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ABSTRACT
The emergence of differential privacy as a primary standard for pri-
vacy protection has led to the development, by the research com-
munity, of hundreds of algorithms for various data analysis tasks.
Yet deployment of these techniques has been slowed by the com-
plexity of algorithms and an incomplete understanding of the cost
to accuracy implied by the adoption of differential privacy.

In this demonstration we present DPCOMP, a publicly-accessible
web-based system, designed to support a broad community of users,
including data analysts, privacy researchers, and data owners. Users
can use DPCOMP to assess the accuracy of state-of-the-art privacy
algorithms and interactively explore algorithm output in order to
understand, both quantitatively and qualitatively, the error intro-
duced by the algorithms. In addition, users can contribute new al-
gorithms and new (non-sensitive) datasets. DPCOMP automatically
incorporates user contributions into an evolving benchmark based
on a rigorous evaluation methodology articulated by Hay et al. [4].

1. INTRODUCTION
Privacy concerns are a major obstacle to deriving the scientific

insights now possible from increasing data collection and powerful
new data analysis techniques. The goal of privacy technology is to
permit data mining and analysis tasks to be safely carried out over
a collection of sensitive records donated by individuals.

Differential privacy [2] has emerged as an important standard
for protection of individuals’ sensitive information. Differential
privacy offers the compelling guarantee that the output the analyst
receives is statistically indistinguishable (governed by a privacy pa-
rameter ε) from the output the analyst would have received if any
one individual had opted out of the collection. Smaller ε implies
less disclosure about any single individual.

General acceptance of differential privacy by researchers has led
to a steady stream of research in the database community, as well
as the data mining, theory, machine learning, programming lan-
guages, security, and statistics communities. For any given task
(e.g., answering range queries or learning decision trees) there are
a number of specialized differentially private algorithms for com-
pleting that task. They typically achieve privacy by adding noise.
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While smaller ε values generally result in more noise added, algo-
rithms differ in how noise is added and its magnitude even for the
same privacy level ε.

Despite maturing research efforts, the adoption of differential
privacy by practitioners in industry, academia, or government agen-
cies has so far been rare, with only a few examples to mention [3,6].
A major obstacle to practical adoption is that the “cost” of privacy,
in terms of degraded accuracy, is difficult for practitioners to assess.
This is because, for a given task:
● The research community has failed to clearly identify the state-

of-the-art in terms of accuracy for a given privacy level (deter-
mined by ε), and

● Practitioners, who may not be experts in privacy (or even com-
puter science), have no tools to try out state-of-the-art algo-
rithms and understand the impact of noise on their data.

Assessing the accuracy of differentially private algorithms is com-
plex for the following reasons. Theoretical bounds on error, when
known, explain only worst case behavior and hide critical constant
factors. Despite hundreds of papers on differentially private algo-
rithms, there has been little attention paid to empirical evaluation
methodology and no benchmarks have been established. Further,
the accuracy of emerging algorithms has complex dependencies
on the input data: an algorithm which offers state-of-the-art error
rates on one dataset may substantially underperform a simple base-
line technique on another dataset. Researchers have unfortunately
reused a small collection of datasets for evaluation and it is there-
fore difficult to extrapolate performance from published results.

All of these factors mean a practitioner cannot easily identify the
best algorithm for a particular task and dataset. She would have to
survey literature from many different fields, and either extrapolate
from multiple theoretical and empirical analyses, or implement all
the algorithms and compare their performance. Moreover, there is
a paucity of tools for helping practitioners understand the effect of
noise on accuracy. For instance, the emphasis of published em-
pirical evaluations often tends to be comparative (does algorithm
Anew have lower error than algorithm Aold?) rather than absolute
(is the error in the output of Anew acceptable?); the latter being
more important to the practitioner.

To address these important challenges we are building DPCOMP,
a public web-based forum to support the principled evaluation of
private data analysis and to encourage dissemination of related code
and data. DPCOMP provides the infrastructure to rigorously eval-
uate a wide range of differentially private algorithms, for a wide
range of tasks, and on a wide range of datasets. Users can view the
results of careful, thorough empirical evaluation by interacting with
dynamic visualizations. But most importantly, users can contribute
datasets, task definitions, and algorithms to DPCOMP, triggering
automatic evaluations and comparisons of empirical performance.
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For the researcher, DPCOMP provides an evolving benchmark of
datasets for various tasks, and a thorough comparison of existing
techniques, illuminating performance gaps of existing techniques
and open problems. For the practitioner, DPCOMP provides an easy
way to explore the performance of state-of-the-art algorithms as
well as tools to quantitatively and qualitatively assess the absolute
error of algorithms.

