
Chapter 3

First-Order Reductions

First-order reductions are simple translations that have very little computational
power of their own. Thus it is surprising that the vast majority of natural complete
problems remain complete via first-order reductions. We provide examples of such
complete problems for many complexity classes. All the complexity classes and
descriptive languages studied in this book are closed under first-order reductions.
Once we express a complete problem for some complexity class C in a language L,
it will follow that L contains all queries computable in C.

3.1 FO ⊆ L

Recall that FO is the set of first-order definable boolean queries (Definition 1.26).
It may be expected that the computational complexity of easy-to-describe queries is
low. It was very surprising to us at first that descriptive classes like FO are identical
to natural complexity classes.

We will see in Chapter 5 that FO is equal to the set of boolean queries com-
putable in constant parallel time. The following theorem will get us started com-
paring descriptive versus machine characterizations of complexity. We show that
first-order definable queries are all computable in logspace. We will see in Chapter
13 that this containment is strict.

Theorem 3.1 The set of first-order boolean queries is contained in the set of bool-
ean queries computable in deterministic logspace: FO ⊆ L.

57

58 CHAPTER 3. FIRST-ORDER REDUCTIONS

Proof Let σ = 〈Ra11 , . . . , Rarr , c1, . . . , cs〉. Let ϕ ∈ L(σ) determine a first-order
boolean query, Iϕ : STRUC[σ]→ {0, 1},

ϕ ≡ (∃x1)(∀x2) . . . (Qkxk)α(x̄)

where α is quantifier-free. We must construct a logspace Turing machine M such
that for all A ∈ STRUC[σ], A satisfies ϕ iff M accepts the binary encoding of A.
In symbols,

A |= ϕ ⇔ M(bin(A))↓ (3.2)

We construct the logspace Turing machineM inductively on k, the number of
quantifiers occurring in ϕ. If k = 0, then ϕ = α is a quantifier-free sentence. Thus,
α is a fixed, finite boolean combination of atomic formulas. The atomic formulas
are either occurrences of input relations Ri(p1, . . . , pai) or numeric relations p1 =
p2, p1 ≤ p2, or BIT(p1, p2), and the pi’s are members of {c1, . . . , cs, 0, 1,max}.
Once we know thatM can determine, on inputA, whetherA satisfies each of these
atomic formulas, M can then determine whether A |= α, by performing the fixed,
finite boolean combination using its finite control.

The reader should convince herself that a logspace machine that knows its
input is of the form bin(A), for some A ∈ STRUC[σ], can calculate the values n
and dlog ne. Then, by counting, the machine can go to the appropriate constants
and copy the pi’s that it needs onto its worktape. To calculate one of the input
predicates, M can just look up the appropriate bit of its input.

For example, to calculate R3(c2,max, c1), M first copies the values c2, n −
1, c1 to its worktape. Next it moves its read head to location na1 + na2 + 1, which
is the beginning of the array encoding R3. Finally, it moves its read head n2 ·
c2 + n · (n − 1) + c1 spaces to the right. The bit now being read is “1” iff A |=
R3(c2,max, c1).

It is easy to see that a logspace Turing machine may test the numeric predi-
cates. This completes the construction of M in the base case.

Inductively, assume that all first-order queries with k−1 quantifiers are logspace
computable. Let

ψ(x1) = (∀x2) . . . (Qkxk)α(x̄) .

Let M0 be the logspace Turing machine that computes the query ψ(c). Note that c
is a new constant symbol substituted for the free variable x1. To compute the query
ϕ ≡ (∃x1)(ψ(x1)) we build the logspace machine that cycles through all possible

3.2. DUAL OF A FIRST-ORDER QUERY 59

values of x1, substitutes each of these for c, and runs M0. If any of these lead M0

to accept, then we accept, else we reject. Note that the extra space needed is just
log n bits to store the possible values of x1. Simulating a universal quantifier is
similar. �

3.2 Dual of a First-Order Query

A first-order query I from STRUC[σ] to STRUC[τ] maps any A ∈ STRUC[σ] to
I(A) ∈ STRUC[τ]. It does this by defining the relations of I(A) via first-order
formulas. In a similar way, I has a natural dual Î , which translates any formula in
L(τ) to a formula in L(σ).

