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ABSTRACT
The adoption of di↵erential privacy is growing but the complexity
of designing private, e�cient and accurate algorithms is still high.
We propose a novel programming framework and system, ✏ktelo,
for implementing both existing and new privacy algorithms. For
the task of answering linear counting queries, we show that nearly
all existing algorithms can be composed from operators, each con-
forming to one of a small number of operator classes. While past
programming frameworks have helped to ensure the privacy of pro-
grams, the novelty of our framework is its significant support for
authoring accurate and e�cient (as well as private) programs.

We describe the design and architecture of the ✏ktelo system
and show that ✏ktelo is expressive enough to describe many algo-
rithms from the privacy literature. ✏ktelo allows for safer imple-
mentations through code reuse and allows both privacy novices and
experts to more easily design new algorithms. We demonstrate the
use of ✏ktelo by designing new algorithms o↵ering state-of-the-art
accuracy and runtime.

1. INTRODUCTION
As the collection of personal data has increased, many institu-

tions face an urgent need for reliable privacy protection mecha-
nisms. They must balance the need to protect individuals with de-
mands to use the collected data—for new applications or modeling
their users’ behavior—or share it with external partners. Di↵er-
ential privacy [8, 9] is a rigorous privacy definition that o↵ers a
persuasive assurance to individuals, provable guarantees, and the
ability to analyze the impact of combined releases of data. Infor-
mally, an algorithm satisfies di↵erential privacy if its output does
not change too much when any one record in the input database is
added or removed.

The research community has actively investigated di↵erential
privacy and algorithms are known for a variety of tasks ranging
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from data exploration to query answering to machine learning. How-
ever, the adoption of di↵erentially private techniques in real-world
applications remains rare. We believe this is because implementing
programs that provably satisfy privacy and ensure su�cient util-
ity for a given task is still extremely challenging for non-experts
in di↵erential privacy. In fact, the few real world deployments of
di↵erential privacy—like OnTheMap [1, 15] (a U.S. Census Bu-
reau data product), RAPPOR [11] (a Google Chrome extension),
and Apple’s private collection of emoji’s and HealthKit data—have
required teams of privacy experts to ensure that implementations
meet the privacy standard and that they deliver acceptable utility.
There are three important challenges in implementing and deploy-
ing di↵erentially private algorithms.

The first and foremost challenge is the di�culty of designing
utility-optimal algorithms: i.e., algorithms that can extract the max-
imal accuracy given a fixed “privacy budget.” While there are a
number of general-purpose di↵erentially private algorithms, such
as the Laplace Mechanism [8], they typically o↵er suboptimal ac-
curacy if applied directly. A carefully designed algorithm can im-
prove on general-purpose methods by an order of magnitude or
more—without weakening privacy: accuracy is improved by care-
ful engineering and sophisticated algorithm design.

One might hope for a single dominant algorithm for each task,
but a recent empirical study [17] showed that the accuracy of ex-
isting algorithms is complex: no single algorithm delivers the best
accuracy across the range of settings in which it may be deployed.
The choice of the best algorithm may depend on the particular task,
the available privacy budget, and properties of the input data such
as its size and distribution. Therefore, to achieve state-of-the-art
accuracy, a practitioner currently has to make a host of complex
algorithm choices, which may include choosing a low-level repre-
sentation for the input data, translating their queries into that rep-
resentation, choosing among available algorithms, and setting pa-
rameters. The best choices will vary for di↵erent input data and
di↵erent analysis tasks.

The second challenge is that the tasks in which practitioners are
interested are diverse and may di↵er from those considered in the
literature. Hence, existing algorithms need to be adapted to new
application settings, a non-trivial task. For instance, techniques
used by modern privacy algorithms include optimizing error over
multiple queries by identifying common sub-expressions, obtaining
noisy counts from the data at di↵erent resolutions, and using com-
plex inference techniques to reconstruct answers to target queries
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from noisy, inconsistent and incomplete measurement queries. But
di↵erent algorithms use di↵erent specialized operators for these
sub-tasks, and it can be challenging to adapt them to new situations.
Thus, designing utility-optimal algorithms requires significant ex-
pertise in a complex and rapidly-evolving research literature.

A third equally important challenge is that correctly implement-
ing di↵erentially private algorithms can be di�cult. There are known
examples of algorithm pseudocode in research papers not satisfy-
ing di↵erential privacy as claimed. For instance, Zhang et al [42]
showed that many variants of a privacy primitive called the Sparse
Vector Technique do not satisfy di↵erential privacy. Di↵erential
privacy can also be broken through incorrect implementations of
sound algorithms. For example, Mironov [30] showed that standard
implementations of basic algorithms like the Laplace Mechanism
[8] can violate di↵erential privacy because of their use of floating
point arithmetic. Privacy-oriented programming frameworks such
as PINQ [10, 29, 32], Fuzz [13], PrivInfer [6] and LightDP [38]
help users implement programs whose privacy can be verified with
relatively little human intervention. While they help to ensure the
privacy criterion is met, they may impose their own restrictions and
o↵er little or no support for designing utility-optimal programs.

