123 Ehrenfeucht: Descriptive Games

Neil Immerman

University of Massachusetts, Amherst, USA
people.cs.umass.edu/~immerman

Descriptive Complexity

$$
\left.\begin{array}{ll}
\text { Input } \\
x_{2} \cdots x_{n}
\end{array} \mapsto \text { Computation } \mapsto \quad \begin{array}{c}
\text { Output } \\
a_{1} a_{2} \cdots \\
\cdots
\end{array}\right) a_{i} \cdots a_{m}
$$

Descriptive Complexity

Input $x_{1} x_{2} \cdots x_{n}$$\mapsto$ Computation \mapsto

Output

$a_{1} a_{2} \cdots a_{i} \cdots a_{m}$
S

Individual bits of the output are decision problems.

Descriptive Complexity

Individual bits of the output are decision problems.

Computational Complexity:
How hard is it to check if input has property S ?

Descriptive Complexity

Individual bits of the output are decision problems.

Computational Complexity:
How hard is it to check if input has property S ?

Descriptive Complexity:
How rich a language do we need to describe property S ?

Descriptive Complexity

Individual bits of the output are decision problems.

Computational Complexity:
How hard is it to check if input has property S ?

Descriptive Complexity:
How rich a language do we need to describe property S ?

Constructive Isomorphism between these two approaches.

Input is Finite Ordered Structure

$$
H \quad=\quad\left(\{a, b, c\}, \leq^{H}, E^{H}\right)
$$

Graph

$$
E^{H}=\{(a, b),(b, a),(b, c),(c, b),(c, a),(a, c)\}
$$

Input is Finite Ordered Structure

$$
\begin{array}{cccc}
H & & \left(\{a, b, c\}, \leq^{H}, E^{H}\right) \\
\text { Ordered } & \leq^{H} & =\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, c)\} \\
\text { Graph } & E^{H} & =\{(a, b),(b, a),(b, c),(c, b),(c, a),(a, c)\}
\end{array}
$$

First-Order Logic

input symbols: E, R, Y, B, \ldots
variables: $\quad x, y, z, \ldots$
boolean connectives: \wedge, \vee, \neg
quantifiers: \forall, \exists
numeric symbols: $=, \leq$, min, max

First-Order Logic

$$
\begin{aligned}
\text { input symbols: } & E, R, Y, B, \ldots \\
\text { variables: } & x, y, z, \ldots \\
\text { boolean connectives: } & \wedge, \vee, \neg \\
\text { quantifiers: } & \forall, \exists \\
\text { numeric symbols: } & =, \leq, \min , \max
\end{aligned}
$$

In this setting, with the structure of interest being the finite input, FO is a weak complexity class.

First-Order Logic

input symbols: E, R, Y, B, \ldots
variables: $\quad x, y, z, \ldots$
boolean connectives: \wedge, \vee, \neg quantifiers: \forall, \exists
numeric symbols: $=, \leq, \min , \max$

In this setting, with the structure of interest being the finite input, FO is a weak complexity class.

It is easy to test if input, H, satisfies $\alpha \quad(H \models \alpha)$.

First-Order Logic

H $\quad a \leq b \leq c$

$$
G \quad 1 \leq 2 \leq 3
$$

$$
\begin{aligned}
\alpha & \equiv \forall x \exists y E(x, y) \\
\beta & \equiv \forall x y(\neg E(x, x) \wedge(E(x, y) \rightarrow E(y, x))) \\
\gamma & \equiv \forall x((\forall y x \leq y) \rightarrow R(x))
\end{aligned}
$$

First-Order Logic

$H \models \alpha \wedge \beta \wedge \gamma$

$$
\begin{aligned}
\alpha & \equiv \forall x \exists y E(x, y) \\
\beta & \equiv \forall x y(\neg E(x, x) \wedge(E(x, y) \rightarrow E(y, x))) \\
\gamma & \equiv \forall x((\forall y x \leq y) \rightarrow R(x))
\end{aligned}
$$

First-Order Logic

$$
\begin{aligned}
& a \leq b \leq c \\
& \alpha \equiv \forall x \exists y E(x, y) \\
& \beta \equiv \forall x y(\neg E(x, x) \wedge(E(x, y) \rightarrow E(y, x))) \\
& \gamma \equiv \forall x((\forall y x \leq y) \rightarrow R(x))
\end{aligned}
$$