In this section we define and characterize this dual mapping. The dual is
useful in showing that relevant languages and complexity classes are closed under
first-order reductions.

Let I be a k-ary first-order query. For each formula ϕ ∈ L(τ), the formula
Î(ϕ) ∈ L(σ) is constructed as follows: Replace each variable by a k-tuple of
variables. Replace each symbol of τ by its definition in I . It follows that the length
of Î(ϕ) is linear in the length of ϕ. In the following, we give the details.

Definition 3.3 (Dual of I) Let I = λx1...xd〈ϕ0, . . . , ψs〉 be a k-ary first-order
query from STRUC[σ] to STRUC[τ]. Then I also defines a dual map, which we
call Î : L(τ)→ L(σ), as follows:

Let τ = 〈Ra11 , . . . , Rarr , c1, . . . , cs〉. For ϕ ∈ L(τ), Î(ϕ) is the result of
replacing all relation and constant symbols in ϕ by the corresponding formulas in
I , using a map fI defined as follows:

• Each variable is mapped to a k-tuple of variables: fI(v) = v1, . . . , vk

• Input relations are replaced by their corresponding formulas:

fI(Ri(v1, . . . , vai)) = ϕi(fI(v1), . . . , fI(vai))

• Constant ci is replaced by a special k-tuple of variables1:

fI(ci) = z1i , . . . , z
k
i

1For many applications, each constant from τ may be replaced by a corresponding k-tuple of
constants from σ.

60 CHAPTER 3. FIRST-ORDER REDUCTIONS

• Quantifiers are replaced by restricted quantifiers:

fI(∃v) = (∃fI(v) . ϕ0(fI(v)))

• The equality relation and the other numeric relations are replaced by their
appropriate formulas as in Exercise 1.33.

• Second-order quantifiers — which we will need in Chapter 7 — have the
arities of the relations being quantified multiplied by k:

fI(∃Ra) = (∃Rka)

• On boolean connectives, fI is the identity.

The only thing to add is that the variables z1i , . . . , z
k
i corresponding to the

constant symbol ci must be quantified before they are used. It does not matter
where these quantifiers go because the values are uniquely defined. Typically, we
can place these quantifiers at the beginning of a first-order formula. (For a second-
order formula, they would be placed just after the second-order quantifiers.)

Thus, the mapping Î is defined as follows, for θ ∈ L(τ),

Î(θ) = (∃z11 . . . zk1 . ψ1(z
1
1 . . . z

k
1)) · · · (∃z1s . . . zks . ψs(z1s . . . zks))(fI(θ)) �

Exercise 3.4 To get the idea of what the dual mapping does, consider the query
IPM from Example 2.12. Here is one sample value of the map ÎPM :

ÎPM (A(c)) ≡ (∃z1z2 . z1 = 0 ∧ z2 = max)(z2 = max ∧ S(z1))

≡ S(0)

Compute the value of ÎPM on the following,

1. (∀v)(A(v)↔ B(v))

2. A(max)

3. A(0) �

It follows immediately from Definition 3.3 that:

3.2. DUAL OF A FIRST-ORDER QUERY 61

Proposition 3.5 Let σ, τ , and I be as in Definition 3.3. Then for all sentences
θ ∈ L(τ) and all structures A ∈ STRUC[σ],

A |= Î(θ) ⇔ I(A) |= θ

Remark 3.6 Proposition 3.5 goes through for formulas with free variables as well.
In this case, I must behave appropriately on interpretations of variables. That is,
I(A, i) = (I(A), i′), where i′(x) is defined iff all of i(x1), . . . , i(xk) are defined.
In this case, i′(x) = 〈i(x1), . . . , i(xk)〉.

In the following exercise you are asked to show that structures of any vocab-
ulary σ may be transformed to graphs via a first-order, invertible query. It then
follows from Proposition 3.5 that every formula in L(σ) may be translated into the
language of graphs. This is true even without the ordering relation. Exercise 2.3
shows the same thing about binary strings, i.e., that everything can be coded in a
first-order way as a binary string; but in the case of strings, ordering and arithmetic
are required.

Exercise 3.7 (Everything is a Graph) Let σ be any vocabulary, and let τe = 〈E2〉
be the vocabulary with one binary relation symbol, i.e., the vocabulary of graphs
with no specified points. In this exercise, you will show that every structure may
be thought of as a graph.