Contributions
To address the aforementioned challenges, we propose ✏ktelo, a
programming framework and system that aids programmers in de-
veloping di↵erentially private programs with high utility. Program-
mers can use ✏ktelo to solve a core class of statistical tasks that
involve answering linear counting queries. (This class of queries
is defined in Sec. 2.) Tasks supported by ✏ktelo include releas-
ing contingency tables, multi-dimensional histograms, answering
OLAP and range queries, and implementing private machine learn-
ing algorithms.

In ✏ktelo, di↵erentially private programs are described as plans
over a high level library of operators. Each operator is an abstrac-
tion of a key subroutine from a state-of-the-art algorithm. Within
✏ktelo, these operators are organized based on their functional-
ity into a small set of classes: transformation, querying, inference,
query selection, and partition selection. These classes, and the op-
erators within each class, are described in more detail in Sec. 3.2.

The design of ✏ktelo has the following characteristics:
Expressiveness ✏ktelo is designed to be expressive, meaning that
a wide variety of state-of-the-art algorithms can be written suc-
cinctly as ✏ktelo plans. To ensure expressiveness, we carefully
designed a foundational set of operator classes that cover features
commonly used by leading di↵erentially private algorithms. We
illustrate the expressiveness of our operators by showing in Sec. 4
that the algorithms from the DPBench benchmark [17] can be read-
ily re-implemented in ✏ktelo.
Privacy “for free” ✏ktelo is designed so that any plan written
in ✏ktelo automatically satisfies di↵erential privacy. The formal
statement of this privacy property is in Sec. 3.3, the proof of which
requires non-trivially extending the formal analysis of a past frame-
work [10]. The privacy guarantee means that plan authors are not
burdened with writing proofs for each algorithm they write. Fur-
thermore plan authors do not need to think about how to calibrate
the noise that is injected for privacy as this is handled automatically
by ✏ktelo.
Reduced privacy verification e↵ort Ensuring that an algorithm im-
plementation satisfies di↵erential privacy requires verifying that it
matches the algorithm specification. The design of ✏ktelo reduces
the amount of code that must be vetted in several ways. First, since
an algorithm is expressed as a plan and all plans automatically sat-

isfy di↵erential privacy, the code to be vetted is solely the individ-
ual operators. Second, operators need to be vetted only once but
may be reused across multiple algorithms. Finally, it is not neces-
sary to vet every operator, but only those that are privacy-critical
(as shown in Sec. 3.1, ✏ktelo mandates a clear distinction between
privacy-critical and non-private operators). This means that ver-
ifying the privacy of an algorithm requires checking fewer lines
of code. In Sec. 4, we compare the verification e↵ort to vet the
DPBench codebase [2] against the e↵ort required to vet these algo-
rithms when expressed as plans in ✏ktelo.
Transparency In ✏ktelo, since all algorithms are expressed in the
same form—a plan, consisting of a sequence of operators where
each operator is selected from a class—it is easy to compare algo-
rithms and identify di↵erences. In Sec. 4, we summarize the plan
signatures of a number of state-of-the-art algorithms (pictured in
Fig. 2). These plan signatures reveal similarities and common id-
ioms in existing algorithms. These are di�cult to discover from the
research literature or through code inspection.

The modular structure of ✏ktelo creates opportunities for tech-
nical innovation. There are broadly two kinds of innovation. The
first is performance improvements that can be embedded directly
into the framework, for example by improving the implementation
of a key operator or designing e�cient implementations of essen-
tial data structures. The second is technical innovation that arises
from using ✏ktelo, for example, by using the framework to design
new algorithms. In this paper we present innovations of both kinds.
Improved Scalability Many of the operators in ✏ktelo represent
data and queries using matrices. Performing matrix operations can
become a performance bottleneck. In Sec. 5.1, we present a spe-
cialized matrix representation that avoids the expensive material-
ization of matrix objects. This implicit matrix representation did
not appear in the first version of the ✏ktelo framework [40] but is
described in the extended version [39].

A vitally important but computationally expensive operator in
many plans is inference. Inference is used to combine a collec-
tion of noisy measurements into a consistent estimate of the private
data. In Sec. 5.2, we introduce a general-purpose, e�cient and scal-
able inference engine, which exploits implicit representations, and
subsumes customized inference subroutines from the literature.
Algorithm innovation enabled by ✏ktelo Because ✏ktelo plans
are composed of operators, improving existing algorithms and im-
plementing new algorithms becomes much easier: operators can be
combined in new ways, for example, by substituting one instance
of an operator class for another. In Sec. 6, we present one exam-
ple of algorithmic innovation. We describe a new algorithm that,
when expressed as a plan in ✏ktelo, is similar to the MWEM algo-
rithm [16] but with a few key operators replaced, which can lower
error by as much as 8 times.