First-Order Logic

$$
\begin{aligned}
& a \leq b \leq c \\
& \alpha \equiv \forall x \exists y E(x, y) \\
& \beta \equiv \forall x y(\neg E(x, x) \wedge(E(x, y) \rightarrow E(y, x))) \\
& \gamma \equiv \forall x((\forall y x \leq y) \rightarrow R(x))
\end{aligned}
$$

α and β are order independent; γ is order dependent

Second-Order Logic: FO plus Relation Variables

$$
\begin{aligned}
\Phi_{\text {3color }} \equiv & \exists R^{1} G^{1} B^{1} \forall x y((R(x) \vee G(x) \vee B(x)) \wedge(E(x, y) \rightarrow \\
& (\neg(R(x) \wedge R(y)) \wedge \neg(G(x) \wedge G(y)) \wedge \neg(B(x) \wedge B(y)))))
\end{aligned}
$$

Second-Order Logic: FO plus Relation Variables

Fagin's Theorem: $\quad \mathrm{NP}=\mathrm{SO} \exists$

$$
\begin{aligned}
\Phi_{3 \text { color }} \equiv & \exists R^{1} G^{1} B^{1} \forall x y((R(x) \vee G(x) \vee B(x)) \wedge(E(x, y) \rightarrow \\
& (\neg(R(x) \wedge R(y)) \wedge \neg(G(x) \wedge G(y)) \wedge \neg(B(x) \wedge B(y)))))
\end{aligned}
$$

Inductive Definition of Transitive Closure

$$
R^{\star}(x, y) \equiv x=y \vee E(x, y) \vee \exists z\left(R^{\star}(x, z) \wedge R^{\star}(z, y)\right)
$$

Inductive Definition of Transitive Closure

$$
\begin{aligned}
R^{\star}(x, y) & \equiv x=y \vee E(x, y) \vee \exists z\left(R^{\star}(x, z) \wedge R^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
\end{aligned}
$$

Inductive Definition of Transitive Closure

$$
\begin{aligned}
R^{\star}(x, y) & \equiv x=y \vee E(x, y) \vee \exists z\left(R^{\star}(x, z) \wedge R^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
\operatorname{LFP}\left(\varphi_{t c}\right) & =\varphi_{t c}^{[1+\log n]}(\emptyset)=R^{\star}
\end{aligned}
$$

Inductive Definition of Transitive Closure

$$
R^{\star}(x, y) \equiv x=y \vee E(x, y) \vee \exists z\left(R^{\star}(x, z) \wedge R^{\star}(z, y)\right)
$$

$$
\varphi_{t c}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
$$

$$
\operatorname{LFP}\left(\varphi_{t c}\right)=\varphi_{t c}^{[1+\log n]}(\emptyset)=R^{\star}
$$

Next, we'll sketch that every first-order relational operator such as $\varphi_{t c}$ is equivalent to a block of restricted quantifiers. Thus the LFP is just the iteration of a quantifier block.

$$
\varphi_{\operatorname{tc}_{c}}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
$$

1. Dummy universal quantification for base case:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)(R(x, z) \wedge R(z, y)) \\
M_{1} & \equiv \neg(x=y \vee E(x, y))
\end{aligned}
$$

$\varphi_{t c}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))$

1. Dummy universal quantification for base case:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)(R(x, z) \wedge R(z, y)) \\
M_{1} & \equiv \neg(x=y \vee E(x, y))
\end{aligned}
$$

2. Using \forall, replace two occurrences of R with one:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right) R(u, v) \\
M_{2} & \equiv(u=x \wedge v=z) \vee(u=z \wedge v=y)
\end{aligned}
$$

$\varphi_{t c}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))$

1. Dummy universal quantification for base case:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)(R(x, z) \wedge R(z, y)) \\
M_{1} & \equiv \neg(x=y \vee E(x, y))
\end{aligned}
$$

2. Using \forall, replace two occurrences of R with one:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right) R(u, v) \\
M_{2} & \equiv(u=x \wedge v=z) \vee(u=z \wedge v=y)
\end{aligned}
$$

3. Requantify x and y.

$$
\begin{gathered}
M_{3} \equiv(x=u \wedge y=v) \\
\varphi_{t c}(R, x, y) \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y)
\end{gathered}
$$