Show that there exist first-order queries Iσ : STRUC[σ] → STRUC[τe] and
I−1σ : STRUC[τe]→ STRUC[σ] with the following property,

for all A ∈ STRUC[σ], I−1σ (Iσ(A)) ∼= A (3.8)

[Hint: to build the graph Iσ(A), you can construct “gadgets”, i.e., small rec-
ognizable graphs to label different sorts of vertices, e.g., those corresponding to
elements of |A|, those corresponding to tuples from each relation RAi , etc.] Note
that this exercise does not require ordering, which is why Equation (3.8) says only
that the two objects are isomorphic. If we include ordering, we can require that
equality holds. �

If A and B are boolean queries and A is first-order reducible to B (A ≤fo B),
then intuitively the complexity of A is not greater than the complexity of B. The
following definition makes this intuitive idea explicit.

Definition 3.9 (Closure Under First-Order Reductions) A set of boolean queries
S is closed under first-order reductions iff whenever there are boolean queries A

62 CHAPTER 3. FIRST-ORDER REDUCTIONS

and B such that B ∈ S and A ≤fo B, we have that A ∈ S. We say that a language
L is closed under first-order reductions iff the set of boolean queries definable in L
is closed. �

The following proposition follows immediately from Theorem 3.1.

Proposition 3.10 Let S be any set of boolean queries that is closed under logspace
reductions. Then S is also closed under first-order reductions.

The next proposition cannot be proved immediately. It is a global exercise. It
is striking that with the exception of the dynamic-complexity classes, all complex-
ity classes we discuss in the book are closed under first-order reductions. Every
time a new language or complexity class is introduced, the reader should check
that it is closed under first-order reductions. For languages, we mean that the set of
boolean queries definable in that languages is closed under first-order reductions.
This is immediate if the language is closed under quantification and boolean opera-
tions. Most languages we consider are so closed. Some languages such as SO∃—
see Theorem 7.8 — do not seem to be closed under negation. However, they still
allow full use of first-order logic at their bottom levels and are thus closed under
first-order reductions.

Meta-Proposition 3.11 With the exception of the dynamic complexity classes de-
fined in Chapter 14, all the complexity classes C that we discuss in this book are
closed under first-order reductions. All the languages L that we discuss in this
book are closed under first-order reductions.

Framework 3.12 Here is a method for proving this proposition whenever a new
complexity class or logical language is encountered. For complexity classes we can
usually use Proposition 3.10 as most complexity classes are closed under logspace
reductions.

For languages, let A ≤fo B be two boolean queries, where B is expressible as
the formula ϕB in language L. Let IAB be the first-order reduction from A to B.
We know that for all structures S,

S ∈ A ⇔ IAB(S) ∈ B

It follows from Proposition 3.5 that

S ∈ A ⇔ S |= ÎAB(ϕB)

3.2. DUAL OF A FIRST-ORDER QUERY 63

So if ÎAB(ϕB) is in L then the proof is complete. Since the definition of Î(ϕ)
(Definition 3.3) is a simple substitution that doesn’t change the structure of ϕ very
much, we will find that for the languages we consider ÎAB(ϕB) will be in L as
desired. �

First-order reductions are simple and natural reductions. It is very surprising
that they seem to suffice in almost all complexity theoretic settings. We will see
that “natural” problems that are complete via polynomial-time reductions for some
complexity class tend to remain complete via first-order reductions.

Suppose that we know that a boolean query A is complete via first-order re-
ductions for a complexity class C. Suppose further that A is expressible in a lan-
guage L which is closed under first-order reductions. It follows immediately that
L expresses everything in C.

Suppose that L is a set of boolean queries describable in some language and
that C is a complexity class, that is, a set of boolean queries computable in some
complexity bound. In the sequel our paradigm for proving that L = C will be the
following four steps:

1. Show that L ⊆ C by producing for each formula ϕ from the language an
algorithm in C that computes the boolean query,

MOD[ϕ] =
{
A
∣∣ A |= ϕ

}
2. Produce a boolean query T that is complete for C via first-order reductions.