After providing background in Sec. 2, we describe the system
fully in Sec. 3. We illustrate the expressiveness of ✏ktelo plans and
the benefits of ✏ktelo in Sec. 4. Scalability innovations provided
by ✏ktelo are presented in Sec. 5 while algorithmic innovations
enabled by ✏ktelo are described in Sec. 6. We discuss related work
and conclude in Secs. 7 and 8.

2. BACKGROUND
The input to ✏ktelo is a database instance of a single-relation

schema T (A1, A2, . . . , A`). Multi-relation schemas pose a number
of challenges (please see discussion in Sec. 8). Each attribute Ai is
assumed to be discrete (or suitably discretized). A condition for-
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mula, �, is a Boolean condition that can be evaluated on any tuple
of T . We use �(T ) to denote the number of tuples in T for which �
is true. A number of operators in ✏ktelo answer linear queries over
the table. A linear query is the linear combination of any finite set
of condition counts:

Definition 1 (Linear counting query (declarative)). A linear
query q on T is defined by conditions �1 . . . �k and coe�cients
c1 . . . ck 2 R and returns q(T ) = c1�1(T ) + · · · + ck�k(T ).

It is common to consider a vector representation of the database,
denoted x = [x1 . . . xn], where xi is equal to the number of tuples
of type i for each possible tuple type in the relational domain of T .
The size of this vector, n, is the product of the attribute domains.
Then it follows that any linear counting query has an equivalent
representation as a vector of n coe�cients, and can be evaluated by
taking a dot product with x. Abusing notation slightly, let �(i) = 1
if � evaluates to true for the tuple type i and 0 otherwise.

Definition 2 (Linear counting query (vector)). For a linear query
q defined by �1 . . . �k and c1 . . . ck, its equivalent vector form is
~q = [q1 . . . qn] where qi = c1�1(i) + · · · + ck�k(i). The evaluation of
the linear query is ~q · x, where x is vector representation of T .

In the sequel, we will use vectorized representations of the data
frequently. We refer to the domain as the size of x, the vectorized
table. This vector is sometimes large and a number of methods for
avoiding its materialization are discussed later.

Let T and T 0 denote two tables of the same schema, and let T �
T 0 = (T � T 0) [ (T 0 � T ) denote the symmetric di↵erence between
them. We say that T and T 0 are neighbors if |T � T 0| = 1.

Definition 3 (Differential Privacy [8]). A randomized algo-
rithm A is ✏-di↵erentially private if for any two instances T , T 0
such that |T � T 0| = 1, and any subset of outputs S ✓ Range(A),

Pr[A(T ) 2 S ]  exp(✏) ⇥ Pr[A(T 0) 2 S ]

Di↵erentially private algorithms can be composed with each other,
and other algorithms, using composition rules, such as sequential
and parallel composition [29] and post-processing [9]. Let f be a
function on tables that outputs real numbers. The sensitivity of the
function is defined as: max|T�T 0 |=1| f (T ) � f (T 0)|. The sensitivity
of a function evaluated on a table (or vector) resulting from a se-
quence of transformations can be calculated from the stability of
each transformation function:

Definition 4 (Stability). Let g be a transformation function
that takes a data source (table or vector) as input and returns a new
data source (of the same type) as output. For any pair of sources
S and S 0 let |S � S 0| denote the distance between sources. If the
sources are both tables, then this distance is the size of the symmet-
ric di↵erence; if the sources are both vectors, then this distance is
the L1 norm. Then the stability of g is: maxS ,S 0:|S�S 0 |=1 |g(S )�g(S 0)|.

3. EKTELO
In this section, we describe the essential features of ✏ktelo: its

system architecture, its operator-based programming framework,
and its guarantee that every program written in the framework sat-
isfies di↵erential privacy.

3.1 System Architecture
In ✏ktelo, the private input data source is encapsulated inside

a protected kernel. The analyst writes a di↵erentially private pro-
gram in an unprotected client space. Access to the protected data

Algorithm 1 ✏ktelo CDF Estimator
1: D Protected(source_uri, ✏) . Initialize ✏ktelo
2: D Where(D, sex == ‘M’ AND age 2 [30, 39]) . Transform
3: D Select(salary) . Transform
4: x T-Vectorize(D) . Transform
5: P AHPpartition(x, ✏/2) . Partition Selection
6: x̄ V-ReduceByPartition (x, P) . Transform
7: M Identity(|x̄|) . Query Selection
8: y VecLaplace(x̄, M, ✏/2) . Query
9: x̂ NNLS(P, y) . Inference

