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ABSTRACT

Ethereum contracts can be designed to function as fully decentral-

ized applications called DAPPs that hold financial assets, and many

have already been fielded. Unfortunately, DAPPs can be hacked,

and the assets they control can be stolen. A recent attack on an

Ethereum decentralized application called The DAO demonstrated

that smart contract bugs are more than an academic concern. Ether

worth hundreds of millions of US dollars was extracted by an at-

tacker from The DAO, sending the value of its tokens and the overall

exchange price of ether itself tumbling.

We present two market-based techniques for insuring the ether

holdings of a DAPP. These mechanisms exist and are managed as

part of the core programming of the DAPP, rather than as sepa-

rate mechanisms managed by users. Our first technique is based

on futures contracts indexed by the trade price of ether for DAPP

tokens. Under fairly general circumstances, our technique is capa-

ble of recovering the majority of ether lost from theft with high

probability even when all of the ether holdings are stolen; and the

only cost to DAPP token holders is an adjustable ether withdrawal

fee. As a second, complementary, technique we propose the use of

Gated Public Offerings (GPO) as a mechanism that mitigates the ef-

fects of attackers that exploit DAPP withdrawal vulnerabilities. We

show that using more than one public offering round encourages

attackers to exploit the vulnerability early, or depending on certain

factors, to delay exploitation (possibly indefinitely) and short to-

kens in the market instead. In both cases, less ether is ultimately

stolen from the DAPP, and in the later case, some of the losses are

transferred to the market.
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1 INTRODUCTION

Ethereum [24] is a blockchain-based currency [32] designed to serve

as a general purpose computing systemwith Turing-complete smart

contracts [7]. Ethereum’s contracts can be designed to function as

fully decentralized applications called DAPPs. Many DAPPs have

already been fielded, including an online marketplace [6], a role

playing game [2], a prediction market [3], and an Internet service

provider [5].

Unfortunately, DAPPs can be hacked, and the assets they con-

trol can be stolen. For example, in May 2016, a DAPP called the

Decentralized Autonomous Organization (The DAO) was created as

a type of decentralized hedge fund. It raised over US$150,000,000

worth of ether, Ethereum’s native cryptocurrency, during a crowd

sale in which tokens were issued in tranches at a fixed exchange

rate for ether [34]. The ether was stored in and controlled by the

software. Token holders were allowed to submit proposals for how

to invest The DAO’s ether, and tokens also afforded the holders with

voting rights on what proposals should be pursued. For example,

one proposal was for investing the funds in a particular startup. A

key feature of The DAO was that ether could be withdrawn. Token

holders were allowed to split off a child-DAO at any time, taking

with them their share of the ether. After a provisional 28-day wait-

ing period, the child-DAO would be allowed to execute proposals

itself, which could be to withdraw its ether holdings.

On June 17, 2016 an attacker began an unauthorized transfer of

ether from The DAO into a new child-DAO [21]. By June 18, more

than US$100,000,000 in ether had been stolen, locked in the child-

DAO for the 28-day waiting period, after which the attacker could

take possession [34]. The attack was not due to a flaw or vulnera-

bility in Ethereum; rather it was a flaw in the DAO’s programming.

The Ethereum community struggled over how to handle the theft.

Ultimately, the community was literally divided when the majority

of the Ethereum developers decided to rewrite the blockchain in

order to return the ether to the original token holders, while a

smaller portion continued to mine on the old blockchain [20]. Even

on the old blockchain, a white hat group of hackers were able to

steal back a large portion of the stolen ether [35]. Nevertheless, the

hack led to the dissolution of The DAO, split the community, and

caused the price of ether to drop by approximately two thirds.

NewOpportunities. The DAO attacker took advantage of an over-

looked flaw in the logic of the software contract. Since the demise

of the The DAO, similar DAPPs have been launched (e.g., Digix-

DAO [9]). Presumably, these new DAOs have employed additional

methods of software security, ranging from manual code audits
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to static analysis [16, 26] and formal verification [14, 19]. Unfortu-

nately, DAPPs will inevitably increase in complexity, leading to new

opportunities for stored ether to be withdrawn without authoriza-

tion. Traditional computer science research will seek to advance

techniques for securing this code to protect DAPP assets.

We propose that DAPPs offer opportunities for novel security

mechanisms. Unlike other software, smart contracts supported by

cryptographic currencies in particular have an intrinsic and precise

economic value that can be quantified and insured. And in the case

of The DAO and many DAPPS, the contract software literally stores

ether that are accumulated during its Initial Coin Offering or ICO.

Typically, the ether held in a DAPP is redeemable for its outstanding

tokens. The ether can also be transferred (i.e., invested) in other

contracts that offer goods, services, or collateral to the DAPP and

its constituent token holders. A DAPP’s main security objective

should be to ensure that the withdrawal and transfer of its ether is

possible only by redeeming the appropriate number of tokens.

For years, software has been used to secure the financial instru-

ments that drive markets — the roles can be reversed as well. Indeed,

the application of insurance markets to software security has been

studied before [15]. In this paper, we propose that market-based se-

curity solutions can be coded into the core of the software itself and

managed directly by it, rather than exist as a separate mechanism

employed by consumers and businesses.

Contributions. In this paper, we present two complementary

market-based techniques for securing assets held by distributed

applications on systems like Ethereum. The first technique insures

the value of ether holdings of a DAPP by employing futures con-

tracts that are indexed by the trade price of ether for DAPP tokens.

We are not proposing a method of actually securing contract code,

but rather we have developed a process for protecting a DAPP’s

assets in the (perhaps inevitable) event that a software security flaw

is discovered and exploited. Under fairly general circumstances,

our technique is capable of recovering the majority of ether lost from

theft with high probability even when all of the ether holdings are

stolen; and the only cost to DAPP token holders is an adjustable

ether withdrawal fee. The probability of successful recovery is tied

to the volatility of the futures contracts. For example, suppose that

it takes as many as d days for investors to become aware of a DAPP

theft where all ether are stolen. If the probability of a margin call

in d days is 1−p for a futures contract with 20 times leverage, then

our approach will allow for the recovery of half the stolen ether

with probability p and a withdrawal fee of 5%. A higher withdrawal

fee of 25% allows for more than 80% of the ether to be recovered

with probability p.
As a second, complementary, technique we propose the use of

Gated Public Offerings (GPO) as a mechanism for mitigating the

effects of attackers that exploit DAPP withdrawal vulnerabilities. A

GPO separates the public offering of tokens into multiple rounds.

During the time period between the first and last public offering

of tokens, attackers can choose to either exploit the vulnerability,

taking all ether held in the contract, or they can short contract

tokens on the market, which transfers the risk. We introduce a

game-theoretical framework for modeling and manipulating the

incentives of one or more attackers with knowledge of a vulnerabil-

ity in a DAPP. We show that using more than one round of public

offerings encourages attackers to exploit the vulnerability early, or

depending on certain factors, to delay exploitation (possibly indefi-

nitely) and short tokens in the market first. In the former case, less

ether is stolen overall from the DAPP and fewer token holders are

exposed to the theft. In the latter case less ether is ultimately stolen

from the DAPP and some of the loss is transferred to the market.

2 PROBLEM STATEMENT

In this paper, we explore new paradigms for securing assets held

by software. To that end, we seek answers to several fundamental

questions.

Overall motivation:

How can we secure the financial assets held within a

DAPP despite the presence of a vulnerability in the con-

tract code whose exploitation could lead to the complete

loss of those assets?

Although it may be too difficult to absolutely determine the security

of a contract’s software, it still may be possible to secure the con-

tract’s assets by using financial derivatives as a form of insurance

and leveraging market dynamics to influence attacker behavior.

Therefore, we further seek to answer two secondary questions.

DAPP insurance:

Can we design a DAPP insurance mechanism based

on common financial derivatives so that the DAPP can

continue to allow ether withdrawals, yet it is also able

to recover a significant portion of lost ether in the event

of catastrophic theft?

Disincentivizing theft:

Is there a way to alter incentives using market forces so

as to coerce agents with knowledge of a vulnerability to

either exploit the vulnerability before all tokens have

been issued or otherwise avoid stealing all the available

ether?

We attempt to answer the questions above through the introduc-

tion of two distinct, but complementary, techniques. We develop

DAPP insurance by imposing a configurable fee on all ether with-

drawals. The fee is used to purchase short futures contracts that

hedge against a potential drop in the trade price of tokens in the

event that the withdrawal is later determined to be unauthorized.

Our approach to disincentivizing theft is simple in contrast. We

argue that by dividing the sale of tokens among rounds of a gated

public offering, it is possible to encourage attackers to reveal a

vulnerability without stealing all the available ether. Before pro-

ceeding, we pause to layout the assumptions that we make for the

analysis in later sections.

Basic assumptions.We assume that DAPP D issues each token

(tok) in exchange for exactly 1 ether (eth). Prior to attack, it is

assumed that all n eth remain in D and are available for with-

drawal. The attacker is assumed to be capable of conducting an

unauthorized withdrawal ofm eth without sacrificing any tok.

The DAO tokens traded on an open market and carried an exchange

price denominated in eth. Thus, we assume that tok can also be

traded for eth. Throughout this document, we refer to the exchange

price of eth for tok, denoted
eth

tok
(ether per token). We further



assume that one of the existing futures exchanges [1, 4] will imple-

ment futures contracts for speculating on the
eth

tok
exchange price.

We feel this is a reasonable assumption given that tokens are im-

plemented as distinct cryptocurrencies and exchanges have been

quick to implement futures contracts for popular cryptocurrencies.