3. Show that L is closed under first-order reductions.

4. Express T in the language, thus showing that T ∈ L.

A typical example is in a proof of Theorem 7.8, which says that NP = SO∃.
We can show: (1) Each SO∃ formula can be checked by an NP machine; (2) The
problem SAT is complete for NP via ≤fo; (3) SO∃ is closed under first-order re-
ductions; and finally, (4) SAT is expressible in SO∃. (Actually, in Chapter 7 we
present a different proof for Theorem 7.8 that provides more information.)

In the remainder of this chapter, we give several examples of first-order reduc-
tions as we produce natural complete problems for the complexity classes L, NL,
and P. The proofs encode Turing machine computations using first-order formulas.
The proofs are quite intricate. For this reason, it would be fine to skim the remain-
der of this chapter on first reading. On the other hand, since many of the results on
capturing complexity classes by logics depend on this material, at some point this
material should be read.

64 CHAPTER 3. FIRST-ORDER REDUCTIONS

s

p

t

Figure 3.14: A graph that is in REACH but not REACHd

3.3 Complete problems for L and NL

Natural complete problems for L and NL are the REACHd and REACH problems.

Definition 3.13 Define REACH to be the set of directed graphs G such that there
is a path in G from s to t. Define REACHd to be the subset of REACH such that
the path from s to t is deterministic. This means that for each edge (u, x) on the
path, this is the unique edge in G leaving u. See Figure 3.14 for a directed graph
that is in REACH but not REACHd. Note that there is a directed path in this figure
from p to t. Also, define REACHu — the undirected graph reachability problem
— to be the restriction of REACH to undirected graphs,

REACHu =
{
G ∈ REACH

∣∣ G |= (∀xy)(E(x, y)→ E(y, x))
}

�

The following NSPACE[log n] algorithm recognizes REACH. Note that the
space used is just the O(log n) bits needed to name the two vertices a and b.

Algorithm 3.15 Recognizing REACH in NL

1. b := s

2. while (b 6= t) do {
3. a := b

4. nondeterministically choose new b

5. if (¬E(a, b)) then reject }
6. accept

Theorem 3.16 REACH is complete for NL via first-order reductions.

3.3. COMPLETE PROBLEMS FOR L AND NL 65

Proof Let S ⊆ STRUC[σ] be a boolean query in NL. Let N be the nondetermin-
istic logspace Turing machine that accepts S. We construct a first-order reduction
I : STRUC[σ]→ STRUC[τg] such that for all A ∈ STRUC[σ],

N(bin(A))↓ ⇔ I(A) ∈ REACH (3.17)

Let c be such that N uses at most c log n bits of worktape for inputs bin(A),
with n = ||A||. Let σ = 〈Ra11 , . . . , Rarr , c1, . . . , cs〉 and let a = max{ai | 1 ≤
i ≤ r}. Let k = 1 + a + c. Consider a run of N on input bin(A). We code an
instantaneous description (ID) of N ’s computation as a k-tuple of variables:

ID = (p, r1, . . . ra, w1, . . . , wc)

The idea is that variables r1, . . . , ra encode where in one of the input relations the
read head of N is looking. If for example it is looking at relation Ri, then,

N ’s read head is looking at a “1” ⇔ A |= Ri(r1, . . . , rai) (3.18)

Variables w1, . . . , wc encode the contents of N ’s work tape. Remember that each
variable represents an element of A’s n-element universe, so it corresponds to a
log n-bit number. We are assuming the presence of the numerical relations ≤ and
BIT. Of these, ≤ is necessary (see Proposition 6.14), but BIT is merely convenient
(see Proposition 9.16). Finally, we need O(log log n) bits of further information
to encode: (1) the state of N , (2) which input relation or constant symbol the read
head is currently scanning, and (3) the position of the work head. We assume
that n is sufficiently large that all of this information can be encoded into a single
variable, p.

Now we start to build the desired k-ary first-order query I and show that it
satisfies Equation (3.17). I will be constructed as follows:

I = λID,ID′〈true, ϕN , α, ω〉

where

1. The universe relation being “true” indicates that for anyA ∈ STRUC[σ], the
universe of I(A) consists of all k-tuples from the universe of A, |I(A)| =
|A|k.