10: Wpre  Prefix(|x|) . Query Selection
11: return Wpre · x̂ . Output

source is mediated by the protected kernel through a set of opera-
tors. The distinction between the client space and the protected ker-
nel is a fundamental one in ✏ktelo. It allows analysts to write plans
(of di↵erentially private programs) that consist of operator calls to
the data source embedded in otherwise arbitrary code (which may
include conditionals, loops, recursion, etc.). ✏ktelo supports oper-
ators of three types, based on their interaction with the protected
kernel. The first type is a Private operator, which requests that the
protected kernel perform some action on the private data (e.g., a
transformation) but receives only an acknowledgment that the op-
eration has been performed. The second type is a Private!Public
operator, which returns information about the private data outside
the firewall (e.g., a di↵erentially private measurement) and thus
consumes privacy budget. The last type is a Public operator, which
does not interact with the protected kernel or the protected data
source at all and can be executed entirely in client space. We illus-
trate the operators supported by ✏ktelo in Sec. 3.2.

The protected kernel is initialized by specifying a single pro-
tected data object—an input table T—and a global privacy budget,
✏. Note that requests for data transformations may cause the pro-
tected kernel to derive additional data sources (whose lineage is
tracked to ensure correct privacy semantics).

We designed ✏ktelo to be extensible through the addition of new
operators. The e↵ort required depends on the operator type: Public
operators can be added at will; Private operators must register their
stability (Sec. 2); Private!Public operators must be vetted by a pri-
vacy engineer to ensure that they satisfy di↵erential privacy (note,
that ✏ktelo is responsible for appropriately calibrating the privacy
budget when such operators are applied to derived data sources).

3.2 Operator Framework
In ✏ktelo, di↵erentially private algorithms are described using

plans composed over a rich library of operators. Most of the plans
described in this paper are linear sequences of operators, but ✏ktelo
also supports plans with iteration (as in plan #7, to be presented in
Fig. 2), recursion, and branching. Operators supported by ✏ktelo
perform a well defined task and typically capture a key algorithm
design idea from the state-of-the-art. Each operator belongs to
one of five operator classes based on its input-output specification.
These are: (a) transformation, (b) query, (c) inference, (d) query
selection, and (e) partition selection. All the operators supported
by ✏ktelo are listed in Fig. 1 grouped by operator class and color
coded by their type Private, Private!Public or Public. We next
describe an example ✏ktelo plan and use it to introduce the di↵er-
ent operator classes.

Algorithm 1 shows the pseudocode for a plan authored in ✏ktelo,
which takes as input a table D with schema [Age, Gender, Salary]
and returns the di↵erentially private estimate of the empirical cu-
mulative distribution function (CDF) of the Salary attribute, for
males in their 30’s. The plan is fairly sophisticated and works in
multiple steps. The plan uses transformation operators on the in-
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Note: journal version with all plans

ID Cite Algorithm name Plan signature Transform Partition selection Query selection

1 Dwork et al. 2006 Identity SI LM TV T-Vectorize PA AHPpartition SI Identity

2 Xiao et al. 2010 Privelet SP LM LS TW T-Where PG Grid ST Total

3 Hay et al. 2010 Hierarchical (H2) SH2 LM LS TPR T-Project PD Dawa SP Privelet

4 Qardaji et al. 2013 Hierarchical Opt (HB) SHB LM LS TP V-SplitByPartition PW Workload-based SH2 H2

5 Li et al. 2014 Greedy-H SG LM LS TR V-ReduceByPartition PS Stripe(attr) SHB HB

6 - Uniform ST LM LS PM Marginal(attr) SG Greedy-H

7 Hardt et al. 2012 MWEM I:( SW LM MW ) Inference PU UniformPartition SU UniformGrid

8 Zhang et al. 2014 AHP PA TR SI LM LS LS Least squares SA AdaptiveGrids

9 Li et al. 2014 DAWA PD TR SG LM LS NLS Nneg Least squares Query SQ Quadtree

10 Cormode et al. 2012 Quadtree SQ LM LS MW Mult Weights LM Vector Laplace SHD HDMM

11 Qardaji et al. 2013 UniformGrid SU LM LS HR Thresholding SS Stripe(attr)

12 Qardaji et al. 2013 AdaptiveGrid SU LM LS PU TP[ SA LM] LS SW Worst-approx

13 McKenna et al. 2018 HDMM SHD LM LS SPB PrivBayes select

14 NEW DAWA-Striped PS TP[ PD TR SG LM] LS

15 NEW HB-Striped PS TP[ SHB LM] LS

16 NEW HB-Striped_kron SS LM LS

17 NEW PrivBayesLS SPB LM LS

18 NEW MWEM variant b I:( SW SH2 LM MW )

19 NEW MWEM variant c I:( SW LM NLS )

20 NEW MWEM variant d I:( SW SH2 LM NLS )

Note: Research highlight version with a subset of plans

ID Cite Algorithm name Plan signature Transformation Partition selection Query selection