Every FO inductive definition is equivalent to a quantifier block.
$\operatorname{CRAM}[t(n)]=$ concurrent parallel random access machine; polynomial hardware, parallel time $O(t(n))$
$\operatorname{IND}[t(n)]=$ first-order, depth $t(n)$ inductive definitions
$\mathrm{FO}[t(n)]=t(n)$ repetitions of a block of restricted quantifiers:

$$
\begin{aligned}
\mathrm{QB} & =\left[\left(Q_{1} x_{1} \cdot M_{1}\right) \cdots\left(Q_{k} x_{k} \cdot M_{k}\right)\right] ; \quad M_{i} \text { quantifier-free } \\
\varphi_{n} & =\underbrace{[\mathrm{QB}][\mathrm{QB}] \cdots[\mathrm{QB}]}_{t(n)} M_{0}
\end{aligned}
$$

parallel time $=$ inductive depth $=$ QB iteration

Thm. For all constructible, polynomially bounded $t(n)$,

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

parallel time $=$ inductive depth $=$ QB iteration

Thm. For all constructible, polynomially bounded $t(n)$,

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

Thm. For all $t(n)$, even beyond polynomial,

$$
\operatorname{CRAM}[t(n)]=\operatorname{FO}[t(n)]
$$

parallel time $=$ inductive depth $=$ QB iteration

Thm. For all constructible, polynomially bounded $t(n)$,

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

Thm. For all $t(n)$, even beyond polynomial,

$$
\operatorname{CRAM}[t(n)]=\operatorname{FO}[t(n)]
$$

Thm. For all $t(n)$,

$$
\mathrm{CH}\left[t(n), 2^{n O(1)}\right]=\mathrm{SO}[t(n)]
$$

$\mathrm{CH}[t(n), h(n)]$ is parallel time $O(t(n))$ on a CRAM with $O(h(n))$ hardware gates.

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{c}(G, H) m$ moves, c colors,

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{c}(G, H) m$ moves, c colors, Spoiler: show difference

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{c}(G, H) m$ moves, c colors, Spoiler: show difference
Duplicator: preserve isomorphism of induced substructures

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{c}(G, H) m$ moves, c colors, Spoiler: show difference
Duplicator: preserve isomorphism of induced substructures

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{c}(G, H) m$ moves, c colors, Spoiler: show difference
Duplicator: preserve isomorphism of induced substructures

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{c}(G, H) m$ moves, c colors, Spoiler: show difference
Duplicator: preserve isomorphism of induced substructures

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{c}(G, H) m$ moves, c colors, Spoiler: show difference Duplicator: preserve isomorphism of induced substructures

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{c}(G, H) m$ moves, c colors, Spoiler: show difference Duplicator: preserve isomorphism of induced substructures

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{c}(G, H) m$ moves, c colors, Spoiler: show difference Duplicator: preserve isomorphism of induced substructures

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{c}(G, H) m$ moves, c colors, Spoiler: show difference
Duplicator: preserve isomorphism of induced substructures
For all m, \mathbf{D} wins $\mathcal{G}_{m}^{2}(G, H)$;

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{c}(G, H) m$ moves, c colors, Spoiler: show difference
Duplicator: preserve isomorphism of induced substructures
For all m, \mathbf{D} wins $\mathcal{G}_{m}^{2}(G, H)$;

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{c}(G, H) m$ moves, c colors, Spoiler: show difference
Duplicator: preserve isomorphism of induced substructures
For all m, \mathbf{D} wins $\mathcal{G}_{m}^{2}(G, H)$;

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{c}(G, H) m$ moves, c colors, Spoiler: show difference
Duplicator: preserve isomorphism of induced substructures
For all m, \mathbf{D} wins $\mathcal{G}_{m}^{2}(G, H)$;

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{c}(G, H) m$ moves, c colors, Spoiler: show difference
Duplicator: preserve isomorphism of induced substructures
For all m, \mathbf{D} wins $\mathcal{G}_{m}^{2}(G, H)$; but \mathbf{S} wins $\mathcal{G}_{3}^{3}(G, H)$.

$$
\varphi \equiv \exists \mathrm{rbg}(E(\mathrm{r}, \mathrm{~b}) \wedge E(\mathrm{~b}, \mathrm{~g}) \wedge E(\mathrm{~g}, \mathrm{r})) \quad G \models \varphi ; \quad H \models \neg \varphi
$$

Fundamental Thm of Ehrenfeucht-Fraïssé Games

Notation: $G \sim_{m}^{c} H$ means that Duplicator has a winning strategy for $\mathcal{G}_{m}^{c}(G, H)$.