Finally, we assume that, like ether, tokens cannot be stolen due to

flaws in cryptographic protections. Rather, only the contract code

is assumed to be at risk, since it is code specific to D.

Idle holdings. Although most DAPPs invest some portion of their

eth by moving assets out of the contract, we wish to isolate fluc-

tuations in the price of
eth

tok
in our analysis to those caused by the

deposit or withdrawal of eth in exchange for tok. Thus we assume

that D makes no investments with its eth. The only time eth is

deposited is by means of a public offering of tok and the only time

eth is removed is during a (possibly unauthorized) withdrawal.

DAPP price assumption. We also make one more assumption,

which is critical to our approach: the exchange price
eth

tok
is equal

to the ratio of eth held by D (less withdrawal fees) to the number

of tok outstanding. Specifically, prior to attack the price of
eth

tok
is

1 − f and an unauthorized withdrawal ofm ≤ n eth will result in

a drop to (1 − f ) ( n−mn ). This assumption is justified if we assume

that the trade of price of
eth

tok
is determined solely by the amount

of eth that can be redeemed for each tok. Overall, it allows us

to isolate the performance of our mechanisms in our analysis. In

future work, it would be interesting to relax this assumption and

incorporate other price influencers such as press coverage, market

shocks, and price movement of other assets controlled by D.

3 BACKGROUND AND RELATEDWORK

Ethereum. Using a blockchain as a method for distributed con-

sensus was first proposed by Nakamoto as part of a proposal for a

cryptocurrency called Bitcoin [32]. Blockchains allow for an open

group of peers to reach consensus through a proof of work min-

ing algorithm, which mitigates Sybil attacks [22] and other limita-

tions [25, 36].

Strictly for explanatory purposes, Ethereum [24] can be thought

of as a system that starts from the mechanisms in Bitcoin but

with native support for Turing-complete smart-contracts built in.

Ethereum’s mining process incentivizes miners to execute the code

that comprises contracts by rewarding them with ether, a cryptocur-

rency that, like bitcoin, has an exchange rate with fiat currencies,

such as the US dollar. In addition to regular accounts analogous to

Bitcoin addresses, Ethereum implements contract accounts, which

hold a balance of ether and whose behavior is controlled by arbi-

trarily complex code. This code can be triggered to execute when

a user (or another contract) submits a transaction to the miners

which specifies the contract to run. Transactions also provide the

ether necessary to pay for computation.

Both Bitcoin and Ethereum support markets with voluminous

trading, including futures markets. And the tokens issued by cur-

rently operational DAPPs are also available on several different

cryptocurrency exchanges. Figure 1 shows the volume of Yunbi’s

spot market for the DigixDAO token (dgd) against the Yen (cny)

as an example [12]. Bitmex is also a popular market and it offers

bitcoin swaps, bitcoin futures, and Ethereum futures [1].
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Figure 1: Volume of Digix DAO futures on the Yunbi market

exchange, which represents about 73% of the futuresmarket

for Digix DAO. (source: coinmarketcap.com.)
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Figure 2: Typical mechanism for withdrawal of stored assets

from today’s DAPPs.

DAPP Withdrawals. The current process for withdrawals of as-

sets from a DAPP D is illustrated in Figure 2, and works as follows.

(1) Token holders authorize an exchange of their tok for eth

via a message to D’s contract logic.

(2) The message’s authenticity is confirmed;

(3) and the withdrawal processor returns eth to the client.

In the case of TheDAOheist, thewithdrawalmessagewas authentic,

but a flaw in the contract logic allowed the attacker to, in the end,

use a relatively small amount of tok to withdraw more eth than

the tok were worth.

Related work. Security, economics, and game theory have been

intimately linked by researchers for more than a decade. One of the

first works concerning the application of financial incentives to the

problem of computer security comes from Camp and Wolfram [18],

who propose economic sanctions for parties that fail to patch known

vulnerabilities. Anderson and Moore [13] offer a slightly different

perspective on economics and security, which advocates for the

creation of vulnerability markets as well as exploit insurance. Ex-

ample works that relate to this paper include an analysis of the

role of market insurance among the players of a security game by

Johnson et al. [28], and an evaluation of how incentives can shift

actors towards protection or insurance by Grossklags et al. [27].

coinmarketcap.com


Böhme and Schwartz provide an excellent survey of the broad topic

of market models of cyber insurance and risk transfer [15]. And

Schwalb [33] explores political, legal, and economic aspects of the

creation of a vulnerabilities market.

More recently, Manshaei et al. [30] provide a comprehensive

overview of related works that have applied game theory to se-

curity. Egelman et al. [23] discusses the ethical implications of

the formation and participation in vulnerabilities markets. Laszka

and Grossklags analyze whether insurance providers should take a

proactive role in improving software security [29]. Finally, Marotta

et al. [31] offer a survey of cyber-insurance mechanisms.

Smart contract security. Research on smart-contract security is

nascent in the cryptocurrency community. Buterin [17] offers some

general recommendations based on the types of attacks witnessed

in Ethereum to-date. He advocates for the development of layered,

incremental defenses, but also argues that identifying an attack is

fundamentally difficult. In particular, he notes that it is difficult

to objectively and unanimously identify and mitigate DAPP hacks

from the outside because members of the community have such

different perspectives.

Tethered Currencies. Several cryptocurrencies address the prob-

lem of price stability by tethering to an asset that is stable. Tech-

niques for managing market volatility are related to our goal in that

they seek to protect asset value, but they do not protect against

security vulnerabilities in contract code. For example, Tether is an

appropriately named blockchain-based currency that is backed one-

to-one with the US dollar [11]. Similarly, Digix dgx is an Ethereum-

based DAPP that issues tokens tethered to ounces of actual gold [10].

As mentioned above, DixigDAO is a DAO that profits from Digix

fees, and it has a separate token dgd that is untethered [9]. Finally,

the Dai Credit System is not tethered to a fiat currency or commod-

ity [8]. Instead, it is backed by other digital assets as collateral to

stabilize its price.

4 A DAPP INSURANCE MECHANISM

A major problem with Ethereum contracts is that the logic can be

very complex. Contract software can represent an ample oppor-

tunity for an attacker to exploit a vulnerability in the contract to

conduct an unauthorized eth withdraw. In this section, we intro-

duce a mechanism that protects the ether held in a contract even

in the event that an attacker is capable of making an unauthorized

withdrawal at no expense. Our solution is for the contract to retain

a withdrawal fee from the ether to be withdrawn that will be used

to purchase insurance, in the form of futures contracts fut that

hedge against a decrease in the trade price of
eth

tok
. If the withdrawal

was unauthorized, then presumably the trade price will eventually

drop. At this point the contract closes its fut in exchange for eth,

recovering some portion of the stolen eth. However, in order to

prevent iterative attacks, the recovered eth are not immediately

made available for withdrawal. Instead they are locked in a recovery

cache until tok holders vote for their release (after the withdrawal

code has been patched).

Our approach is not meant as a replacement for methods that

secure the execution of code or uncover vulnerabilities through

program analysis. Instead, we intend for our mechanisms to com-

plement such methods.
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Figure 3: Our proposed mechanism for asset withdrawals.

TheWithdrawal Processor, Recovery Processor, and Staging

mechanisms form a trusted security base for our Market-

Secured Software approach.

4.1 Withdrawal Workflow

Figure 3 shows the modified withdrawal workflow. We have intro-

duced three general purpose withdrawal components (shown in

dash-dotted, green) that operate independently from each other and

from the existing contract-specific logic. The idea is that the code

used to implement these components can be thoroughly tested and

reused among all DAPPs that implement a withdrawal mechanism.

The withdrawal process unfolds in eight steps (each delineated with

a blue number in the figure), which we describe in detail below for

a contract D as defined in Section 2.

(1) An existing token holder interacts with the contract-specific

logic of D in some way so as to initiate the withdrawal ofm
eth. In general, withdrawal is due to the deposit of tok, but

more complex scenarios can also trigger a withdrawal.

(2) The contract logic signals its approval of the withdrawal of

m eth to the withdrawal processor.

(3) The withdrawal processor removes m eth from its cache

and separates a fraction f m for the withdrawal fee. The

fee is passed to an account controlled by D on the futures

exchange. The (1 − f )m remaining eth are momentarily

held by the withdrawal processor.

(4) The withdrawal processor trades f m eth on the futures

exchange form futures contracts fut that hedge against a

drop in the trade price of
eth

tok
. The fut are moved from an

account controlled by D on the futures exchange to a cache

controlled by the recovery processor.

(5) The withdrawal processor releases (1 − f )m eth to the user

who initiated the withdrawal. This is the final responsibility

of the withdrawal processor.

(6) The recovery processor monitors the value of the fut held

in the account controlled by D on the futures exchange.

Eventually the recovery processor trades the fut for eth

(say, k eth).

(7) Upon withdrawal from the futures exchange, the eth are

stored in a staging area that is intentionally quarantined

from the rest of the contract logic.



(8) Periodically, the current tok holders vote to release the eth

in the staging area back into the main eth cache controlled

by the withdrawal processor. This manual voting process is

used to ensure that an attacker cannot drain the eth holdings

of D multiple times before a potential exploit is discovered.

It is possible that the fut will be liquidated (lost) by way of

margin call before the exploit occurs due to a rise in price of
eth

tok
,

which would render useless any protection from those fut. We

will address that complication in Section 6 as part of more detailed

analysis of this mechanism.