1 Dwork et al. 2006 Identity SI LM TV T-Vectorize PA AHPpartition SI Identity

2 Xiao et al. 2010 Privelet SP LM LS TP V-SplitByPartition PG Grid ST Total

3 Hay et al. 2010 Hierarchical (H2) SH2 LM LS TR V-ReduceByPartition PD Dawa SP Privelet

4 Qardaji et al. 2013 Hierarchical Opt (HB) SHB LM LS PW Workload-based SH2 H2

5 Li et al. 2014 Greedy-H SG LM LS Inference PS Stripe(attr) SHB HB

6 - Uniform ST LM LS LS Least squares PM Marginal(attr) SG Greedy-H

7 Hardt et al. 2012 MWEM I:( SW LM MW ) NLS Nneg Least squares PU UniformPartition SU UniformGrid

8 Zhang et al. 2014 AHP PA TR SI LM LS MW Mult Weights SA AdaptiveGrids

9 Li et al. 2014 DAWA PD TR SG LM LS HR Thresholding Query SQ Quadtree

10 Cormode et al. 2012 Quadtree SQ LM LS LM Vector Laplace SW Worst-approx

11 Qardaji et al. 2013 UniformGrid SU LM LS SPB PrivBayes select

12 Qardaji et al. 2013 AdaptiveGrid SU LM LS PU TP[ SA LM] LS

13 NEW MWEM variant b I:( SW SH2 LM MW )

14 NEW MWEM variant c I:( SW LM NLS )

15 NEW MWEM variant d I:( SW SH2 LM NLS )

Figure 1: The operators currently implemented in ✏ktelo. Private
operators are red, Private!Public operators are orange, and Public
operators are green.

put table D to filter out records that do not correspond to males in
their 30’s (Line 2), and to select only the salary attribute (Line 3).
Then it uses another transformation operator to construct a vector
of counts x that contains one entry for each value of salary. x[i]
represents the number of rows in the input (in this case males in
their 30’s) with salary equal to i. All transformation operators are
Private operators as they change the private database and do not
return anything outside the protected kernel.

Before adding noise to this histogram, the plan uses a partition
selection operator, AHPpartition (Line 5). Operators in this class
choose a partition P of the data vector x (or more generally, a map-
ping to a lower dimensional space) which is later used to trans-
form x. AHPpartition is a key subroutine in AHP [43], which was
shown to have state-of-the-art performance for histogram estima-
tion [17]. AHPpartition uses the data vector to identify a partition
of the counts in x such that counts within a partition group are close.
Since AHPpartition uses the private input, it is a Private!Public
operator and thus consumes privacy budget (in this case ✏/2). Fig. 1
shows other examples of partition selection operators that are data
independent, and hence are Public operators.

Next the plan uses V-ReduceByPartition (Line 6), another trans-
formation operator, which applies on x the partition P computed by
AHPpartition. This results in a new reduced vector x̄ that contains
one entry for each partition group in P and the entry is computed
by adding up counts within each group.

The rest of the plan follows the “select-measure-reconstruct” para-
digm, an approach exemplified by the matrix mechanism [24, 27]
and used in several state-of-the-art algorithms [17]. In this paradigm,
in order to answer a workload of queries, the algorithm first selects
a di↵erent set of strategy queries, measures them using the Laplace
mechanism (with noise calibrated to the sensitivity of the strategy),
and lastly reconstructs answers to the original workload of queries
from the noisy measurements using inference algorithms. The care-
ful selection of a low sensitivity strategy can often lead to much
more accurate answers than directly answering the workload.

In our CDF estimation problem, the workload corresponds to
a set of prefix queries of the form “# people with salary < i".
Rather than asking these queries, the plan chooses the strategy of
“identity,” which corresponds to queries of the form “# people with
salary = i". In Algorithm 1, this is captured by the Identity op-
erator (Line 7). This operator is a query selection operator. Such
operators specify a set of measurement queries M, encoded in ma-
trix form to be applied to the data vector. The Identity operator
returns the identity matrix, which corresponds to querying all the
entries in x̄ (since M · x̄ = x̄). In general, query selection operators

do not answer any query, but rather specify which queries should be
estimated. (This is analogous to how partition selection operators
only select a partition but do not apply it.) Most query selection
operators are data independent and thus are Public, while some use
the data to select the query strategy, and hence are Private!Public.

Next, the plan performs the measurement step using the Vector
Laplace operator, which returns di↵erentially private answers to all
the queries in M. First, it automatically calculates the sensitivity of
the vectorized queries – which depends on all upstream data trans-
formations – and then adds noise via the standard Laplace mecha-
nism (Line 8). This operator consumes the remainder of the privacy
budget. Query operators like Vector Laplace return a noisy mea-
surement from the data, and by definition are di↵erentially private
algorithms that expend privacy budget. They are Private!Public.