Our proposed demonstration will present Version 1.0 of DP-
COMP, which is focused on a limited but expressive class of data
analysis tasks, in which sets of one- and two-dimensional counting
queries are answered privately. Accurately supporting these tasks
is essential for exploratory analysis on private data (e.g., summary
statistics, marginal distributions), as well as building more com-
plex privacy algorithms with these tasks as subroutines (e.g., den-
sity estimation, machine learning, log-linear modeling). DPCOMP
utilizes a benchmark and a principled evaluation methodology that
will be presented during the coinciding research track at SIGMOD
2016 [4]. This evaluation methodology has already revealed weak-
nesses and inconsistencies in the empirical evaluations of published
algorithms. By adopting this methodology, DPCOMP provides a
sound, reproducible view of the empirical performance of current
privacy algorithms.

At the demonstration, an attendee can play the role of researcher
or practitioner. As researcher, they can interactively visualize the
complex relationships between privacy level ε, data characteristics,
and accuracy on a large set of benchmark datasets. As practitioner,
they may upload a new dataset and use DPCOMP to interactively
explore privacy-accuracy tradeoffs and assess the usefulness of the
private outputs on the chosen dataset.

2. BACKGROUND
Informally, an algorithm A is differentially private if its behav-

ior is insensitive to small changes in the input database. Formally,
A satisfies ε-differential privacy [2] if for all databases D and D′

such that D′ contains one additional record, and for any subset of
outputs S ⊆ Range(A), Pr(A(D) ∈ S) ≤ eε × Pr(A(D′) ∈ S).
An example of a differentially private algorithm is given below.

We use the term task to denote a certain analysis on the database.
In DPCOMP Version 1.0, we focus on the following task: given a
fixed set of attributes and a workload of multi-dimensional range-
count queries over those attributes, compute answers to each of the
queries. The number of attributes (aka dimensions) is small: we
focus on the 1- and 2D cases. An algorithm for this task returns a
vector of noisy answers. The main performance metric for these al-
gorithms is error, which is measured as theL2 distance between the
true answers and the noisy answers. Notice that error is a random
variable. In addition to reporting mean error, it is also important to
estimate variance since an analyst only observes one output.

We give an example algorithm for the task of answering the
workload of all range-count queries over a single attribute A. The
PARTITION algorithm first constructs an equi-width histogram with
each bucket containing k contiguous values from the domain of
A and then computes the count of each bucket. To achieve pri-
vacy, it invokes the Laplace mechanism [2], which adds indepen-
dent Laplace noise with scale 1/ε to each bucket count. This noisy
histogram can then be used to answer any range query in the work-
load by summing the appropriate noisy bucket counts. (Buckets on
the range boundary only contribute a fraction of their count propor-
tional to the number of values included in the range). To invoke
this algorithm, one must specify, a priori, a value for k. Setting k
to be large reduces the error due to noise (fewer noisy counts are
summed) but coarsens the granularity of the histogram.

The core idea of PARTITION, grouping together sets of values,

is one key idea underlying many of the algorithms proposed for
this task (cf. [4]). However, the grouping strategies proposed are
much more sophisticated than PARTITION and include adaptively
selecting the partition based on the data (which is non-trivial and
requires careful analysis to prove differential privacy).

The above example illustrates one of the aforementioned chal-
lenges with empirical evaluation: algorithm performance can be
data dependent. In the case of PARTITION, the error decreases
the more uniform the data distribution is within each bucket. This
problem is further exacerbated by more sophisticated algorithms
that respond adaptively to the data, making it hard to theoretically
analyze performance.

In a companion paper [4], we identify 4 factors that influence
the performance of differentially private algorithms: (i) ε, the pri-
vacy parameter, (ii) scale, the number of records in the database,
(iii) domain size, the number of possible values each tuple in the
database can take, and (iv) shape, or the empirical distribution of
the data. The data generation procedure in [4] allows us to vary
each of these parameters independently and thereby measure its ef-
fect on algorithm performance. In addition, we show that almost all
private algorithms satisfy a property called scale-epsilon exchange-
ability, wherein for a fixed domain size and shape, increasing scale
has an identical effect on error as increasing ε. Thus, two param-
eters, scale and ε, can be collapsed into a single one (the scale-ε
product) which captures the strength of the “signal” from the data
that competes with the “noise” injected by the algorithm.

