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L16:
√

2 6∈ Q & |Primes| = ℵ0



Common Divisors

For postive integers, a,b, CD(a,b) def
=

{
d ≥ 1

∣∣ d |a ∧ d |b
}

CD(6,45) = {1,3} gcd(6,45) = 3
CD(12,100) = {1,2,4} gcd(12,100) = 4

CD(12,49) = {1} gcd(12,49) = 1

Def. greatest common divisor, gcd(a,b) def
= max(CD(a,b))

Def. Integers a,b are relatively prime iff gcd(a,b) = 1

Prop. If a = pi1
1 · · · p

ik
k and b = pj1

1 · · · p
jk
k are already factored

into products of powers of distinct primes, then

gcd(a,b) = pmin(i1,j1)
1 · · · pmin(ik ,jk )

k

gcd(21 · 31 · 50,20 · 32 · 51) = 20 · 31 · 50 = 3

gcd(22 · 31 · 50,22 · 30 · 52) = 22 · 30 · 50 = 4

gcd(22 · 31 · 70,20 · 30 · 72) = 20 · 30 · 70 = 1
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Rationals in Lowest Terms

Def. We say the rational,
a
b

, is in lowest terms iff gcd(a,b) = 1.

6
8

is not in lowest terms, but
3
4

is.

Prop. Every rational number,
a
b

, with b 6= 0 may be written in
lowest terms.

Proof.
a
b

=
(a/gcd(a,b))
(b/gcd(a,b))

and the latter is in lowest terms. �
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√
2 is irrational

Prop.
√

2 is irrational.

Proof.

Suppose for the sake of a contradiction that
√

2 =
a
b

.

By previous Prop. we may assume that
a
b

is in lowest terms

√
2 · b = a

2 · b2 = a2

Thus, a2 is even. Thus a is even. Let a = 2d

Thus, 2b2 = a2 = 4d2. Thus b2 = 2d2. Thus b is even.

Thus,
a
b

is not in lowest terms.

This is a contradiction! Thus our assumption is false.

�
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|Primes| = ℵ0

Prop. There are infinitely many primes.

Proof.

Suppose for the sake of a contradiction that there are only
finitely many primes: p1,p2, . . . ,pk .

Let n = 1 + p1 · p2 · · · pk

Let d be the smallest divisor of n that is greater than 1.

Thus, d |n and d is prime.

Thus, d = pi for some 1 ≤ i ≤ k .

pi |(1 + p1 · p2 · · · pk ) and pi |(−p1 · p2 · · · pk ).

By Prop. 13.1, pi |1. Thus, pi ≤ 1. Thus, pi is not prime.

This is a contradiction! Thus our assumption is false.

�
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