4.2 Trusted Core Software

As should be clear, to employ the financial mechanisms above,

we cannot escape the need to secure at least some portion of the

DAPP’s software using traditional methods. In particular, our ap-

proach relies on a software-only trusted core, which is comprised of

the withdrawal processor, recovery processor, and staging region.

Importantly, the remaining contract logic, which controls other

mechanisms specific to that DAPP are not part of the core. Other

contract logic can include receiving and sending of messages from

other accounts and contracts, overseeing voting on policies sug-

gested by token holders (excluding the vote to release eth from

staging), receiving tokens, checking if funds are sufficient for en-

acting policies, contacting services external to Ethereum, and more.

Each of these other functions represent a potential avenue for some

type of attack; for example, an attacker might bring a policy to vote

without being a token holder. However, the focus of our core is

strictly on the withdrawal of eth from the DAPP (the dash-dotted,

green elements in Figure 3).

Our expectation is that once programmed, the core can be re-

used in many DAPPs as a key component, just as cryptographic

implementations are heavily inspected and re-used rather than

reimplemented each time. We leave the implementation of this

trusted core for future work.

5 MECHANICS OF FUTURES CONTRACTS

Futures contracts, or simply futures, are instruments that are created

and brokered by a futures exchange. They are an agreement between

two parties, which are issued in pairs to individuals who enter

opposing positions. Central to the mechanics of futures contracts

is the notion of the index price, or the exchange price of
eth

tok
on

some well-known currency exchange (typically independent from

the futures exchange). Each contract is stipulated in terms of the

settlement price, which is the average index price during the hour

prior to the settlement date. We next define a particular type of

futures contract that hedges against fluctuations in the exchange

price of
eth

tok
.

5.1 Contracts and Markets

The financial instruments we describe here and employ in Sec-

tion 6 are based on common mechanisms implemented by multiple

cryptocurrency exchanges [1, 4].

DEFINITION 1: A futures contract is an agreement between guar-

antor and beneficiary whereby the guarantor agrees to pay the

beneficiary 1 tokworth of eth at the settlement price on the settle-

ment date. A trader opens a long position (LP) or short position (SP)

whenever she becomes the beneficiary or guarantor, respectively,

of a futures contract.

A long position affords a trader with the right to receive eth

at settlement while a short position encumbers a trader with the

obligation to deliver eth at settlement. New futures are initially

created directly by the exchange which matches pairs of traders

willing to assume opposing positions.

Markets. An open position is automatically closed at settlement,

but it is also possible for a trader to close a position by transferring

her rights or obligations to a new trader. This transfer is conducted

on the futures market. In this market, a trader buys a futures contract

in order to open a long position, and he sells the contract in order

to close a long position; alternatively, a trader sells to open a short

position, and buys a contract to close a short position. “Buying” is

understood to mean either becoming the beneficiary of a contract in

the case of LPs; or being released from the obligation of a contract

in the case of SPs. Similarly, “selling” when holding an LP means

giving up the right as beneficiary of the contract while it means

becoming guarantor of a contract when entering an SP. The trade

price, or just price, refers the amount of eth a trader agrees to

pay when buying a contract; alternatively, it’s the amount received

when selling. When the futures market is efficient, futures will trade

close to the current index price indicating that any information

about the future settlement price is captured by the current index

price.

Profit. Profits and losses associated with holding a position on

a futures contract closely track the movement of the underlying

index price.

THEOREM 1: Assuming efficient markets, a fall in price from ε
eth

tok
to (1 − p)ε eth

tok
while holding a short position will result in an

opposing profit of pε eth at the settlement date. Similarly, a rise to

(1 + p)ε eth

tok
will result in a loss of pε eth.

PROOF: Suppose that an SP is opened such that a trader receives

ε eth in exchange for encumbering himself as the guarantor of a

futures contract. Assuming that the market is efficient, the trade

price would have been ε eth

tok
. If the price subsequently falls to

(1 − p)ε eth

tok
, then the guarantor is obligated to pay the beneficiary

just ((1 − p)ε ) eth at the time of settlement. Thus, the guarantor

has earned profit (ε − ε (1 − p)) eth = pε eth. Similarly, a rise in

price results in a loss: (ε − ε (1 + p)) eth = −pε eth. ■

An analogous theorem holds for LPs, where it can be shown, for

example, that a drop to (1 − p)ε eth

tok
will result in a loss of pε eth.

However, the focus of this paper is on the short positions opened

by D.

Notice that SPs have an unbounded potential downside and a

finite potential upside of 100% gain, which occurs when the index

price of
eth

tok
drops to zero.

Normally there are fees associated with futures contracts. How-

ever, they are typically relatively small, and for clarity we omit

them as part of our analysis.



5.2 Buying on Margin

Margin and Leverage.We have shown that holding a position can

result in either a profit or loss as a contract’s trade price fluctuates.

Any losses are payable when the position is closed or upon contract

settlement. For each open position, a trader maintains margin with

the exchange, which is eth collected at the time the position is

opened for the express purpose of covering any potential losses. In

order to enforce the futures contract, the exchange ensures that

every trader has enough margin to cover each open position in the

event that it was closed at the current market price. When a trader

lacks sufficient margin to cover her open position, the exchange

initiates a margin call: margin is confiscated by the exchange and

used to close the open position. The trader loses both the margin

and any rights or obligations associated with the futures contract.

A λ-leveraged futures contract requires only fraction 1/λ tok

worth of eth in margin, where typically 1 ≤ λ ≤ 100 in digital

currency markets; e.g., see BitMEX [1].

DEFINITION 2: A λ-SP is a λ-leveraged short position that can be

opened by posting 1/λ tok worth of eth in margin at the current

trade price; alternatively, a λ-LP long position can be opened with

1/λ tok worth of eth.

Note that a trader can open several SPs at once. For readers

that are unfamiliar with these standard mechanisms, we provide

illustrative examples in Appendix A.

6 ANALYSIS OF THE INSURANCE

MECHANISM

In this section, we provide technical details for the withdrawal and

recovery processors, and derive results that prove the minimum

eth that can be recovered after theft under various assumptions.We

introduce a theoretical framework for reasoning about the tradeoff

between cost and security and provide concrete guidance on how

to set security parameters.

At a high level, our approach is to charge a withdrawal fee and

use that fee to purchase λ-SPs to hedge against a drop in the trade

price of
eth

tok
. In general, more eth can be recovered after theft

when either a higher fee is collected during withdrawal or higher

leverage is used. Thus using higher leverage is attractive because

it allows for strong recovery without raising fees. However, using

high leverage also raises the probability of margin call prior to the

theft, which results in lost λ-SPs and prevents recovery. D must

also decide when to close the λ-SPs so as to simultaneously hedge

against losses due to theft and margin call. We find that a simple

price threshold can be used to balance the tradeoff between these

two competing objectives.

6.1 Withdrawal Processor

Suppose initially thatD holdsn eth and thatn tok are outstanding.

D will implement a particular withdrawal mechanism such that

any timem eth are withdrawn, it will reserve (m δ
λ ) eth in order to

open δm λ-SP short positions, as defined in Section 5. We say that

D has implemented a (δ , λ) insurance policy and requires a m δ
λ

fee. Because of the fee imposed, the n eth stored in D are worth
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Figure 4: Valid values of leverage 1 ≤ λ ≤ 100 and redun-

dancy δ ≥ 1, such that fee f = δ/λ.

(1− δ
λ ) each when removed; i.e., f = δ

λ in terms of the fee variable

we introduced in Section 4.

Figure 4 shows the tradeoff between λ and δ with each line

representing a fixed withdrawal fee. For example, in order to main-

tain a 5% withdrawal fee (red line), the leverage can be as low as

λ = 1/f = 20. On the other hand, to maintain the same fee when

δ = 5 we must set leverage to its highest value at λ = 100.

Now imagine that them ether were withdrawn illegitimately as

a result of an attacker exploiting some vulnerability inD — in other

words, the attacker is capable of completing the withdrawal without

depositing any tok. After the withdrawal, D holds n −m eth and

there are n tok outstanding. Thus, by the DAPP Price Assumption,

the exchange price will drop, but not all the way to (1− f ) (n−m)/n
eth

tok
each because the λ-SPs still hold value, a fact that investors will

be aware of. D will then close the λ-SPs, reclaiming some amount

of the stolen eth, during a recovery process.

THEOREM 2: If there are n tok outstanding and D implements a

(δ , λ) insurance policy, then whenm eth are illegitimately with-

drawn the quantity of eth held by D after recovery will be equiv-

alent to

δm + (n −m)

1 + δm
n (1 − f )

eth. (1)

PROOF:According to Theorem 1, absent any exogenous influences,

each λ-SP will increase in value by p in the event that the price

of
eth

tok
drops by p according to Theorem 1. Assuming that the

withdrawal is seen as being unauthorized, investors will consider

m eth to have been stolen. On the other hand, D still retains δm
λ-SPs as well as (n −m) eth. We seek to determine E (m,n,δ , λ),
the total eth remaining in D after recovery. Let Π(m,n,δ , λ) be
the profit of each SP when closed. The two functions are related

by the following system of two equations. First, since D is holding

n −m eth and δm SPs that are worth Π(·) each, we have:

E (m,n,δ , λ) = n −m + δm Π(m,n,δ , λ), (2)
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Figure 5: An illustration of Theorem 3 for n = 1 and various

values of δ ≥ 1 and 1 ≤ λ ≤ 100, such that λ > δ2. Note that

without our proposed mechanism, the percentage of recov-

ered stolen eth would be 0.