3. THE DPCOMP SYSTEM

3.1 Vision and motivation
DPCOMP is a publicly-accessible web-based system designed to

support a broad community of users: data analysts who are novice
users of privacy mechanisms, researchers who develop new privacy
algorithms, and data owners who manage sensitive data.

For a given data analysis task, DPCOMP automatically performs
simulations of privacy algorithms running on real and synthetic
datasets and presents a comprehensive analysis of algorithm per-
formance. Users can assess accuracy of the output through various
metrics, by comparison with informative baselines, and by visual-
izing the private output. Users can determine the best algorithm for
their task and data, as well as the settings of privacy parameters that
can be supported while retaining acceptable accuracy.

Users can also contribute to DPCOMP by uploading datasets,
new algorithms, or new task descriptions. Doing so automatically
triggers new simulations, the results of which are stored and made
available to all users.

The main goals of DPCOMP are: (1) to improve the accessibility
and transparency of privacy algorithms by allowing easy brows-
ing, performance comparison, and download; (2) to provide a re-
producible methodology for evaluating the performance of privacy
algorithms (based on the principles and benchmark from [4]); and
(3) to help guide future research by highlighting cases for which
existing privacy algorithms do not provide acceptable accuracy.

DPCOMP was inspired by the MLCOMP website which was de-
signed for “objectively comparing machine learning programs across
various datasets” [5]. MLCOMP is useful because performance
comparisons for algorithm selection for classical machine learn-
ing tasks has become complex for non-experts as well as algorithm
designers. DPCOMP addresses a similar set of issues, but differs
substantially from MLCOMP because our emphasis is solely on al-
gorithms that offer formal privacy guarantees.

Note that it is not a goal of DPCOMP to host sensitive data sets.
Instead, DPCOMP will provide a public environment in which to
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explore and evaluate private algorithms on public data. To support
users with sensitive data, we instead make the entire infrastruc-
ture (task descriptions, algorithm implementations, and execution
framework) available for local execution, so that users can easily re-
produce results on their own sensitive datasets. (This will initially
be done through an open-source code base; in future versions, a
virtual machine image with code and data will be available.) Even
though local execution is available, the public DPCOMP interface
allows users to efficiently identify the algorithms likely to be best
for their task.

3.2 Features of DPComp 1.0
Our proposed demonstration focuses on version 1.0 of DPCOMP

which includes the following main capabilities and user-interactions:
Algorithm exploration DPCOMP will allow users to review the

range of algorithms available for a task and to assess their perfor-
mance as a function of both privacy parameters (i.e. epsilon), data
parameters (e.g. scale, domain size, etc.) and algorithm parameters
(i.e. internal divisions of the privacy budget, number of rounds of
iterative algorithms, etc.). Results are provided in the form of dy-
namic, interactive plots showing not just comparisons of error rates
for competing algorithms but also comparisons with natural base-
lines such as sampling error that help the user understand whether
measured error rates are acceptable in practice.

Dataset contribution Data owners who wish to find an algo-
rithm that works well on their data can submit (non-sensitive) sam-
ple data sets. Users can also design and submit synthetic datasets
that either challenge existing algorithms or serve to distinguish com-
peting algorithms. New datasets will automatically be tested on
all applicable tasks and algorithms. As an important consequence,
DPCOMP will thereby increase the variety of input data used for
evaluation of algorithms.

Workload contribution Algorithms may perform better or worse
on different workloads. Users can contribute workloads that distin-
guish the performance of competing algorithms.

Algorithm contribution Privacy researchers can submit new al-
gorithms to DPCOMP which will be automatically evaluated and
compared against existing algorithms and baselines. Submitted
programs will be required to conform to a standard API but may
be implemented in any programming language.

Algorithm and benchmark download Algorithms contributed
to DPCOMP will be in the public domain and the DPCOMP website
will support easy download of all implemented algorithms, along
with datasets, workload definitions, and evaluation infrastructure
(following [4]). This allows data owners to easily evaluate algo-
rithms on their own sensitive data using their own systems.

3.3 System design of DPComp 1.0
DPCOMP is an extensible execution framework implemented in

Python that schedules simulated trials on a large compute cluster
with a total of 13,000 cores. Results are collected and stored in a
cloud-based database system that underlies the web-based plotting
and visualization components.