So far the plan has computed an estimated histogram of partition
group counts y, but now it must reconstruct the empirical CDF on
the original salary domain. From the noisy counts on the reduced
domain y, the plan infers non-negative counts in the original vector
space of x by invoking an inference operator NNLS (non-negative
least squares) (Line 9). NNLS(P, y) finds a solution, x̂, to the prob-
lem Px̂ = y, such that all entries of x̂ are non-negative. Inference
operators never access the protected data and thus can be safely run
outside the protected kernel. All inference operators are Public.

Lastly, the plan constructs the set of queries, Wpre, needed to
compute the empirical CDF (a lower triangular k ⇥ k matrix rep-
resenting prefix sums) by calling the query selection operator Pre-
fix(k) (Line 10), and returns the output (Line 11).

3.3 Privacy Guarantee
In this section, we state the privacy guarantee o↵ered by ✏ktelo.

Informally, ✏ktelo ensures that if the protected kernel is initialized
with a source database T and a privacy budget ✏, then any plan
(chosen by the client) satisfies ✏-di↵erential privacy. ✏ktelo en-
sures privacy by tracking the privacy budget consumed by each op-
erator call. The amount spent depends on the operator (e.g., Public
operators consume nothing) and on what operations came before
it (e.g., transformations). If at any point, the privacy budget is ex-
hausted, any subsequent call to an operator that requires budget
(i.e., a Private!Public operator) will throw an exception.

In the proof of privacy, we model a client’s plan as an arbitrary
and possibly infinite sequence of operator calls, where each call
may be adaptively chosen based on the results of earlier calls. Thus
we can think of the plan as a random process, where the random-
ness comes from the randomness of the operators (though the client
code could also be randomized). The length of the plan, measured
by the number of operator calls, can vary but we can nevertheless
consider the set of (partial) plans of length k for any k. (A shorter
plan can be extended with “no op” calls and for a longer plan, we
consider the prefix of its first k operators.) This allows us to define
a probability distribution over outcomes after k operations where
an outcome is a particular length k plan, denoted p1 p2 . . . pk, and
the outputs received from executing that plan, denoted o1o2 . . . ok.

Theorem 3.1 (Privacy of ✏ktelo plans). Let T,T 0 be any two
neighboring instances. For all k 2 N+,
P(Plan is p1 p2 . . . pk with outputs o1o2 . . . ok | Ektelo init. with (T, ✏))
 e✏P(Plan is p1 p2 . . . pk with outputs o1o2 . . . ok | Ektelo init. with (T 0, ✏))

The proof of Theorem 3.1 extends the proof in [10] to support the
V-SplitByPartition operator. While ✏ktelo ensures di↵erential
privacy, private information could be leaked via side-channel at-
tacks (e.g., timing attacks) [14]. Privacy engineers who design op-
erators are responsible for protecting against such attacks; an anal-
ysis of this issue is beyond the scope of this paper.
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ID Cite Algorithm name Plan signature

1 Dwork et al. 2006 Identity SI LM

2 Xiao et al. 2010 Privelet SP LM LS

3 Hay et al. 2010 Hierarchical (H2) SH2 LM LS

4 Qardaji et al. 2013 Hierarchical Opt (HB) SHB LM LS

5 Li et al. 2014 Greedy-H SG LM LS

6 - Uniform ST LM LS

7 Hardt et al. 2012 MWEM I:( SW LM MW )

8 Zhang et al. 2014 AHP PA TR SI LM LS

9 Li et al. 2014 DAWA PD TR SG LM LS

10 Cormode et al. 2012 Quadtree SQ LM LS

11 Qardaji et al. 2013 UniformGrid SU LM LS

12 Qardaji et al. 2013 AdaptiveGrid SU LM LS PU TP[ SA LM] LS

13 NEW MWEM variant b I:( SW SH2 LM MW )

14 NEW MWEM variant c I:( SW LM NLS )

15 NEW MWEM variant d I:( SW SH2 LM NLS )

Figure 2: The high-level signatures of a subset of plans imple-
mented in ✏ktelo (referenced by ID). All plans begin with a vec-
torize transformation, omitted for readability. We also omit param-
eters of operators, including ✏ budget shares. I(subplan) refers to
iteration of a subplan and TP[subplan] means that subplan is exe-
cuted on each partition produced by TP.

4. EKTELO BENEFITS
✏ktelo provides a number of benefits for the authors of di↵eren-

tially private programs, including code reuse, transparency, expres-
siveness, and a significant reduction in privacy verification e↵ort.

We illustrate these benefits by reporting on our experience re-
implementing state-of-the-art algorithms as ✏ktelo plans. We ex-
amined 12 algorithms for answering low-dimensional counting queries
that were deemed competitive in a recent benchmark study [17].
The process of re-implementing this seemingly diverse set of algo-
rithms consisted of identifying and isolating key subroutines and
translating them into operators.