Second, D’s assets after recovery are E (·), which when withdrawn

are reduced to 1 − f of their value. Thus, the price of
eth

tok
for the n

remaining tokens will drop. The resulting eth value of the SPs is

the complement,

Π(m,n,δ , λ) = 1 −
(1 − f )E (m,n,δ , λ)

n
, (3)

which follows from the DAPP Price Assumption and Theorem 1.

Solving these equations gives

E (m,n,δ , λ) =
δm + (n −m)

1 + δm
n (1 − f )

(4)

Π(m,n,δ , λ) =
λn + (δ − λ) (n −m)

λn − δm(δ − λ)
(5)

where Eq. 4 holds the final result. ■

Example. Suppose that all n eth were illegitimately withdrawn

from the contract. If δ = 1 and λ = 20, then according to Eq. 4, D

can restore the eth holdings to
20n
39

, which is nearly half of the total

ether. Keeping λ = 20 and increasing δ to 2 recovers
40n
56

, which is

about
2

3
of the eth. Note that in these scenarios we have recovered

a significant portion of eth even after all of the eth initially in

D was stolen (except for the fee f ). Any eth recovered was from

closing the λ-SPs that D acquired during the withdrawal process.

This example raises a question: for fixed λ and δ , what is the
least eth that will remain inD after recovery for any amount ofm
stolen eth?

THEOREM 3: If there are n tok outstanding and D implements a

(δ , λ) insurance policy with λ > δ2, then the least amount of eth

remaining after recovery is

n

1 + 1

δ −
δ
λ

(6)

regardless of how much eth is initially stolen.

PROOF: We begin by finding the derivative of E (m,n,δ , λ) with
respect tom,

∂E

∂m
(m,n,δ , λ) =

λn2 (δ2 − λ)

(λn + δλm − δ2m)2
. (7)

When λ > δ2, ∂E
∂m is negative and therefore E is a decreasing

function ofm. It follows that E achieves its minimum value when

m = n. Substitutingm = n back into E we have the final result. ■

Example. For illustrative purposes, Figure 5 plots a sample of

values that result from Theorem 3. When the withdrawal fee is

f = 15% and the leverage is λ = 20, then δ = (0.15)20 = 3,

and our constraint that λ > δ2 is met. As a result, the minimum

fraction of eth recoverable is
60n
71

, i.e., about 85%. Token holders in

D may also enjoy lower fees with the same recovery percentage;

we see from Figure 5 that about the same minimum recovery of

83% can be had from a fee of just f = 5% if leverage is set to

λ = 80 with a redundancy of δ = 4. However, as we discuss in

the remainder of this section, the choice of leverage parameter

λ is critical — greater leverage increases the chance of a margin

call from relatively smaller jumps in the
eth

tok
exchange rate, which

wipes out the insurance protection provided by SP contracts.

6.2 Recovery Processor

The last section discussed properties of the withdrawal processor,

which is designed to help D hedge against the loss of eth due to

theft. Specifically, f = δ
λ of each withdrawn eth should be retained

for the purpose of opening δ λ-SPs. Although we argued that this

practice allows for the recovery of a significant portion of stolen

eth, there remains the question of when the λ-SPs should be closed.
D is autonomous and up to this point, the withdrawal mecha-

nism has also remained autonomous. IdeallyD will also be capable

of deciding when to sell λ-SPs without direct intervention from

token holders. On the other hand, it is difficult (if not impossible)

to automatically detect theft, even when using the trade price of

eth

tok
as a signal. More significantly, open λ-SPs are a valuable but

volatile asset. The longer a λ-SP remains open, the more likely it

is to receive a margin call if the exchange price
eth

tok
fluctuates by

more than
1

λ before the positions are closed.

Consider a simple sale criterion for λ-SPs based only on the

current value of open contracts. Assuming efficient markets, each

λ-SP can rise in value by as much as 1 eth if the index price drops

to 0 (see Section 5). We evaluate the simple approach of selling each

λ-SP during recovery once its value rises above recovery threshold α
eth. Note that in this analysis we assume the λ-SPs are closed at an
equilibrium price that is at or above α , as opposed to the threshold

value α exactly.

THEOREM 4: If there are n tok outstanding and D implements

a (δ , λ) insurance policy with λ > δ2 and recovery threshold α

defined such that
δ
λ ≤ α < 1

δ+1 , then there will remain at least

min



n

1 + 1

δ −
δ
λ

, n

(
1 −

λα − δ

(λ − δ ) (1 − αδ )

) eth (8)

after an unauthorized withdrawal of any size (not exceeding n) and
subsequent recovery (if it occurs).



PROOF: Theorem 2 provides the value of a λ-SP for the unautho-

rized withdrawal ofm eth assuming that the λ-SPs are sold and

their eth added back to D:

Π(m,n,δ , λ) =
λn + (δ − λ) (n −m)

λn − δm(δ − λ)
.

By construction, the λ-SPs are sold when Π(m,n,δ , λ) > α . Since
δ ≥ 1 and λ > δ2, we know that λ > δ . It is given that α < 1

δ .

Therefore Π(m,n,δ , λ) > α whenever

m >
n(λα − δ )

(λ − δ ) (1 − αδ )
=m∗. (9)

Because we assume that λ > δ2 and δ
λ < α < 1

δ+1 , all terms in

the r.h.s. of the inequality are greater than or equal to zero, and

the denominator is strictly non-zero. Thus it must be the case that

m∗ ≥ 0.

Now we have two cases. First, ifm > m∗ then the λ-SPs are sold,
and the minimum eth after recovery is given by Theorem 3:

n

1 + 1

δ −
δ
λ

. (10)

Second, if insteadm ≤ m∗, then no λ-SPs are sold; in that case, the

eth remaining in D is as little as

n −m∗ = n

(
1 −

λα − δ

(λ − δ ) (1 − αδ )

)
. (11)

Since m can be arbitrary, we choose the minimum eth that can

remain for either the case wherem > m∗ orm ≤ m∗. The result
follows. ■

Example 1. To illustrate how the choice of α affects the amount of

eth recovered, suppose that δ = 1, λ = 20, and we choose α = 1

2

for D. Then Equation 11 is equal to
n
19
, while Equation 10 is equal

to
20n
39

. Therefore, according to Theorem 4, with a large enough

theft, as little as
n
19

eth might remain in D after recovery.

Example 2. However, if we decrease D’s recovery threshold to

α = 1

20
, then Equation 11 increases to n. In this case Equation 8

is dominated by Equation 10 (still equal to
20n
39

). Thus Theorem 4

predicts in this case that more than half the original ethwill remain

after recovery, no matter how much eth was stolen.

Example 3. If we set α = δ
λ , its lowest possible value, then Equa-

tion 11 is equal to n for any valid values of δ and λ. In that case

Equation 10 dominates the bound in Theorem 4 making it equiva-

lent to the bound in Theorem 3.

Indeed, as long as we choose α such that

δ

λ
≤ α ≤

λ2

δ44 − δ3λ − 2δ2λ + 2δλ2 + λ2
,

the minimum recoverable eth (for any sizem) will always be the

same as in Theorem 3:
n

1+ 1

δ −
δ
λ
. Thus the worst case amount of eth

remaining after recovery will be the same for any choice of α in

that interval.

Nevertheless, there are substantive differences between choices

of α .

• For lower values of α , recovery will be triggered earlier,

which implies a lower risk of margin call. But because recov-

ery is triggered earlier, less eth will be recovered since the

λ-SPs will be worth less.
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Figure 6: The percentage of stoleneth recoveredwhenD au-

tomatically closes its λ-SPs when their value is greater than

threshold α . (Because we require that
δ
λ ≤ α < 1

δ+1 , not all

fees are applicable to each selection of α and λ.) In contrast,

without our proposed mechanism, the percentage of recov-

ered stolen eth would be 0.

• On the other hand, a higher choice of α will trigger recover

later, which means a higher risk of margin call but more eth

recovered.

6.3 Setting Security Parameters

Two parameters controlled by D are critical to the security of the

DAPP withdrawal mechanism:

• λ, the SP leverage; and

• δ , the number of λ-SPs purchased for each eth withdrawn.

Setting these parameters presents a tradeoff in terms of security

and usability. The risk of margin call decreases with λ, however it
also raises the withdrawal fee. And the minimum eth recoverable

goes up with δ , but it too raises the withdrawal fee.

It is difficult to predict the probability of a margin call for λ-
SPs without knowing the dynamics of the futures market or the

volatility of the underlying index price of
eth

tok
. To get a better idea

of the price dynamics of a real cryptocurrency, we analyzed Bitcoin

futures data from the OkCoin exchange from Feb 6, 2016 until

April 2, 2017. For various values of λ, Figure 7 shows the empirical

probability that a λ-SP will receive a margin call after a given period

of time. After 3 days, the probability of a margin call is less than
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Figure 7: Probability of margin call based on real market

data from Bitcoin futures data. (OkCoin exchange, Feb 6,

2016 – April 2, 2017).

40% when λ = 25, but when λ = 100 it becomes greater than

80%. Bitcoin is the oldest and most popular cryptocurrency, thus we

expect that its price volatility will be lower than a newly introduced

DAPP token. Accordingly, the estimated probabilities of margin

call given in Figure 7 should be interpreted as lower bounds on the

corresponding probabilities for tok.

