(2^1 \cdot 3^1 \cdot 5^0, 2^0 \cdot 3^2 \cdot 5^1) = 2^0 \cdot 3^1 \cdot 5^0 = 3$$

For postive integers, a, b, $CD(a, b) \stackrel{\text{def}}{=} \{ d \ge 1 \mid d | a \land d | b \}$

$$\begin{array}{rcl} \mathsf{CD}(6,45) &=& \{1,3\} & \mbox{gcd}(6,45) &=& 3\\ \mathsf{CD}(12,100) &=& \{1,2,4\} & \mbox{gcd}(12,100) &=& 4\\ \mathsf{CD}(12,49) &=& \{1\} & \mbox{gcd}(12,49) &=& 1 \end{array}$$

Def. greatest common divisor, $gcd(a, b) \stackrel{\text{def}}{=} max(CD(a, b))$ **Def.** Integers *a*, *b* are **relatively prime** iff gcd(a, b) = 1 **Prop.** If $a = p_1^{i_1} \cdots p_k^{i_k}$ and $b = p_1^{j_1} \cdots p_k^{j_k}$ are already factored into products of powers of distinct primes, then $gcd(a, b) = p_1^{\min(i_1, j_1)} \cdots p_k^{\min(i_k, j_k)}$

$$gcd(2^1 \cdot 3^1 \cdot 5^0, 2^0 \cdot 3^2 \cdot 5^1) = 2^0 \cdot 3^1 \cdot 5^0 = 3$$

 $gcd(2^2\cdot 3^1\cdot 5^0, 2^2\cdot 3^0\cdot 5^2) \ = \ 2^2\cdot 3^0\cdot 5^0 \ = \ 4$

For postive integers, a, b, $CD(a, b) \stackrel{\text{def}}{=} \{d \ge 1 \mid d | a \land d | b\}$

$$\begin{array}{rcl} \mathsf{CD}(6,45) &=& \{1,3\} & \mbox{gcd}(6,45) &=& 3\\ \mathsf{CD}(12,100) &=& \{1,2,4\} & \mbox{gcd}(12,100) &=& 4\\ \mathsf{CD}(12,49) &=& \{1\} & \mbox{gcd}(12,49) &=& 1 \end{array}$$

Def. greatest common divisor, $gcd(a, b) \stackrel{\text{def}}{=} max(CD(a, b))$ **Def.** Integers *a*, *b* are **relatively prime** iff gcd(a, b) = 1**Prop.** If $a = p_1^{j_1} \cdots p_k^{j_k}$ and $b = p_1^{j_1} \cdots p_k^{j_k}$ are already factored into products of powers of distinct primes, then

$$gcd(a, b) = p_1^{\min(i_1, j_1)} \cdots p_k^{\min(i_k, j_k)}$$
$$gcd(2^1 \cdot 3^1 \cdot 5^0, 2^0 \cdot 3^2 \cdot 5^1) = 2^0 \cdot 3^1 \cdot 5^0 = 3$$
$$gcd(2^2 \cdot 3^1 \cdot 5^0, 2^2 \cdot 3^0 \cdot 5^2) = 2^2 \cdot 3^0 \cdot 5^0 = 4$$
$$gcd(2^2 \cdot 3^1 \cdot 7^0, 2^0 \cdot 3^0 \cdot 7^2) = 2^0 \cdot 3^0 \cdot 7^0 = 1$$

Def. We say the rational, $\frac{a}{b}$, is in **lowest terms** iff gcd(a, b) = 1.

Def. We say the rational, $\frac{a}{b}$, is in **lowest terms** iff gcd(a, b) = 1. $\frac{6}{8}$ is not in lowest terms, but $\frac{3}{4}$ is. **Def.** We say the rational, $\frac{a}{b}$, is in **lowest terms** iff gcd(a, b) = 1. $\frac{6}{8}$ is not in lowest terms, but $\frac{3}{4}$ is. **Prop.** Every rational number, $\frac{a}{b}$, with $b \neq 0$ may be written in lowest terms. **Def.** We say the rational, $\frac{a}{b}$, is in **lowest terms** iff gcd(a, b) = 1.

 $\frac{6}{8}$ is not in lowest terms, but $\frac{3}{4}$ is.

Prop. Every rational number, $\frac{a}{b}$, with $b \neq 0$ may be written in lowest terms.

Proof.

$$\frac{a}{b} = \frac{(a/\gcd(a,b))}{(b/\gcd(a,b))}$$
 and the latter is in lowest terms.

Prop. $\sqrt{2}$ is irrational. Proof.

Prop. $\sqrt{2}$ is irrational. Proof.

Suppose for the sake of a contradiction that $\sqrt{2} = \frac{a}{b}$.

Prop. $\sqrt{2}$ is irrational. Proof.

Suppose for the sake of a contradiction that $\sqrt{2} = \frac{a}{b}$. By previous Prop. we may assume that $\frac{a}{b}$ is in lowest terms

Prop. $\sqrt{2}$ is irrational. Proof.

Suppose for the sake of a contradiction that $\sqrt{2} = \frac{a}{b}$. By previous Prop. we may assume that $\frac{a}{b}$ is in lowest terms

$$\sqrt{2} \cdot b = a$$

Prop. $\sqrt{2}$ is irrational. Proof.