As an example, for the one-dimensional case, and before any
user contributions, DPCOMP contains 14 published algorithms which
are evaluated with respect to 2 workloads on 18 different source
datasets across 4 domain sizes and 6 settings of scale/epsilon re-
sulting in a total of 14 ∗ 2 ∗ 18 ∗ 4 ∗ 6 = 12,096 experimental
configurations. (The 2-D case has a similar number of configura-
tions.) Because the privacy algorithms are randomized, to calculate
high-confidence error measures, we run at least 25 trials of each
configuration, resulting in approximately 300,000 independent tri-
als. The computation time for each trial varies considerably across

algorithms and algorithm parameters (between a few seconds and
a few minutes, with an average of 22 seconds per trial) and also
depends on the domain size and workload size. This amounts to 76
days of single-core computation time, which can be completed in
under 2 hours using 1,000 cores.

In order to provide interactivity, DPCOMP performs selective,
incremental evaluation, prioritizing simulations based on user re-
quests and incrementally presenting partial results (e.g. from fewer
than 25 trials) as they arrive. Specific examples are provided in the
next section.

3.4 Features of DPComp 2.0 (Future work)
The future development of DPCOMP will include additional fea-

tures not part of the proposed demonstration. First, we plan to ex-
pand our system to support additional private analysis tasks such as
graph analysis, machine learning, and continual observation. Sec-
ond, we will develop empirical methods for testing claimed pri-
vacy guarantees. DPCOMP Version 1.0 currently assumes that pri-
vacy claims are correct, which is acceptable since its current focus
is on published algorithms for which privacy proofs are provided.
Verifying that an arbitrary program is differentially private is not
feasible, but we plan to develop black-box, empirical testing meth-
ods that can catch overt violations and errors. Third, we hope that
DPCOMP may enable privacy contests which might, for example,
challenge algorithm designers to achieve an accuracy target for a
specific task and reward the winning algorithm. In the spirit of
Kaggle [1], DPCOMP will be available to host competitions initi-
ated by outside users.1

4. DEMONSTRATION EXPERIENCE
A demo attendee can choose one of two user experiences. They

can play the role of a researcher who is interested in understanding
the state of the art in differential privacy. As a researcher, the at-
tendee can use DPCOMP to explore algorithm performance across
a range of conditions and observe key relationships. Alternatively,
the attendee can play the role of a practitioner who wants to per-
form a differentially private analysis on a particular dataset. They
can use DPCOMP to find the algorithms that offer the best privacy-
accuracy tradeoff for that dataset and also examine, both quantita-
tively and qualitatively, how the noise added for privacy impacts
the usefulness of the analysis output.
Researcher experience The attendee will be directed to the DP-
COMP “dashboard,” which presents a summary of the complete set
of empirical evaluations that have been computed by DPCOMP to
date. The sheer volume of results presents an information visualiza-
tion challenge. Our demo responds to this challenge in two ways.
First, the visualizations are informed by our companion benchmark
study [4] which relates algorithm performance to three properties of
the input: scale-epsilon product, domain size, and data shape. The
benchmark’s data generator allows us to vary each of these prop-
erties independently, making it possible to measure and visualize
the effect of each in isolation. The dashboard will have a separate
figure for each property with menus and sliders to control the range
of values for each. Second, the dashboard is interactive, allowing
the user to do things such as focus on particular algorithms of in-
terest, adjust the values of parameters, and link an algorithm’s per-
formance across multiple figures to see interaction effects between
properties.

After the attendee has had a chance to become oriented to the

1Privacy competitions are a new phenomenon: e.g., a company
called Hypios hosted a data anonymization contest (personal com-
munication, 2013).
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Figure 1: A screen shot of DPCOMP computing the privacy-accuracy frontier on a dataset uploaded by the user (details in Section 4).

dashboard, a demonstrator will guide the attendee to explore some
interesting relationships. For example: (1) they will find that the
performance “frontier” is diverse: no single algorithm dominates
across all settings, but some algorithms do dominate for specific
ranges of the input; (2) algorithm performance has a strong depen-
dence on both epsilon and the scale of the data and that these two
factors are exchangeable: if a given epsilon value is desired, util-
ity can be improved by collecting more data; (3) in some cases,
sophisticated algorithms do not outperform simple baselines.
Practitioner experience Given the realities of the SIGMOD demo
setting, we do not expect attendees to come with a dataset in hand.
Instead, to facilitate interaction, we will make available a set of
datasets (in .csv format) that the attendee can upload to the system.
(They could alternatively browse the web to find a dataset that is of
interest and of suitable size and format for upload.)