The prototype implementation of ✏ktelo, including all algorithms
used in experiments, consists of 7.9k lines of Python code. The
framework itself makes up 25% while operator implementations
make up 46% and 15% are tests and examples provided for users.
The remaining 14% are definitions of plans used in our experi-
ments, showing that once operators are defined, plan definitions
are relatively simple. In fact, plans can be described and compared
at a high level by looking at plan signatures. Fig. 2 describes the
12 re-implemented algorithms (numbered 1 through 12) using the
abbreviations for operators introduced in Fig. 1. We use these plan
signatures to highlight the following benefits:
Code reuse Operations that are common to many plans can be
implemented once and reused across ✏ktelo programs. For exam-
ple, once reformulated in ✏ktelo, nearly all the algorithms in Fig. 2
use the Vector Laplace operator (LM) and least squares inference
(LS). This benefits plan authors since it simplifies and accelerates
their ability to write new di↵erentially private algorithms without
having to reimplement sophisticated and privacy critical operators.
In addition, any improvements to these operators will be inherited
by all the plans. We show such an example in Sec. 5.2.
Algorithm transparency By rewriting algorithms as plans, ✏ktelo
makes explicit the typical high-level patterns that reflect design id-
ioms of algorithms in literature. For example, plans 2, 3, 4, 5, 6,
10, and 11 all share a common operator sequence: Query selection,
Query (LM), and Inference (LS); they di↵er only in the specifics of
their Query selection method. Moreover, ✏ktelo plans help clarify
the distinctive components of complex state-of-the-art algorithms.
For instance, AHP and DAWA (plans 8 and 9 in Fig. 2) have the
same structure but di↵er only in two operators: partition selection
and query selection.

Reduced privacy verification e↵ort Code reuse also reduces the
number of critical operators that must be carefully vetted. To ver-
ify privacy, the only operators that require careful vetting are those
that consume the privacy budget, which are the Private!Public op-
erators in Fig. 1. These are: Vector Laplace, the partition selection
operators for both DAWA [23] and AHP [43], a query selection op-
erator used by PrivBayes [41], and a query selection operator used
by the MWEM [16] algorithm, which privately derives the worst-
approximated workload query. In contrast, for the DPBench code
base, the entire code has to be vetted to audit the use and man-
agement of the privacy budget. As a result, fewer lines of code
must be verified as correct. For example, to verify the QuadTree
algorithm in the DPBench codebase requires checking 163 lines of
code. However, with ✏ktelo, this only requires vetting the 30-line
Vector Laplace operator. And, furthermore, by vetting just this
one operator, we have e↵ectively vetted 10 of the 18 algorithms in
Fig. 2, since the only privacy sensitive operator these algorithms
use is Vector Laplace.). Considering all the DPBench algorithms
in Fig. 2, algorithms 1-12, verifying the DPBench implementation
requires checking a total of 1837 lines of code while vetting all
the privacy-critical operators in ✏ktelo requires checking only 517
lines of code.

5. SCALABILITY INNOVATIONS
In this section we describe a number of innovations that enable

key operations in ✏ktelo to scale to larger problem instances.

5.1 Implicit matrix representations
Matrices and operations on matrices are central to the implemen-

tation of ✏ktelo operators but can become a performance bottle-
neck. In an extension [39] to the original version [40] of ✏ktelo,
we describe a set of specialized matrix representation techniques,
based on the implicit definition of matrices, which allows for per-
formance improvements and greater scalability as the size of the
data vector grows.

Matrices are used to represent three di↵erent objects in ✏ktelo:
sets of workload queries, sets of measurement queries, and parti-
tions of the domain. In all cases the matrices contain one column
for each element of a corresponding data vector. In the case of both
workload and measurement matrices, rows represent linear queries.
The number of rows in a workload or measurement matrix is often
as large, or larger, than n, the number of elements in the data vec-
tor. Partition matrices have at most n rows, but may still be large.
For plans operating on large data vectors, where n approaches the
size of memory, these matrices, in standard form, are infeasible to
represent in memory and operate on.

While distributed computation would be one solution, we find
that we can remain with a main memory implementation by using
a set of performance enhancements based on two key observations.
First, the large matrix objects used in plans tend to possess struc-
ture that can be exploited to represent them very concisely. Second,
the plan implementations in ✏ktelo use a relatively small set of ba-
sic operations on these matrix objects (e.g. matrix-vector product,
matrix multiplication, transpose, absolute value). Together, these
observations allow matrices to be represented and operated on im-
plicitly, which results in significant performance improvements.