2. A |= ϕN (ID, ID′) iff (ID, ID′) is a valid move of N on input bin(A),

3. A |= α(IDi) iff IDi is the unique initial ID of N , for inputs of size ||A||, and,

66 CHAPTER 3. FIRST-ORDER REDUCTIONS

4. A |= ω(IDf) iff IDf is the unique accept ID of N for inputs of size ||A||.

Formulas α and ω are the following,

α(x1, . . . , xk) ≡ x1 = x2 = . . . = xk = 0
ω(x1, . . . , xk) ≡ x1 = x2 = . . . = xk = max

(3.19)

Formula ϕN is not hard, but it is more tedious. It is essentially a disjunction over
N ’s finite transition table.

A typical entry in the transition table is (〈q, b, w〉, 〈q′, id, w′, wd〉). This says
that in state q, looking at bit b with the input head and bit w with the work head,
N may go to state q′, move its input head one step in direction id, write bit w′ on
its work tape and move its work head one step in direction wd. The correspond-
ing disjunct in ϕN must decode the old state from variable p and must decode
from p which input relation is being read. Say it is Ri. Then the bit b is “1” iff
Ri(r1, . . . , rai) holds. Similarly, we must extract from p the segment j of the work
tape that is currently being scanned together with the position s on that worktape.
Thus, bit w is “1” iff BIT(wj , s) holds.

With these details completed, it now follows that for any A ∈ STRUC[σ],
I(A) is the computation graph of N on input bin(A). It follows that N accepts
bin(A) iff there is a path in I(A) from s to t, i.e., Equation (3.17) holds. �

Exercise 3.20 There are several gaps left in the proof of Theorem 3.16 that the
reader should now fill in.

1. Using numeric relation BIT, write first-order formulas to uniquely identify
elements l1 = dlog ne and l2 = dlog logne of the universe.

2. Show that since the coding is somewhat arbitrary, we may use Equation
(3.19) as our definitions of α and ω.

3. Assume that the first l2 bits of p encode the work head’s position, s. Write a
formula to uniquely identify element s.

4. Do the same problem as (3) but this time assume that the bits of s are encoded
in the last l2 bits of p. In order to do this you will need addition, which is
available (Theorem 1.17). �

We next show that REACHd is complete for L via first-order reductions. We
first must show that REACHd is in L. A modification of Algorithm 3.15 recognizes
REACHd in logspace. Since a deterministic path has at most one edge leaving each
vertex, nondeterminism is no longer needed. We add a counter to detect cycles:

3.4. COMPLETE PROBLEMS FOR P 67

Algorithm 3.21 Recognizing REACHd in L

1. b := s; i := 0; n := ||G||
2. while b 6= t ∧ i < n ∧ (∃!a)(E(b, a))) do {
3. b := the unique a for which E(b, a)

4. i := i+ 1 }
5. if b = t then accept else reject

The definition of REACHd was made just so that the following theorem
would be true:

Theorem 3.22 REACHd is complete for L via first-order reductions.

Proof This proof is similar to the proof of Theorem 3.16. In fact, we copy the
whole construction with S ⊆ STRUC[σ] an arbitrary boolean query from L. The
only difference is that nowN is a deterministic logspace Turing machine that com-
putes S. Since N is deterministic, for any A ∈ STRUC[σ], the graph I(A) has at
most one edge leaving any vertex. It follows that I(A) is in REACH iff it is in
REACHd. Thus,

N(bin(A))↓ ⇔ I(A) ∈ REACHd �

3.4 Complete Problems for P

Alternation provides a nice way to characterize P, namely, P = ASPACE[log n]
(Theorem 2.25). This leads to a natural analogue of the reachability problem that
is complete problem for P.

Definition 3.23 Let an alternating graph G = (V,E,A, s, t) be a directed graph
whose vertices are labeled universal or existential. A ⊆ V is the set of universal
vertices. Let τag = 〈E2, A1, s, t〉 be the vocabulary of alternating graphs.

Alternating graphs have a different notion of accessibility. Let PGa (x, y) be
the smallest relation on vertices of G such that:

68 CHAPTER 3. FIRST-ORDER REDUCTIONS

a

c

b

A E

Figure 3.24: An alternating graph with two universal nodes: a, c.