6.4 Contracts Without Exploits

It is also worth thinking about what happens to the eth holdings of

D and the trade price of
eth

tok
on the spot market in the event that

no vulnerability is ever exploited. If the price of tok relative to eth

in the futures market is nevertheless highly volatile, then it is likely

that the λ-SPs purchased by the withdrawal processor will receive

a margin call before D can close them. In that case, according to

the DAPP price assumption, the spot price should remain (1 − f )
eth

tok
.

However, if the futures market is relatively stable, and α is se-

lected so that the λ-SPs are always closed before margin call, then

the eth collected in fees will eventually be returned to the eth

store of the withdrawal processor. If a total ofm eth have been

withdrawn, this will raise the number of eth in D to n − (1 − f )m
when there are n−m tok outstanding. Hence, whenm > n

(2−f ) , the

DAPP price assumption dictates that the value of
eth

tok
will exceed

1, even with the withdrawal fee. This means that investors that

hold their tok will receive a premium on their initial investment

equivalent to a portion of the withdrawal fees paid by prior tok

holders that withdrew their eth early.

6.5 Limitations

There are several practical limitations that affect the techniques

presented in this section. First, we have made some simplifying

assumptions about the nature of the spot and futures market for

tok. To the extent that any of these assumptions are untrue, our

analysis could be misleading or incorrect. For example, critical to

our approach is the assumption of a liquid futures market that

enjoys relatively low volatility. But if the tok market turns out to

be highly volatile, then D will be required to charge exorbitant

fees, which could slow adoption or destroy the DAPP entirely.

Second, our solution does nothing to actually prevent theft.

Economists like to say that there is no such thing as a free lunch, a

truism that holds for market-secured software. When an attacker

successfully exploits a vulnerability inD, stealingm eth, someone

must pay for that theft, even if D itself is capable of recovering

much of the lost eth. Our approach offloads the burden of the

theft to the market; the parties that pay are the traders who pur-

chased λ-LPs opposing the λ-SPs purchased byD. A valid question

is whether it is preferable for market participants to be punished

instead of DAPP investors.

7 DISINCENTIVIZING DAPP THEFT

The DAPP insurance mechanism introduced in Section 4 is capable

of recovering a significant fraction of eth stolen by means of ex-

ploitation of a software vulnerability; but it does nothing to alter

an attackers behavior. In this section, we show that by publicly

offering TOK incrementally, D can substantially mitigate losses

due to theft. Because of the uncertainty over when a competitor

might exploit the vulnerability, attackers have incentive both the

exploit early and to short tok to ensure that they benefit from a

theft. These competing goals conspire to leave less eth in D at the

time of exploitation.

Unless it is possible to take measures to slow the rate that a

vulnerability can be exploited, a single public offeringwill inevitably

leave all eth exposed to attack. That is to say, there is no way to

prevent attackers from stealing all eth raised by D. In contrast, if

even a single additional pubic offering is introduced, it is always

possible to encourage attackers to exploit the vulnerability early

or delay exploitation (possibly indefinitely) and short tok in the

market instead. In the former case, less eth is stolen overall from

D and fewer tok holders are exposed to the theft. The latter case is

less desirable for tok holders because the value of tok will drop to

zero when the vulnerability is revealed. However, the shorted tok

actually encourage arbitragers to withdraw eth from D, which

means that less eth is ultimately stolen from D and instead the

loss is transferred to the market.

Gated PublicOfferings In the previous sections, we have assumed

that all outstanding tok are issued by DAPP D in an initial public

offering that trades n tok for n eth. Thus, as soon as a vulnerability

is discovered, an attacker is immediately capable of exploiting it

for maximal profit. Alternatively, D can conduct a gated public

offering whereby tok are gradually introduced to the market. For

example, D could offer n new tokens every 30 days during a year-

long period. In this case, the attacker faces a dilemma: if he exploits

right away, he misses out on future eth deposits, but if he waits

too long to exploit the vulnerability, then another attacker might

strike first.

In fact, the attacker has a third option: she can sell tok short in

the spot market, knowing that the trade price of
eth

tok
will drop once

the vulnerability is exploited. This approach has two key benefits

for the attacker: (i) more eth will flow into the contract before she



exploits; and (ii) the attacker is certain to profit from the attack

even if she is not the one to perform the exploit.

Overall fewer tok holders are affected by a theft if attackers ex-

ploit the vulnerability right away. But directing would-be attackers

toward shorting tok is actually good behavior for the community

in the sense that it tends to lower the price of
eth

tok
, which natu-

rally encourages arbitragers to drain eth from D before an attack

occurs.

7.1 Assumptions and Preliminaries

For ease of exposition, in this section we put aside the insurance

mechanism introduced earlier as well as the notion of a withdrawal

fee. Note however that gated public offerings and the insurance

mechanism introduced in Section 4 are entirely compatible. As

before, we continue to assume that an attacker with knowledge of a

vulnerability is capable of stealing all eth from D at the cost of no

tok. And any attacker with knowledge of a vulnerability is assumed

to have gained this knowledge prior to the first public offering from

D. If the attacker discovers a flaw after the completion of all public

offerings, then this approach cannot be used; in that case, D must

rely exclusively on the insurance mechanism from Section 4. Finally,

if a futures market exists, we assume that the market depth is no

greater than the depth of the spot market. We explain the reason for

this assumption in Appendix B; it is not fundamental, but simplifies

our analysis.

To evaluate the efficacy of using a gated public offering, we must

first investigate more deeply the mechanism behind the DAPP

Price Assumption (Section 2). In the absence of fees, the DAPP

Price Assumption states that the trade price of
eth

tok
will remain

equivalent to the ratio of eth holdings to tok outstanding, which

we will call the equilibrium price. Consider how this equilibrium

is reached under normal market conditions. In particular, suppose

that a potential attacker, with knowledge of a vulnerability, decides

to short 1 tok by borrowing it from an existing tok holder and

immediately selling it on the spot market (we assume no interest

is charged for borrowing). In general, we can expect that the price

of
eth

tok
will drop somewhat because of the increase in supply. At

that point, an arbitrageur will purchase the tok at a discount and

immediately redeem it for 1 eth, making a small profit in the

process.

There is no way to know for sure what the price of
eth

tok
will

be after the arbitrageur makes her purchase, but in this section

we assume that the price will return to equilibrium. We refer to

this assumption as the symmetry of supply and demand in the

market. We feel that the assumption is reasonable and, although

not fundamental to our approach, it does allow for simpler analysis.

However in future work it would be interesting to explore how

incentives change during public offerings when this assumption

is relaxed. For example, as more and more tok are redeemed by

arbitragers, a market scarcity arises. And to the extent that the

DAPP is valued beyond its eth holdings (a relaxation of the DAPP

price assumption), the trade price of tok could actually rebound

beyond the equilibrium price. This dynamic would fundamentally

change the game that we analyze below.

7.2 The DAPP Heist Game

We wish to demonstrate the improved utility for D in increasing

the number of public offerings of tok. To that end, we construct

the DAPP heist game, which is conducted between two attackers

A1 and A2, each having knowledge of a vulnerability that allows

them to steal all the eth inD. Our focus is on the two-player game

assuming either a single or double round public offering only. We

feel that concentrating on these games is sufficient to demonstrate

the value of a gated public offering. However it is straightforward

to extend our analysis to more players and additional rounds.

Game definition. The game unfolds over a maximum of k public

offerings that we call rounds, but will end prematurely once one of

the attackers exploits the vulnerability. At the beginning of round i ,
DAPP D offers ni tok for sale to the public in exchange for 1 eth

each. Just after the public offering in round i , attacker Aj decides

if she will immediately exploit the vulnerability or instead short

some amountmi, j of the newly offered tok. If multiple attackers

attempt to exploit the vulnerability in the same round, then we

assume that they split the eth in the contract equally. Likewise,

if multiple attackers attempt to short all the available tok, then

we assume that they are able to short equal amounts. It is possible

that no attacker ever exploits the vulnerability, but regardless we

assume that the vulnerability is eventually exposed so that the tok

price drops to 0 and attackers profit maximally from the tok they

shorted.

In a given round, we assume that the set of all attackers can

short fraction 0 ≤ γ ≤ 1 of the tok introduced that round before

any other attackers can successfully exploit the vulnerability. This

assumption allows us to model either a disparity in the time it takes

to short tok versus exploiting the vulnerability or a handicap in

value (if for example there is a significant expense associated with

shorting tok). As an example, we can set γ > 1

2
to model the case

where D imposes a restrictive daily eth withdrawal limit, which

might slow down an exploit. Or alternatively, set γ ≪ 1

2
, to be

conservative in assuming that an exploit can be carried out rapidly.

The value γ is a prominent factor in our analysis.

Strategies. Before the game commences, each attacker develops a

master strategy of shorting tok for zero or more rounds, and then

optionally exploiting the vulnerability in the subsequent round.

Specifically, attackerAj plans a strategy of the form S1, j , S2, j , . . . ,Ei, j
over i ≥ 1 rounds; where Sr, j denotes shortingmr, j tok in round

r , and Ei, j denotes exploiting the vulnerability in final round i . To
be clear, an attacker can optionally exploit immediately and never

short; and similarly, an attacker can short tokens but never exploit.

Note that strategy Si, j is a meta strategy that itself represents an

entire set of strategies parameterized by the number of tokmi, j to

be shorted.

For convenience, we define Ni =
∑i
t=1 nt andMi, j =

∑i
t=1mt, j .

Note that because it is not possible to short more tok than the

quantity that have been offered, it follows thatMi, j ≤ Ni for all i .