Fundamental Thm of Ehrenfeucht-Fraïssé Games

Notation: $\quad G \sim_{m}^{c} H$ means that Duplicator has a winning strategy for $\mathcal{G}_{m}^{c}(G, H)$.

Thm. $\quad \mathbf{D}$ has a winning strategy on the m-move, c-color game on G, H iff G and H agree on all formulas using c variables and quantifier depth m,

$$
G \sim_{m}^{c} H \quad \Leftrightarrow \quad G \equiv_{m}^{c} H
$$

Fundamental Thm of Ehrenfeucht-Fraïssé Games

Notation: $\quad G \sim_{m}^{c} H$ means that Duplicator has a winning strategy for $\mathcal{G}_{m}^{c}(G, H)$.

Thm. $\quad \mathbf{D}$ has a winning strategy on the m-move, c-color game on $G, H \quad$ iff $\quad G$ and H agree on all formulas using c variables and quantifier depth m,

$$
G \sim_{m}^{c} H \quad \Leftrightarrow \quad G \equiv_{m}^{c} H
$$

Ehrenfeucht-Fraïssé games are fantastically useful for determining what is expressible in FO logic in a given quantifier depth and with a given number of variables.

Fundamental Thm of Ehrenfeucht-Fraïssé Games

Notation: $\quad G \sim_{m}^{c} H$ means that Duplicator has a winning strategy for $\mathcal{G}_{m}^{c}(G, H)$.

Thm. $\quad \mathbf{D}$ has a winning strategy on the m-move, c-color game on $G, H \quad$ iff $\quad G$ and H agree on all formulas using c variables and quantifier depth m,

$$
G \sim_{m}^{c} H \quad \Leftrightarrow \quad G \equiv_{m}^{c} H
$$

Ehrenfeucht-Fraïssé games are fantastically useful for determining what is expressible in FO logic in a given quantifier depth and with a given number of variables.

But, as we will see next, Ehrenfeucht-Fraïssé games are not very helpful for proving Descriptive Lower Bounds.

Thm. $\quad \mathcal{L}_{\lceil 2+\log n\rceil}^{3}$ suffices to characterize any property whatsoever over ordered graphs.

Thm. $\quad \mathcal{L}_{\lceil 2+\log n\rceil}^{3}$ suffices to characterize any property whatsoever over ordered graphs.

Proof: We can name any vertex by number in $\mathcal{L}_{\lceil 1+\log n\rceil}^{3}$.

Thm. $\quad \mathcal{L}_{\lceil 2+\log n\rceil}^{3}$ suffices to characterize any property whatsoever over ordered graphs.

Proof: We can name any vertex by number in $\mathcal{L}_{\lceil 1+\log n\rceil}^{3}$.
We can identify a graph in $\mathcal{L}_{\lceil 2+\log n\rceil}^{3}$ by asserting for each $i, j \leq n$, whether $E\left(v_{i}, v_{j}\right)$.

Thm. $\quad \mathcal{L}_{\lceil 2+\log n\rceil}^{3}$ suffices to characterize any property whatsoever over ordered graphs.

Proof: We can name any vertex by number in $\mathcal{L}_{[1+\log n]}^{3}$.
We can identify a graph in $\mathcal{L}_{\lceil 2+\log n\rceil}^{3}$ by asserting for each $i, j \leq n$, whether $E\left(v_{i}, v_{j}\right)$.
In $\mathcal{L}_{\lceil[2+\log n\rceil}^{3}$, we can identify an arbitrary set of graphs on n vertices.

Number of Quantifiers game:

- Separation Game: [181]

Number of Quantifiers game:

- Separation Game: [181]
- renamed Multistructural Game: [FLRV21]: LICS21, determined exact number of quantifiers to identify a linear order of length n.

Number of Quantifiers game:

- Separation Game: [181]
- renamed Multistructural Game: [FLRV21]: LICS21, determined exact number of quantifiers to identify a linear order of length n.
- [FLVW22]

Number of Quantifiers game:

- Separation Game: [181]
- renamed Multistructural Game: [FLRV21]: LICS21, determined exact number of quantifiers to identify a linear order of length n.
- [FLVW22]
- [CFIKLS23] - next talk by Rik Sengupta

Number of Quantifiers game:

- Separation Game: [181]
- renamed Multistructural Game: [FLRV21]: LICS21, determined exact number of quantifiers to identify a linear order of length n.
- [FLVW22]
- [CFIKLS23] - next talk by Rik Sengupta

Personal history of my 1980 Ph.D. thesis:

Number of Quantifiers game:

- Separation Game: [181]
- renamed Multistructural Game: [FLRV21]: LICS21, determined exact number of quantifiers to identify a linear order of length n.
- [FLVW22]
- [CFIKLS23] - next talk by Rik Sengupta

Personal history of my 1980 Ph.D. thesis:

- 1978: Larry Carter sends me via snail mail a hard copy of R. Fagin, "Generalized First-Order Spectra and Polynomial-Time Recognizable Sets."