Suppose for the sake of a contradiction that $\sqrt{2} = \frac{a}{b}$. By previous Prop. we may assume that $\frac{a}{b}$ is in lowest terms

$$\sqrt{2} \cdot b = a$$
$$2 \cdot b^2 = a^2$$

Prop. $\sqrt{2}$ is irrational. Proof.

Suppose for the sake of a contradiction that $\sqrt{2} = \frac{a}{b}$. By previous Prop. we may assume that $\frac{a}{b}$ is in lowest terms

$$\sqrt{2} \cdot b = a$$

 $2 \cdot b^2 = a^2$

Thus, a^2 is even. Thus *a* is even. Let a = 2d

Prop. $\sqrt{2}$ is irrational. Proof.

Suppose for the sake of a contradiction that $\sqrt{2} = \frac{a}{b}$. By previous Prop. we may assume that $\frac{a}{b}$ is in lowest terms

$$\sqrt{2} \cdot b = a$$

 $2 \cdot b^2 - a^2$

Thus, a^2 is even. Thus *a* is even. Let a = 2dThus, $2b^2 = a^2 = 4d^2$. Thus $b^2 = 2d^2$. Thus *b* is even.

Prop. $\sqrt{2}$ is irrational. Proof.

Suppose for the sake of a contradiction that $\sqrt{2} = \frac{a}{b}$. By previous Prop. we may assume that $\frac{a}{b}$ is in lowest terms

$$\sqrt{2} \cdot b = a$$

Thus, a^2 is even. Thus *a* is even. Let a = 2dThus, $2b^2 = a^2 = 4d^2$. Thus $b^2 = 2d^2$. Thus *b* is even. Thus, $\frac{a}{b}$ is not in lowest terms.

Prop. $\sqrt{2}$ is irrational. Proof.

Suppose for the sake of a contradiction that $\sqrt{2} = \frac{a}{b}$. By previous Prop. we may assume that $\frac{a}{b}$ is in lowest terms

$$\sqrt{2} \cdot b = a$$

Thus, a^2 is even. Thus *a* is even. Let a = 2dThus, $2b^2 = a^2 = 4d^2$. Thus $b^2 = 2d^2$. Thus *b* is even. Thus, $\frac{a}{b}$ is not in lowest terms.

This is a contradiction! Thus our assumption is false.

Suppose for the sake of a contradiction that there are only finitely many primes: p_1, p_2, \ldots, p_k .

Suppose for the sake of a contradiction that there are only finitely many primes: $p_1, p_2, ..., p_k$.

Let $n = 1 + p_1 \cdot p_2 \cdots p_k$

Suppose for the sake of a contradiction that there are only finitely many primes: p_1, p_2, \ldots, p_k .

Let $n = 1 + p_1 \cdot p_2 \cdots p_k$

Let d be the smallest divisor of n that is greater than 1.

Suppose for the sake of a contradiction that there are only finitely many primes: p_1, p_2, \ldots, p_k .

Let $n = 1 + p_1 \cdot p_2 \cdots p_k$

Let d be the smallest divisor of n that is greater than 1.

Thus, d|n and d is prime.

Suppose for the sake of a contradiction that there are only finitely many primes: p_1, p_2, \ldots, p_k .

Let $n = 1 + p_1 \cdot p_2 \cdots p_k$

Let d be the smallest divisor of n that is greater than 1.

Thus, d|n and d is prime.

Thus, $d = p_i$ for some $1 \le i \le k$.

Suppose for the sake of a contradiction that there are only finitely many primes: p_1, p_2, \ldots, p_k .

Let $n = 1 + p_1 \cdot p_2 \cdots p_k$

Let d be the smallest divisor of n that is greater than 1.

Thus, d|n and d is prime.

Thus, $d = p_i$ for some $1 \le i \le k$.

 $p_i|(1+p_1\cdot p_2\cdots p_k)$ and $p_i|(-p_1\cdot p_2\cdots p_k)$.

Suppose for the sake of a contradiction that there are only finitely many primes: p_1, p_2, \ldots, p_k .

Let $n = 1 + p_1 \cdot p_2 \cdots p_k$

Let d be the smallest divisor of n that is greater than 1.

Thus, d|n and d is prime.

Thus, $d = p_i$ for some $1 \le i \le k$.

 $p_i|(1+p_1\cdot p_2\cdots p_k) \text{ and } p_i|(-p_1\cdot p_2\cdots p_k).$

By Prop. 13.1, $p_i | 1$. Thus, $p_i \leq 1$. Thus, p_i is not prime.

Suppose for the sake of a contradiction that there are only finitely many primes: p_1, p_2, \ldots, p_k .

Let $n = 1 + p_1 \cdot p_2 \cdots p_k$

Let d be the smallest divisor of n that is greater than 1.

Thus, d|n and d is prime.

Thus, $d = p_i$ for some $1 \le i \le k$.

 $p_i|(1+p_1\cdot p_2\cdots p_k) \text{ and } p_i|(-p_1\cdot p_2\cdots p_k).$

By Prop. 13.1, $p_i | 1$. Thus, $p_i \leq 1$. Thus, p_i is not prime.

This is a contradiction! Thus our assumption is false.