1. PGa (x, x)

2. If x is existential and PGa (z, y) holds for some edge (x, z) then PGa (x, y).

3. If x is universal, there is at least one edge leaving x, and PGa (z, y) holds for
all edges (x, z) then PGa (x, y).

See Figure 3.24 where PGa (a, b) holds but PGa (c, b) does not. Let

REACHa =
{
G
∣∣ PGa (s, t)

}
�

Observe that the following marking algorithm computes REACHa in linear
time.

Algorithm 3.25 Recognizing REACHa in linear time on a RAM.

1. make QUEUE empty; mark(t); insert t into QUEUE

2. while QUEUE not empty do {
3. remove first element, x, from QUEUE

4. for each unmarked vertex y such that E(y, x) do {
5. delete edge (y, x)

3.4. COMPLETE PROBLEMS FOR P 69

6. if y is existential or y has no outgoing edges

7. then mark(y); insert y into QUEUE } }
8. if s is marked then accept else reject

Not surprisingly we have,

Theorem 3.26 REACHa is complete for P via first-order reductions.

Proof This proof is similar to the proof of Theorem 3.16. Let S ⊆ STRUC[σ]
be an arbitrary boolean query. Assume that S ∈ P and let T be the alternating,
logspace Turing machine that computes S. We construct a first-order reduction
Ia : STRUC[σ]→ STRUC[τag] such that for all A ∈ STRUC[σ],

T (bin(A))↓ ⇔ Ia(A) ∈ REACHa (3.27)

Indeed, the only difference between I , the query from the proof of Theorem
3.16, and Ia is that Ia must also describe the relation A that identifies the universal
states of T . Assume for simplicity that the universal states are exactly the odd-
numbered states. Assume further that the variable p in an ID encodes its state in its
low-order bits. Thus the state of an ID is universal iff the corresponding p is odd.
This occurs iff BIT(p, 0) holds. Thus, let

ψA = BIT(p, 0), I = λID,ID′〈true, ϕT , ψA, α, ω〉

where ϕT , α, and ω are defined exactly as in the proof of Theorem 3.16.

It follows that,

T (bin(A))↓ ⇔ Ia(A) ∈ REACHa �

Exercise 3.28 Recall the circuit value problem (CVP) and the monotone circuit
value problem (MCVP) from Definition 2.27.

1. Produce a first-order reduction from REACHa to MCVP.

2. Conclude that MCVP is complete for P via first-order reductions.

3. Conclude that CVP is also complete via first-order reductions. Be slightly
careful because it is certainly not true that for any two boolean queries S, T ,
if S is complete for C and T ∈ C and S ⊆ T then T is complete for C. �

70 CHAPTER 3. FIRST-ORDER REDUCTIONS

Historical Notes and Suggestions for Further Reading

Savitch proved that REACH is complete for NL via logspace reductions, [Sav73].
Hartmanis, Immerman, and Mahaney showed that REACHd is complete for L via
one-way logspace reductions, [HIM78]. The completeness of these problems via
first-order reductions was proved in [I83]. In these references, REACH was called
“GAP” and REACHd was called “1GAP”.

The complexity of REACHu is also a rich subject. Aleliunas, Karp, Lipton,
Lovász, and Rackoff, proved that taking a random walk in an undirected graph will
— with very high probability — quickly reach all reachable vertices [AKL79]. It
follows that boolean query REACHu is computable in “random logspace”. Lewis
and Papadimitriou define a restriction of nondeterministic space called “symmet-
ric space” and prove that REACHu is complete via logspace reductions for sym-
metric logspace [LP82]. Reingold proved in [Rei05] the breakthrough result that
REACH¡sub¿u¡/sub¿ is in L, and thus that symmetric logspace is equal to L.”

REACHa was shown to be complete for P via logspace reductions in [I80]
and via first-order reductions (and in fact quantifier-free projections) in [I83].

Exercise 3.28 shows that the monotone circuit value problem is complete for P
via first-order reductions. The completeness of CVP for P via logspace reductions
was first shown by Ladner in [L75]. The completeness of MCVP via logspace
reductions was originally shown by Goldschlager in [Go77].

	First-Order Reductions
	FO L
	Dual of a First-Order Query
	Complete problems for L and NL
	Complete Problems for P