Once the dataset is uploaded and the attendee has selected a task,
the system will automatically evaluate all available algorithms on
this new dataset for the given task. The system will compute and
visualize the privacy-accuracy “frontier”—namely, for each setting
of the privacy parameter ε, it will identify the set of algorithms
that achieve highest accuracy on this dataset. (Using our execution
framework, initial results can be obtained in under 30 seconds and
additional trials are incrementally retrieved.) DPCOMP allows the
attendee to explore points along the privacy-accuracy frontier, to
get a qualitative sense of what the best algorithm can achieve at the
given level of privacy.

An example screen of DPCOMP is shown in Fig. 1. Here, the
user has uploaded Twitter.csv—a dataset of about 107 tweets
collected using the Twitter API—and selected the task of answering
2D range queries over attributes corresponding to latitude and lon-
gitude. The user can specify other aspects of the evaluation, such
as the workload, the set of algorithms, the range of ε, etc. DPCOMP
computes and displays the privacy-accuracy frontier. Each point in
this figure reports the error (y-axis) of a particular algorithm for the
ε shown on the x-axis. Points associated with a particular algorithm
are colored if the algorithm has the highest accuracy for at least one
value of ε.

The user can click on a point along the frontier. In Fig. 1, the
user has clicked on the point corresponding to the algorithm that
achieves the lowest error at the smallest value of ε, which is the al-
gorithm AGRID [7]. For the clicked point, a more detailed analysis
is shown. First, it shows a visualization of the data released by the
algorithm which can be compared against the input. (The visualiza-
tion is a 2D histogram over the domain, which can be derived from

the output of the algorithm. A point is drawn if the count of the
corresponding histogram bucket is above a threshold.) In addition,
the error distribution across queries in the workload is displayed.
The attendee can click on a point in this inset figure and see the
corresponding workload query. In this way, the attendee can get an
intuition for which kinds of queries are answered most accurately.

The detailed view for the selected point shows AGRID at ε =
0.00005. As is apparent from the visualization, AGRID dynam-
ically partitions the data into a grid and summarizes the data at
the grid level. Moreover, the visualization gives the practitioner
qualitative feedback about the absolute error of an algorithm. A
practitioner may decide ε = 0.00005 is impractical from an accu-
racy standpoint, since even the best algorithm only preserves coarse
statistics about the data. In addition, the highlighted range query
suggests that some of the highest error queries are those that only
partially overlap with dense regions.

In summary, DPCOMP will allow attendees to see that the state-
of-the-art in differential privacy contains a diverse collection of al-
gorithms, which can in some settings significantly outperform sim-
ple methods like the Laplace and exponential mechanisms. How-
ever, their performance depends in complex ways on 4 key char-
acteristics of the input. DPCOMP helps the user identify the best
algorithms for a given task and dataset. Further, it provides the user
with not only a quantitative evaluation of error but also, through vi-
sualizations, a qualitative feel for how the noise added for privacy
affects the analysis tasks.
Acknowledgments We appreciate the comments of the anonymous
reviewers. This material is based upon work supported by the Na-
tional Science Foundation under Grant Nos. 1012748, 1253327,
1408982, 1443014, 1409125, and 1409143.

5. REFERENCES
[1] Kaggle. www.kaggle.com, 2015.
[2] C. Dwork, F. M. K. Nissim, and A. Smith. Calibrating noise to

sensitivity in private data analysis. In TCC, pages 265–284, 2006.
[3] Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized

aggregatable privacy-preserving ordinal response. In CCS, 2014.
[4] M. Hay, A. Machanavajjhala, G. Miklau, Y. Chen, and D. Zhang.

Principled evaluation of differentially private algorithms using
DPBench. SIGMOD Conference, 2016.

[5] P. Liang and J. Abernathy. MLcomp. www.mlcomp.org, 2013.
[6] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber.

Privacy: Theory meets practice on the map. In ICDE, 2008.
[7] W. Qardaji, W. Yang, and N. Li. Differentially private grids for

geospatial data. In ICDE, 2013.

4


	Introduction
	Background
	The DPComp system
	Vision and motivation
	Features of DPComp 1.0
	System design of DPComp 1.0
	Features of DPComp 2.0 (Future work)

	Demonstration experience
	References