Number of Quantifiers game:

- Separation Game: [181]
- renamed Multistructural Game: [FLRV21]: LICS21, determined exact number of quantifiers to identify a linear order of length n.
- [FLVW22]
- [CFIKLS23] - next talk by Rik Sengupta

Personal history of my 1980 Ph.D. thesis:

- 1978: Larry Carter sends me via snail mail a hard copy of R. Fagin, "Generalized First-Order Spectra and Polynomial-Time Recognizable Sets."
- "Number of Quantifiers is Better Than Number of Tape Cells," JCSS (1981), prelim. version: "Length of Predicate Calculus Formulas as a New Complexity Measure," FOCS (1979).

Number of Quantifiers game:

- Separation Game: [181]
- renamed Multistructural Game: [FLRV21]: LICS21, determined exact number of quantifiers to identify a linear order of length n.
- [FLVW22]
- [CFIKLS23] - next talk by Rik Sengupta

Personal history of my 1980 Ph.D. thesis:

- 1978: Larry Carter sends me via snail mail a hard copy of R. Fagin, "Generalized First-Order Spectra and Polynomial-Time Recognizable Sets."
- "Number of Quantifiers is Better Than Number of Tape Cells," JCSS (1981), prelim. version: "Length of Predicate Calculus Formulas as a New Complexity Measure," FOCS (1979).
- "Upper and Lower Bounds for First Order Expressibility," JCSS (1982), prelim. version: FOCS (1980).

Number of Quantifiers game = Multistructural Game

$M S_{m}(\mathcal{A}, \mathcal{B}) ; m$ moves played on a pair of sets of structures.

Number of Quantifiers game = Multistructural Game

$M S_{m}(\mathcal{A}, \mathcal{B}) ; m$ moves played on a pair of sets of structures.
Spoiler chooses an element of each structure on one side.

Number of Quantifiers game = Multistructural Game

$M S_{m}(\mathcal{A}, \mathcal{B}) ; m$ moves played on a pair of sets of structures.
Spoiler chooses an element of each structure on one side.
Duplicator makes multiple copies of each structure on the other side and then chooses a corresponding element of each structure.

Number of Quantifiers game = Multistructural Game

$M S_{m}(\mathcal{A}, \mathcal{B}) ; m$ moves played on a pair of sets of structures.
Spoiler chooses an element of each structure on one side.
Duplicator makes multiple copies of each structure on the other side and then chooses a corresponding element of each structure.

Duplicator wins if after each move there is a a pair of isomorphic induced substructures, one from each side.

Number of Quantifiers game = Multistructural Game

$M S_{m}(\mathcal{A}, \mathcal{B}) ; m$ moves played on a pair of sets of structures.
Spoiler chooses an element of each structure on one side.
Duplicator makes multiple copies of each structure on the other side and then chooses a corresponding element of each structure.

Duplicator wins if after each move there is a a pair of isomorphic induced substructures, one from each side.

Thm. Spoiler wins $M S_{m}(\mathcal{A}, \mathcal{B})$ iff there is a formula φ having at most m quantifiers, $\quad \mathcal{A} \models \varphi ; \quad \mathcal{B} \models \neg \varphi$.

Number of Quantifiers game = Multistructural Game

$M S_{m}(\mathcal{A}, \mathcal{B}) ; m$ moves played on a pair of sets of structures.
Spoiler chooses an element of each structure on one side.
Duplicator makes multiple copies of each structure on the other side and then chooses a corresponding element of each structure.

Duplicator wins if after each move there is a a pair of isomorphic induced substructures, one from each side.

Thm. Spoiler wins $M S_{m}(\mathcal{A}, \mathcal{B})$ iff there is a formula φ having at most m quantifiers, $\quad \mathcal{A} \models \varphi ; \quad \mathcal{B} \models \neg \varphi$.