Strategy sets. A strategy set for the DAPP heist game is a vector

comprised of a single strategy chosen by each player. The payoff for

a strategy set is a vector with the potential profit for each attacker

given the chosen strategies. For a two-player game, payoffs for all

strategy sets can be represented by a payoff matrix. Table 1 depicts

the payoff matrix for a game where two attackers compete for the



A2

S1,2 E1,2

A1|

S1,1 (m1,1;m1,2) (γm1,1;n1 − γm1,1)

E1,1 (n1 − γm1,2;γm1,2) ( n1

2
;
n1

2
)

Table 1: Payoffmatrix for the 2-attacker, single-roundpublic

offering DAPP heist game. Because the matrix is symmetric,

we gray out the upper diagonal for clarity. When γ > 1

2
only

(S1,1; S1,2) is the Nash equilibrium. If γ < 1

2
, then (E1,1;E1,2)

is the Nash equilibrium. Ifγ = 1

2
, then everymeta strategy is

a Nash equilibrium. In other words, only when D strongly

limits the daily ethwithdrawals (i.e.,γ > 1

2
) it is both attack-

ers’ best strategy to short rather than exploit immediately.

eth holdings of D over the course of a single public offering. A

Nash equilibrium for the game occurs for any strategy set where

no change in strategy for player Ai , can result in a higher payoff if

the strategies for other players are held fixed.

Evaluating meta strategies. As mentioned above, the strategy

Si, j is a meta strategy that encompasses all strategies where Aj
shortsmi, j ≤ ni tok in round i . Thus associated with Si, j is a sep-
arate strategy for each value ofmi, j . Strategy sets that incorporate

one or more meta strategies constitute meta strategy sets or M-sets;

each forms a sub-game with its own Nash equilibrium.

In all the games we consider, every M-set has exactly one Nash

equilibrium, which we call an extremal strategy set, or E-set. And we

label its corresponding payoff the extremal payoff for the M-set. For

example, (S1,1; S1,2) is an M-set for the single round game where

attackers A1 and A2 shortm1,1 andm1,2 tok respectively (neither

ever exploits). Because both attackers would like to short as much

tok as possible, but only n1 were released in the public offering,

the E-set corresponding to that M-set is for each to short
n1

2
tok.

Therefore, the extremal payoff vector is given by ( n1

2
;
n1

2
).

In general, the Nash equilibria of a DAPP heist game are enu-

merated by finding the E-set for each M-set, and then finding the

equilibria of the game over all E-sets. For convenience, we say that

an M-set is a Nash equilibrium if the associated E-set is a Nash

equilibrium for the entire game.

7.3 Nash Equilibrium for Multiple Public

Offerings

Below we analyze the Nash equilibria of both the single round and

double round two-player games. The outcome of the single round

game hinges entirely on γ ; when γ < 1

2
attackers are incentivized

to exploit the vulnerability, otherwise they look to short tok ex-

clusively. The outcome of the double round game is more complex.

Attackers are still incentivized to short tok exclusively whenγ > 1

2
,

but when γ < 1

2
they are torn between exploiting immediately or

shorting in the first round followed by exploiting in the second. We

show that their preference can be swayed by adjusting the relative

sizes of the first and second round offerings.

7.3.1 Single-round game. In a single round game, each attacker

Aj elects to either shortm1, j tok or exploit the vulnerability (but

not both). Table 1 shows the payoff for each M-set among two

attackers. In general, the optimal strategy for both players depends

entirely on the value of γ . We next prove the intuitive result that

the best strategy is to short tok only as long as shorting is more

efficient than exploiting (γ > 1

2
). More importantly, we show that

unique Nash equilibria exist for nearly all values of γ .

THEOREM 5: When γ , 1

2
, the two-player single round DAPP

heist game has a unique Nash equilibrium. Strategy set (E1,1,E1,2)

(both exploit) is the equilibrium when γ < 1

2
, and (S1,1, S1,2) (both

short) is the equilibriumwhenγ > 1

2
. All strategy sets are equilibria

if γ = 1

2
.

PROOF: Note that (S1,1; S1,2) has extremal payoff ( n1

2
;
n1

2
) because

the optimal approach for each attacker is to short as many tok as

possible given that they have both committed to shorting. M-set

(S1,1;E1,2) has extremal payoff (γn1;n1 (1 − γ )) because ifA1 plans

to short tok and A2 plans to exploit, then the optimal strategy for

A1 is to short as many tok as possible; and for similar reasons,

(E1,1; S1,2) has extremal payoff (n1 (1 − γ );γn1). Finally, strategy
set (E1,1;E1,2) is not actually meta, therefore its extremal payoff re-

mains equal to ( n1

2
;
n1

2
). There are four types of M-sets; we consider

each below:

• Case 1: Both short tok. (S1,1; S1,2) is a Nash equilibriumwhen

n1

2
≥ n1 (1 − γ ), which implies γ ≥ 1

2
; or more intuitively,

this equilibrium applies when D strongly limits the daily

eth withdrawal limit.

• Case 2: Both exploit. (E1,1;E1,2) can be a Nash equilibrium

only if
n1

2
≥ γn1, which implies that γ ≤ 1

2
; or more intu-

itively, this equilibrium applies when D does impose only

weak limits on daily eth withdrawal limit.

• Case 3:A1 shorts;A2 exploits. (S1,1;E1,2) is a Nash equilibrium
if γn1 ≥

n1

2
and n1 (1 − γ ) ≥

n1

2
. The two constraints can be

satisfied simultaneously only if γ = 1

2
.

• Case 4: A1 shorts; A2 exploits. M-set (E1,1; S1,2) is symmetric

with (S1,1;E1,2). Therefore, it is also a Nash equilibrium if

γ = 1

2
.

■

Best overall strategy. Theorem 5 shows that the equilibria of the

single round game depend entirely on the value γ . Moreover, the

game has a unique equilibrium in all circumstances except when

γ = 1

2
, which is equivalent to equal efficiency for shorting tok as

exploiting the vulnerability. Shorting tok is preferable to losing all

eth to theft, but in the single round game our only influence on

attacker behavior is to attempt to increase γ as much as possible.

This is a fundamental limitation of single round games. Next we

explore how the attackers’ incentives change with the introduction

of a second public offering.

7.3.2 Double-round game. In general, the DAPP heist game can

be played inn rounds. Here we analyze a double-round game, which

is simpler to discuss. Our principal result is that the introduction of

a second public offering can induce attackers to either exploit in the

first round or short tok in the first round before exploiting in the

second. In either case, fewer ethwill be stolen than if there had been



A2

[S1,2; S2,2] E1,2 [S1,2;E2,2]

A1|

[S1,1; S2,1] (M2,1;M2,2) (γm1,1;n1 − γm1,1) (m1,1 + γm2,1;N2 −m1,1 − γm2,1)

E1,1 (n1 − γm1,2,γm1,2) ( n1

2
;
n1

2
) (n1 − γm1,2;γm1,2)

[S1,1;E2,1] (N2 −m1,2 − γm2,2;m1,2 + γm2,2) (γm1,1;n1 − γm1,1) (
N2+m1,1−m1,2

2
;
N2−m1,1+m1,2

2
)

Table 2: Payoffmatrix for the 2-attacker, double-round public offering DAPP heist game. Because the matrix is symmetric, we

gray out the upper diagonal for clarity. Figure 8 is a flow chart for determining the Nash equlibria given γ ,n1, and n2.

Any strategy 
works: all cases

Both exploit 
second round or 

both exploit 
first: Cases 2, 3 

Both short in 
both rounds: 

Case 1

Both exploit first 
round:  Case 2

Any uniform 
strategy works: 
Cases 1, 2, 3

yes

no

yes

No equilibrium: 
no cases

Determine
 

no

yes no

yes no yes no

Figure 8: Flowchart for determining the Nash equilibria of

the two-player double round game. When γ = 1

2
, most strat-

egy sets are equilibria. If γ > 1

2
, then Case 1 (both short both

rounds) is an equilibrium provided that n2 is much larger

than n1. When γ < 1

2
there is a unique equilibrium for Case

2 (both exploit in the first round) provided n2 is close to zero.

Otherwise, Case 3 (short, then exploit) is also an equilibrium

for large values of n2.

a single public offering. And if attackers exploit in the first round,

fewer tok holders will suffer losses from the theft. The following

theorem identifies the Nash equilibria of the game. Unfortunately,

for the double round game there exist two equilibria for small γ . To
address this problem we later conduct formal equilibrium selection.

THEOREM 6:When γ > 1

2
and n2 sufficiently large, strategy set

([S1,1, S2,1]; [S2,1, S2,2]) (both short both rounds) is the only Nash

equilibrium of the two-player double round DAPP heist game. And

a single equilibrium also exists at (E1,1;E1,2) (both exploit in round

1) for γ < 1

2
, unless n2 is sufficiently larger than 0, in which case

([S1,1,E2,1]; [S2,1,E2,2]) (both exploit in round 2 after shorting in

round 1) is also an equilibrium.

PROOF: There are three types of meta strategies for each attacker

in the double-round game: (i) the attacker shorts some of the tok
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Case 1: ([S1,1S2,1]; [S1,2S2,2])

Figure 9: Lower bounds on values of γ that will make Case

1 (both short exclusively) a Nash equilibrium for various

choices of n1 and n2 in the two-played double round game.

Generally, if n2 is much smaller than n1, then γ must be very

large, but as n2 becomes much larger than n1, any choice

where γ > 1

2
creates an equilibrium.

offered in each of the two rounds but never exploits the vulnerabil-

ity; (ii) the attacker shorts some of the tok offered in round 1, and

then exploits in round 2; and (iii) the attacker never shorts any tok

and exploits in round 1. Table 2 shows the payoff for each strategy

set among two attackers. Because the payoff matrix is symmetric,

we search for Nash equilibria on and below the diagonal of the

matrix. Appendix C gives the extremal payoff for each of the matrix

entries of interest. Those results can be thought of as defining an

extremal payoff matrix parameterized only by γ , n1, and n2, which
defines the maximum payoff that each M-set can achieve for any

combination of themi, j .

Having derived the extremal payoff matrix for all M-sets at or

below the main diagonal, we now turn our attention to searching

for Nash equilibria. There are five major types of M-sets to consider:

• Case 1: Both short both rounds. Based on the extremal payoff

matrix, ([S1,1, S2,1]; [S1,2, S2,2]) is a Nash equilibrium when



N2

2
≥ n1 (1 − γ ) and

N2

2
≥ N2 −

γn1

2
− γn2. Together these

constraints imply that γ ≥ max( n1−n2

2n1

, n1+n2

n1+2n2

).

• Case 2: Both exploit in round 1. According to the extremal

payoff matrix, M-set (E1,1;E1,2) is a Nash equilibrium only

if
n1

2
≥ γn1, which implies that γ ≤ 1

2
.

• Case 3: Both short in round 1, then exploit in round 2. The ex-

tremal payoff matrix indicates that ([S1,1,E2,1]; [S1,2,E2,2])

is a Nash equilibrium when
N2

2
≥ n1 (1 − γ ) and N2

2
≥

n1

2
+ γn2. This requires that

n1−n2

2n1

≤ γ ≤ 1

2
.

• Case 4: One exploits in round 1, the other shorts. According

to the extremal payoff matrix, ([E1,1]; [S1,2,E2,2]) is a Nash

equilibrium when n1 (1−γ ) ≥
N2

2
; n1 (1−γ ) ≥ N2−

n1

2
−γn2,

and γn1 ≥
n1

2
. The second constraint forces n1 > n2 for all

γ , and the other two imply that

1

2

≤ γ ≤
n1 − n2
2n1

,

which means that the extremal strategy set can be a Nash

equilibrium only if both γ = 1

2
and n2 = 0.

• Case 5: Both short in round 1, then one exploits in round 2. The

extremal payoffmatrix indicates thatM-set ([S1,1,E1,2], [S1,2, S2,2])
is a Nash equilibrium only if N2 −

n1

2
− γn2 ≥ n1 (1 − γ ),

N2−
n1

2
−γn2 ≥

N2

2
,
n1

2
+γn2 ≥ n1 (1−γ ),

n1

2
+γn2 ≥ n1 (1−γ ),

and
n1

2
+ γn2 ≥

N2

2
. In this case the first constraint forces

n1 > n2 for all γ ; and the second and fourth constraints

force γ = 1

2
. This value for γ along with the first and third

constraints show

n1
2(n1 + n2)

≤
1

2

≤
2n2 − n1
2(n2 − n1)

,

which is only valid when n2 = 0.

■

The double round game has a more complicated landscape of

equilibria than the single round game. In general, the values forγ ,n1,
and n2 are all determinants of the equilibria. Figure 8 consolidates

the results from Theorem 6 into a flowchart depicting the regions

where various M-sets achieve a unique equilibrium. In such regions

we say that a strategy set dominates. The region of dominance for

Case 1 (both short in both rounds) is particularly complex. Not

surprisingly, it will dominate only when γ > 1

2
, which means that

it is easier for the attacker to short tok than to exploit. However,

the precise interval for γ where this M-set achieves equilibrium

depends in a complex way on the relative sizes ofn1 andn2. Figure 9
demonstrates how the lower bound on γ changes with the sizes of

the public offerings. In general, if n2 is much larger than n1, then
Case 1 dominates for all γ > 1

2
. But if the value of n2 is significantly

smaller than n1, then Case 1 dominates only in the vicinity of γ = 1

2
.

A similar phenomenon occurs when γ < 1

2
. Here, Case 2 (both

exploit in the first round) dominates for all γ < 1

2
so long as the

second public offering is zero. However, once the size of the second

public offering increases substantially, Case 3 (both short in round

1 and exploit in round 2) also manifests a Nash equilibrium. This

behavior can be explained intuitively as the second round offering

becoming so large that attackers who were previously only incen-

tivized to exploit immediately in round 1, must now consider the

benefit of shorting in round 1 and waiting until round 2 to exploit.

0.0

0.2

0.4

0.6

0.8

1.0
γ= 0. 10, n1 = 60, n2 = 40 γ= 0. 10, n1 = 40, n2 = 60

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
γ= 0. 30, n1 = 60, n2 = 40

0.0 0.2 0.4 0.6 0.8 1.0

γ= 0. 30, n1 = 40, n2 = 60

p2

p
3

Case 2 dominates Case 3 dominates

Figure 10: Dominance of equilibria according to the risk

function, Equation 12, for various values ofγ , n1, and n2. Val-
uesp2 andp3 are the probabilities that an attackerwill defect

from Case 2 and Case 3 respectively. The color and inten-

sity of each point (p2,p3) indicates the sign and magnitude

ofR (p2,p3).White points indicate thatR (p2,p3) = 0, dark blue

points suggest R (p2,p3) ≫ 0, where Case 2 dominates, and

dark orange points appear when R (p2,p3) ≪ 0, where Case 3

dominates.

Indeed, in terms of potential payoff alone, the extremal payoff for

Case 3 is always greater than that for Case 2 as long as n2 > 0.

However, waiting to exploit is a riskier strategy; therefore, it is not

immediately clear which of these two equilibria should be most

attractive to an attacker.

Risk analysis. We have seen that there exist two competing equi-

libria when γ < 1

2
and n2 , 0. The M-set where both attackers

short in the first round, then exploit in the second (Case 3) has

higher extremal payoff, but is riskier than the other equilibrium

where both attackers exploit in the first round (Case 2). Label the

former M-set S3 and the latter S2. We wish to gain further insight

into which meta strategy each attacker is likely to choose. Define

the risk of Si to be the maximum loss in extremal payoff for Aj
associated with any other attacker Ak making the defection from

Si to another strategy with least payoff for Aj . Let yj and y
′
j be the

payoff for attacker Aj before and after, respectively, attacker Ak
defects from Si .

The risk function R (p2,p3) between S2 and S3 is defined as

R (p2,p3)

= ((1 − p2)y2 + p2y
′
2
) − ((1 − p3)y3 + py

′
3
)

= (1 − p2)
n1
2

+ p2γ − (1 − p3)
N2

2

− p3γn1 (12)

where pi is the probability of defection from Si . Attackers will

opt for S2 when R (p2,p3) > 0 and S3 when R (p2,p3) < 0. When

R (p2,p3) = 0 we say that the equilibria are risk neural.



Figure 10 shows the direction and magnitude of the risk function

(Equation 12) across all possible values p2 and p3 and for a selection
of parameters γ , n1, and n2. Dark blue points indicate that S2 (Case
2) dominates while dark orange points indicate S3 (Case 3) domi-

nates. In general, S3 dominates S2 for most defection probabilities.

Only when p3, the probability of defecting from S3, is very high

or p2, the probability of defecting from S2, is very low, does S2
begin to dominate. And even then, only relatively small values of γ
yield large regions of dominance for S2. This behavior makes sense

because small values of γ indicate extremely poor payoff when

shorting tok, which incentivizes attackers to exploit immediately

in round 1. Finally, there is a tendency for S2 to dominate when

n1 > n2 and for S3 to dominate otherwise. This also makes sense

because attackers will naturally want to exploit right away if the

bulk of the value is available in the first round, but are incentivized

to wait if substantially more tok will be made available in round 2.

Best overall strategy set. If shorting tok is more efficient than

exploiting the vulnerability, γ > 1

2
, and n2 is sufficiently large

(see Figure 9), then there exists a unique Nash equilibrium corre-

sponding to Case 1: both attackers short both rounds. In terms of

protecting the eth in D from theft, Case 1 is the ideal behavior

because, under the extremal strategy, all eth is legitimately with-

drawn from the DAPP before the vulnerability is exposed. Thus it

makes sense for the DAPP designer to attempt to raise γ as much

as possible in an attempt to bring it above
1

2
. There are two ma-

jor actions the designer can take to help increase γ : (i) limit daily

aggregate withdrawals, which might slow the rate of theft; and

(ii) ensure that there is a vibrant futures market in order to make

shorting easier for the attacker. Assuming that it is possible to raise

γ above
1

2
, Case 1 becomes a stronger equilibrium to the extent that

n2 exceeds n1. So the DAPP designer should also seek to make the

size of the second public offering significantly larger than the size

of the first.

No matter what counter measures are taken, there might still

be vulnerabilities that can be exploited significantly faster than

tok can be (profitably) shorted. In these cases γ < 1

2
and there

exist two Nash equilibria: Case 2 and Case 3, with the latter being

an equilibrium only when n2 ≥ n1 (1 − 2γ ). Thus for γ < 1

2
we

must accept that the vulnerability will eventually be exploited, but

we can still mitigate the size of the exploitation by understanding

attacker defection probabilities and tuning the balance between n1
and n2. Note that, in terms of the amount of ETH stolen from D,

if n1 < n2, then Case 2 is preferable because less than
n
2
will be

stolen, but if n1 > n2 then Case 3 is preferred because under the

extremal strategy, all the tok offered in round 1 will be shorted and

the associated eth in D will be legitimately withdrawn.