Cor. Property S is expressible with $m(n)$ quantifiers, for inputs of size n iff Spoiler wins $M S_{m}\left(S_{n}, \bar{S}_{n}\right)$ where S_{n} is the set of all ordered structures of size n satisfying S and \bar{S}_{n} is the set of all ordered structures of size n not satisfying S.

Examples: $M S_{2}(\mathcal{A}, \mathcal{B})$ and $M S_{3}(\mathcal{A}, \mathcal{B})$ Games

$$
\mathcal{A}=\left\{L_{3}\right\} \quad \mathcal{B}=\left\{L_{2}\right\}
$$

Examples: $M S_{2}(\mathcal{A}, \mathcal{B})$ and $M S_{3}(\mathcal{A}, \mathcal{B})$ Games

$$
\mathcal{A}=\left\{L_{3}\right\} \quad \mathcal{B}=\left\{L_{2}\right\}
$$

Examples: $M S_{2}(\mathcal{A}, \mathcal{B})$ and $M S_{3}(\mathcal{A}, \mathcal{B})$ Games

$$
\mathcal{A}=\left\{L_{3}\right\} \quad \mathcal{B}=\left\{L_{2}\right\}
$$

Examples: $M S_{2}(\mathcal{A}, \mathcal{B})$ and $M S_{3}(\mathcal{A}, \mathcal{B})$ Games

$$
\begin{array}{ll}
\mathcal{A}=\left\{L_{3}\right\} & \mathcal{B}=\left\{L_{2}\right\} \\
\mathcal{A}_{1}=\left\{\left(L_{3}, 2\right)\right\} & \mathcal{B}_{1}=\left\{\left(L_{2}, 4\right),\left(L_{2}^{\prime}, 7\right)\right\}
\end{array}
$$

Examples: $M S_{2}(\mathcal{A}, \mathcal{B})$ and $M S_{3}(\mathcal{A}, \mathcal{B})$ Games

$$
\begin{array}{ll}
\mathcal{A}=\left\{L_{3}\right\} & \mathcal{B}=\left\{L_{2}\right\} \\
\mathcal{A}_{1}=\left\{\left(L_{3}, 2\right)\right\} & \mathcal{B}_{1}=\left\{\left(L_{2}, 4\right),\left(L_{2}^{\prime}, 7\right)\right\}
\end{array}
$$

Examples: $M S_{2}(\mathcal{A}, \mathcal{B})$ and $M S_{3}(\mathcal{A}, \mathcal{B})$ Games

Duplicator wins $M S_{2}(\mathcal{A}, \mathcal{B})$

$$
\begin{array}{ll}
\mathcal{A}=\left\{L_{3}\right\} & \mathcal{B}=\left\{L_{2}\right\} \\
\mathcal{A}_{1}=\left\{\left(L_{3}, 2\right)\right\} & \mathcal{B}_{1}=\left\{\left(L_{2}, 4\right),\left(L_{2}^{\prime}, 7\right)\right\} \\
\mathcal{A}_{2}=\left\{\left(L_{3}, 2,1\right)\right\} & \mathcal{B}_{2}=\left\{\left(L_{2}, 4,5\right),\left(L_{2}^{\prime}, 7,6\right)\right\}
\end{array}
$$

Examples: $M S_{2}(\mathcal{A}, \mathcal{B})$ and $M S_{3}(\mathcal{A}, \mathcal{B})$ Games

Duplicator wins $M S_{2}(\mathcal{A}, \mathcal{B})$ Spoiler wins $M S_{3}(\mathcal{A}, \mathcal{B})$

$$
\begin{array}{ll}
\mathcal{A}=\left\{L_{3}\right\} & \mathcal{B}=\left\{L_{2}\right\} \\
\mathcal{A}_{1}=\left\{\left(L_{3}, 2\right)\right\} & \mathcal{B}_{1}=\left\{\left(L_{2}, 4\right),\left(L_{2}^{\prime}, 7\right)\right\} \\
\mathcal{A}_{2}=\left\{\left(L_{3}, 2,1\right)\right\} & \mathcal{B}_{2}=\left\{\left(L_{2}, 4,5\right),\left(L_{2}^{\prime}, 7,6\right)\right\}
\end{array}
$$

Examples: $M S_{2}(\mathcal{A}, \mathcal{B})$ and $M S_{3}(\mathcal{A}, \mathcal{B})$ Games