It is reasonable to estimate low values for p2 and high for p3
because Case 2 is inherently lower risk than Case 3. Figure 10, or a

similar instrument, can be used to determine an appropriate balance

between n1 and n2 given estimates for defection probabilities. For

example, if p2 < 0.1 and p3 < 0.65, then it is possible to make

n1 somewhat larger than n2 and still incentivize Case 3, even for

large γ . However, if p3 > 0.9, then it is wise to make n2 larger than
n1 because Case 2 will dominate for almost any balance of public

offerings and, hence it is preferable to make n1 a small as possible in

order to minimize the amount of eth that can be exploited. Similar

reasoning holds for mitigating theft under Case 3. If we have reason

to believe that p2 < 0.4 and p3 < 0.6, then it makes sense to ensure

that n2 is less than n1, because Case 3 will dominate for nearly

every value of γ .
Analysis of risk is a good technique to use when it is possible

to make some guess about the probabilities of defection. However,

this is not always possible. Under such circumstances, a reasonable

alternative approach is to opt for an even split, n1 = n2. By splitting
the tok offered between rounds evenly, we can ensure that no more

than half of the eth deposited will be stolen from D, no matter

what equilibrium the game falls into.

8 FUTUREWORK

In future work we plan to extend and improve upon both the DAPP

insurance and gated IPO mechanisms. There are several interesting

avenues to explore in the development of DAPP insurance. First, we

seek a more robust technique for determining when to close λ-SPs.
While using fixed price threshold α can guarantee the minimum

eth recovered, it is far from ideal: there will always exist some size

theft that will fail to push λ-SP value across the threshold, recover-

ing no eth; and the mechanism does not explicitly account for the

passage of time, making it incapable of accounting for the probabil-

ity of margin call. Second, it is unclear how the recovery processor

will behave in the presence of market manipulation. For example,

there exist techniques whereby manipulators can profitably trigger

cascading margin calls. How should the DAPP adjust its required

leverage in order to avoid having its λ-SPs liquidated?
Gated IPOs can also be improved in several ways. First, we have

only analyzed single and double round IPOs, but any finite number

of issuance rounds will incentivize vulnerability exploitation in

the final round. Moreover, because eth can be redeemed for tok

at any time, the tok supply will be deflationary over time. Thus

it would be interesting to explore secure ways of extending the

DAPP Heist Game to infinite rounds. Second, the DAPP insurance

and gated IPO mechanisms can, in principle, be deployed together.

However, the presence of the insurance mechanism will change

the payoffs in the DAPP Heist Game. Specifically, because of the

insurance, the trade price of
eth

tok
will never drop to zero, which

means that tok shorted during an IPO will not realize as much

value when the vulnerability is exploited. Thus we are interested in

determining how the dynamics of both mechanisms change when

deployed simultaneously.

9 CONCLUSION

We have presented two generic mechanism that can be used to

insure the ether holdings of DAPPs that are similar to The DAO.

Our mechanisms are embedded into and controlled by the software

itself. Our first approach is to charge a small withdrawal fee, which

is used to purchase futures contracts that hedge against a drop in

the price of tokens issued by the DAPP. We show that, even in the

event that all ether holdings are stolen from the DAPP, the majority

of the ether can typically be restored with high probability. More

specifically, we find that in order to ensure that a large fraction of

assets are recoverable it is necessary that either the volatility of fu-

tures contracts remains relatively low or thewithdrawal fee remains

high. Our second approach is based on multi-round, gated public



offerings. We show that it is always possible in a double-round

offering to either encourage attackers to exploit the vulnerability

early, which reduces the total eth stolen, or encourage attackers to

delay exploitation and short tok in the market instead, which also

reduces the total eth stolen from the DAPP as instead the loss is

transferred to the market.
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A BUYING ON MARGIN

Example 1. Suppose a trader brings 10 eth to a market where a

DAPP token sells for 1
eth

tok
. Without the use of leverage, the trader

can purchase δ = 10 short position futures contracts. If at the

contract’s close, the spot rate falls to 0.8 eth
tok

, her profit would be

0.2eth · 10 = 2eth, increasing her equity to 12eth. If instead

the spot rate increases to 1.25 eth
tok

at the contract’s close, then she

would need to pay out 0.25eth · 10 = 2.5eth to the opposing party,

reducing her equity to 7.5 eth. If the rate increases to 2
eth

tok
, she

will owe 10 eth to the opposing party; therefore, the exchange will

enforce a margin call, closing the contracts before the rate increases

any further.

Example 2. Now consider the outcomes if the market allows the

trader to buy short position futures with leverage of λ = 4. The

trader purchases 40 contracts at a spot price 1
eth

tok
, but covering

only 1/4 the equity of each contract. If at the contract’s close, the

spot rate falls to 0.8 eth
tok

, her profit would be 0.2eth · 40 = 8eth,

increasing her equity to 18eth. If instead the spot rate increases

to just 1.25 eth
tok

, then she would owe 0.25eth · 40 = 10eth to the

opposing party; accordingly, the exchange would enforce a margin

call and close the contracts.

B SHORTING IN THE FUTURES MARKET

In addition to shorting tok in the spot market, the attacker can also

open short positions, SPs, if there exists a viable futures market

(see Section 5). At first it seems possible that the presence of short

futures contracts would offer the attacker an additional avenue for

profiting from the exploitation of a vulnerability. Indeed this oppor-

tunity is potentially more expedient for the attacker, which is an

important advantage. But the following property is also important:

if the spot and futures markets are efficient, exhibit supply-demand

symmetry, and the depth of the futures market is less than that of

the spot market, then purchasing an SP has the same impact on the

eth holdings of D as does shorting a tok in the spot market.

Consider the cross-market dynamics associated with opening

an SP at a time when both the spot and futures markets are at

equilibrium. This means that both the current spot and futures

price of
eth

tok
are equal to one. The attacker must sell a futures

contract in order to open an SP. Presumably the sale will cause a

small decrease in the trade price of
eth

tok
in the futures market. In

response to this discount, if an arbitrager expects that she can earn
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a profit, she will buy a futures contract to open a corresponding LP

(long position). Because of the symmetry of supply and demand,

the trade price on the futures market will return to equilibrium.

Now in order for the arbitrager to hedge her position, she will short

a tok on the spot market, which we have argued in Section 7.1

will result in a tok being traded for eth in D, and will result in a

return to equilibrium in the spot market.

In the scenario above, the arbitrager will earn a profit only if the

difference between the price she paid to open the LP (at discount)

and the price she received to sell tok (also at a discount) is positive.

Because the depth of the spot market is assumed to be greater

than the depth of the futures market, there are more willing buyers

and sellers of tok in the spot market than there are buyers and

sellers of futures contracts in the futures market. The effect of

this discrepancy in depth is that the purchase or sale of a futures

contract will tend to move the futures trade price more than the

purchase or sale of a tokmoves the index price. Thus, the arbitrager

can expect to profit in the scenario above. If we were to relax the

market depth assumption, an arbitrager would eventually step in,

but she would wait for the attacker to open multiple SPs before she

opened a single opposing LP. In effect, the attacker would be able

to open multiple SPs and only one tok would ultimately be drained

from D. The analysis we perform in Section 7 could be modified to

account for this by simply increasing the payoff for shorting tok.

Note that depending on the depth of market (both futures and

spot), an attacker must short slowly in order to allow the market

to return to equilibrium between shorts. Otherwise, if the attacker

attempts to short very quickly, then either the tok shorted or SPs

sold will be significantly discounted, cutting into his potential profit.

C EXTREMAL PAYOFF FOR THE DOUBLE

ROUND GAME

Below we detail the extremal payoff for each of the matrix entries

of interest in the double round DAPP heist game.

• ([S1,1, S2,1]; [S2,1, S2,2]): If each attacker always plans to short,
then the optimal strategy for both is to short as much tok

as possible in every round. Hence the extremal payoff is

( N2

2
;
N2

2
).

• (E1,1;E1,2): The strategy set where both attackers exploit in

the first round is not meta. Therefore, the extremal payoff

remains ( n1

2
;
n1

2
).

• ([S1,1,E2,1]; [S1,2,E2,2]): For A1, the payoff vector is an in-

creasing function ofm1,1 and a decreasing function ofm1,2.

The opposite is true for A2. Thus, the extremal strategy in-

volves attacker j attempting to maximizem1, j at the expense

ofm1,3−j , i.e.m1,1 =m1,2 =
n1

2
. It follows that the extremal

payoff is ( N2

2
, N2

2
).

• (E1,1; [S1,2, S2,2]): WhenA2 elects to short in round 1 butA1

exploits, it is in the best interest of A2 to short as many tok

as possible. Therefore the extremal payoff is (n1 (1−γ ),γn1).
• ([S1,1,E2,1];E1,2): The extremal strategies for each attacker

are analogous (but opposite) to (E1,1; [S1,2, S2,2]). Hence the
extremal payoff is also (n1 (1 − γ );γn1).
• ([S1,1,E2,1]; [S1,2, S2,2]): The payoff forA1 in this meta strat-

egy is a decreasing function of bothm1,2 andm2,2; and it

is an increasing function of those variables for A2. Because

A1 will not exploit and short in the same round, it is clear

that A2 will fully maximize m2,2, i.e. m2,2 = γn2. On the

other hand, both attackers short in round 1. Thus under the

extremal strategy,m1,1 = m1,2 =
n1

2
. This implies that the

extremal payoff is (N2 −
n1

2
− γn2;

n1

2
+ γn2).
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