Duplicator wins $M S_{2}(\mathcal{A}, \mathcal{B})$ Spoiler wins $M S_{3}(\mathcal{A}, \mathcal{B})$

$$
\begin{array}{ll}
\mathcal{A}=\left\{L_{3}\right\} & \mathcal{B}=\left\{L_{2}\right\} \\
\mathcal{A}_{1}=\left\{\left(L_{3}, 2\right)\right\} & \mathcal{B}_{1}=\left\{\left(L_{2}, 4\right),\left(L_{2}^{\prime}, 7\right)\right\} \\
\mathcal{A}_{2}=\left\{\left(L_{3}, 2,1\right)\right\} & \mathcal{B}_{2}=\left\{\left(L_{2}, 4,5\right),\left(L_{2}^{\prime}, 7,6\right)\right\} \\
\varphi \equiv \exists \mathrm{rbg}(E(\mathrm{~b}, \mathrm{r}) \wedge E(\mathrm{r}, \mathrm{~g})) \quad \mathcal{A} \models \varphi \quad \mathcal{B} \models \neg \varphi
\end{array}
$$

Examples: $M S_{2}(\mathcal{A}, \mathcal{B})$ and $M S_{3}(\mathcal{A}, \mathcal{B})$ Games

Duplicator wins $M S_{2}(\mathcal{A}, \mathcal{B})$ Spoiler wins $M S_{3}(\mathcal{A}, \mathcal{B})$
Spoiler wins $\mathcal{G}_{2}^{2}\left(L_{3}, L_{2}\right)$

Size Game:[AI03]; QVT: [CFIKLS23]

$Q V T_{m}^{c}(\mathcal{A}, \mathcal{B}) \quad$ Spoiler builds formula tree separating \mathcal{A}, \mathcal{B}.
$\mathcal{A} \square \mathcal{B}$

Size Game:[AI03]; QVT: [CFIKLS23]

$Q V T_{m}^{c}(\mathcal{A}, \mathcal{B}) \quad$ Spoiler builds formula tree separating \mathcal{A}, \mathcal{B}.

Size Game:[Al03]; QVT: [CFIKLS23]

$\operatorname{QV} T_{m}^{c}(\mathcal{A}, \mathcal{B}) \quad$ Spoiler builds formula tree separating \mathcal{A}, \mathcal{B}.

Size Game:[Al03]; QVT: [CFIKLS23]

$\operatorname{QV} T_{m}^{c}(\mathcal{A}, \mathcal{B}) \quad$ Spoiler builds formula tree separating \mathcal{A}, \mathcal{B}.

Size Game:[Al03]; QVT: [CFIKLS23]

$\operatorname{QV} T_{m}^{c}(\mathcal{A}, \mathcal{B}) \quad$ Spoiler builds formula tree separating \mathcal{A}, \mathcal{B}.

Size Game:[Al03]; QVT: [CFIKLS23]

$\operatorname{QV} T_{m}^{c}(\mathcal{A}, \mathcal{B}) \quad$ Spoiler builds formula tree separating \mathcal{A}, \mathcal{B}.

Thm. Spoiler can close the $Q V T_{m}^{c}(\mathcal{A}, \mathcal{B})$ game tree using c colors and m quantifier moves iff there is a formula with c variables and m quantifiers separating \mathcal{A} from \mathcal{B}.
$Q V T^{2}\left(L_{5}, L_{4}\right)$

$\operatorname{QVT}^{2}\left(L_{5}, L_{4}\right)$
$\operatorname{QVT}^{2}\left(L_{5}, L_{4}\right)$

$$
\begin{aligned}
& \text { (2) }-(2)-(2)-(2)-(3) \\
& \text { (a) } \\
& \text { (a)-(2) }(2)-(2)-(3) \\
& \text { (a)-(a) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \rightarrow \text { (a) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) }-(\text { (a) } \rightarrow(\text { (a) }) \rightarrow(6)
\end{aligned}
$$

$Q V T^{2}\left(L_{5}, L_{4}\right)$
Spoiler wins $Q V T_{5}^{2}\left(L_{5}, L_{4}\right) ; \quad$ Can he do better?

$$
\begin{aligned}
& \text { (a) } \rightarrow \text { (a) } \rightarrow \text { (a3) } \rightarrow \text { (a4) } \rightarrow \text { (as) } \frac{\square r}{\downarrow} \\
& \text { (b1) } \rightarrow \text { (b2) } \rightarrow\left(b_{3}\right) \rightarrow\left(b_{4}\right) \\
& \text { (a) } \rightarrow \text { (a) } \rightarrow \text { (a3) } \rightarrow \text { (a4) } \rightarrow \text { (as) } \frac{\exists \mathrm{b}}{\downarrow} \\
& \text { (b1) } \rightarrow \text { (b2) } \div\left(b_{3}\right) \rightarrow\left(b_{4}\right) \\
& \text { (a) } \rightarrow \text { (a2 } \rightarrow \text { (a3) } \rightarrow \text { (a4) } \rightarrow \text { (as) } \frac{\square r}{\downarrow} \\
& \text { (a1) } \rightarrow \text { (at } \rightarrow \text { (a3) } \rightarrow \text { (a4) } \div \text { (as) } E(\mathrm{~b}, \mathrm{r}) \text { (b1) } \rightarrow \text { (b2 } \rightarrow \text { (b) } \rightarrow \text { (b4) }
\end{aligned}
$$

Spoiler wins $Q V T_{5}^{2}\left(L_{5}, L_{4}\right) ; \quad$ Duplicator wins $Q V T_{4}^{2}\left(L_{5}, L_{4}\right)$.

Spoiler wins $Q V T_{5}^{2}\left(L_{5}, L_{4}\right) ; \quad$ Duplicator wins $Q V T_{4}^{2}\left(L_{5}, L_{4}\right)$.

Spoiler wins $\operatorname{QVT}_{5}^{2}\left(L_{5}, L_{4}\right) ; \quad$ Duplicator wins $Q V T_{4}^{2}\left(L_{5}, L_{4}\right)$.

Spoiler wins $\operatorname{QVT}_{5}^{2}\left(L_{5}, L_{4}\right) ; \quad$ Duplicator wins $Q V T_{4}^{2}\left(L_{5}, L_{4}\right)$.

Spoiler wins $\operatorname{QVT}_{5}^{2}\left(L_{5}, L_{4}\right) ; \quad$ Duplicator wins $\operatorname{QVT}_{4}^{2}\left(L_{5}, L_{4}\right)$.

Conclusions and Future Directions

- Let's learn to play these games better, especially the QVT game: for fun and improving our knowledge.

Conclusions and Future Directions

- Let's learn to play these games better, especially the QVT game: for fun and improving our knowledge.
- Let's look again at some great previous lower bounds including the following, among others, and try hard to reprove them and extend them using the QVT game:

Conclusions and Future Directions

- Let's learn to play these games better, especially the QVT game: for fun and improving our knowledge.
- Let's look again at some great previous lower bounds including the following, among others, and try hard to reprove them and extend them using the QVT game:
- Grohe Schweikardt: Succinctness [GS05]

Conclusions and Future Directions

- Let's learn to play these games better, especially the QVT game: for fun and improving our knowledge.
- Let's look again at some great previous lower bounds including the following, among others, and try hard to reprove them and extend them using the QVT game:
- Grohe Schweikardt: Succinctness [GS05]
- Rossman: Tight Variable Hierarchy [R08]

Conclusions and Future Directions

- Let's learn to play these games better, especially the QVT game: for fun and improving our knowledge.
- Let's look again at some great previous lower bounds including the following, among others, and try hard to reprove them and extend them using the QVT game:
- Grohe Schweikardt: Succinctness [GS05]
- Rossman: Tight Variable Hierarchy [R08]
- Hella Väänänen: Formula Size [HV15]

Conclusions and Future Directions

- Let's learn to play these games better, especially the QVT game: for fun and improving our knowledge.
- Let's look again at some great previous lower bounds including the following, among others, and try hard to reprove them and extend them using the QVT game:
- Grohe Schweikardt: Succinctness [GS05]
- Rossman: Tight Variable Hierarchy [R08]
- Hella Väänänen: Formula Size [HV15]
- I'll be here the whole weekend; come say, "Hello"; let's talk about these and related issues.

Conclusions and Future Directions

- Let's learn to play these games better, especially the QVT game: for fun and improving our knowledge.
- Let's look again at some great previous lower bounds including the following, among others, and try hard to reprove them and extend them using the QVT game:
- Grohe Schweikardt: Succinctness [GS05]
- Rossman: Tight Variable Hierarchy [R08]
- Hella Väänänen: Formula Size [HV15]
- I'll be here the whole weekend; come say, "Hello"; let's talk about these and related issues.
- Thank you!