As an example of an implicit matrix, recall the Prefix workload,
Wpre, an encoding of an empirical CDF, which was used in the
example plan (Algorithm 1). In explicit form, the prefix workload
has n2 entries and is defined as a lower-triangular matrix containing
1’s. Note that a sparse representation of Wpre would store (a list of)
only the nonzero elements of this matrix, but the space complexity
remains O(n2). Thus, the time complexity of computing matrix-
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Figure 3: For a given computation time, the proposed iterative
and implicit inference methods permit scaling to data vector sizes
as much as 1000⇥ larger than previous techniques that use direct
approaches and dense matrices.

vector products using an explicit or sparse representation is O(n2).
However, the Prefix matrix can be completely specified by a single
parameter, n, which is the only state stored for the implicit version
of Wpre. Further, we can evaluate the matrix-vector product y =
Wprex using a simple one-pass algorithm over x. Thus, the implicit
Prefix workload representation achieves O(1) space complexity and
O(n) time complexity for computing matrix-vector products.

While the original version of ✏ktelo exploited sparse matrix rep-
resentations for some objects, we improve and extend our matrix
representations to include implicit matrices in [39]. We describe a
set of core implicit matrices, operations to combine them to form
new implicit matrices, along with implementations of key opera-
tions on matrices, demonstrating significant performance improve-
ments for ✏ktelo plans. One of the most important operations on
implicit matrices is inference, which we discuss next.

5.2 Scalable and general inference
Inference is a fundamental operator that can improve error with

no cost to privacy and, accordingly, we see that it appears in almost
every algorithm re-implemented in ✏ktelo (as shown in Fig. 2). But
inference can be a costly operation. Recall that the input to infer-
ence is a measurement matrix, denoted by M, containing m queries
defined over a data vector of size n, along with the list of noisy
measurement answers y. The most common inference method in
existing algorithms is based on minimizing squared error:

Definition 5 (Ordinary least squares (LS)).

x̂ = arg min
x2Rn

kMx � yk2 (1)

The least squares solution (Eq. (1)) is given by the solution to the
normal equations MT Mx̂ = MT y. Assuming MT M is invertible,
then the solution is unique and can be expressed as x̂ = (MT M)�1MT y.
Matrix inversion is often avoided in favor of matrix factorizations
of M, but these methods, which we will refer to as direct, have time
complexity cubic in the domain size, making it unacceptable when
n is greater than about 5000.

Algorithms in prior work [18, 33, 34, 37] have performed least
squares inference on large domains by restricting the selection of
queries, namely to those representing a set of hierarchical queries.
For this special case, inference can be performed in time linear in
the domain size, avoiding the explicit matrix representation of the
queries. We avoid this approach in ✏ktelo because it means that a
custom inference method may be required for each query selection
operation, and because it limits the measurement sets that can be
used. In addition, hierarchical methods only work for least squares
but not other inference methods, such as least squares with non-
negativity constraints (NNLS).

An alternative to the direct implementation of least squares infer-
ence uses an iterative gradient-based method, which solves the nor-

Table 1: For three new algorithms, (b), (c), and (d), the multi-
plicative factors by which error is improved, presented as (min,
mean, max) over datasets. For runtime, the mean is shown,
normalized to the runtime of standard MWEM. (1D, n=4096,
W=RandomRange(1000), ✏ = 0.1)

MWEM Variants ERROR IMPROVEMENT RUNTIME
Measure Selection Inference min mean max mean

(a) worst-approx MW 1 1 1 1
(b) worst-approx + H2 MW 1.03 2.80 7.93 354.9
(c) worst-approx NNLS, known total 0.78 1.08 1.54 1.0
(d) worst-approx + H2 NNLS, known total 0.89 2.64 8.13 9.0

mal equations by repeatedly computing matrix-vector products Mv
and MT v until convergence. The time complexity of these methods
is O(kn2) for dense matrix representations where k is the number
of iterations. We use a well-known iterative method, LSMR [12],
and empirically we observe LSMR to converge in far fewer than n
iterations when M is well-conditioned, and thus we expect k << n.

The benefits of iterative inference methods are amplified when
the underlying matrix representation is implicit. Letting Time(M)
denote the time complexity of evaluating a matrix-vector product
with M, the time complexity of least squares inference is O(k ·
Time(M)) where k is the number of iterations. For implicit ma-
trices, Time(M) is often O(n), resulting in a very favorable O(kn)
time complexity for inference. Iterative approaches, using implicit
matrices, are also well-suited to the other inference methods in
✏ktelo: least squares with non-negativity constraints (NNLS) and
multiplicative weights (MW).

We compare the performance of the above approaches for a fixed
measured query set consisting of binary hierarchical measurements
[18]. Fig. 3 shows that using sparse matrices and iterative methods
allows inference to scale to data vectors consisting of millions of
counts on a single machine in less than a minute. The use of im-
plicit matrices permits additional scale-up for both LeastSquares
and NNLS. We also compare against the custom inference method
introduced by Hay et al., denoted ‘Tree-based’ in the figure. It is
an algorithm that is logically equivalent to LeastSquares but spe-
cialized for hierarchically structured measurements. The general-
purpose LeastSquares implementation is able to scale to much
larger domains.

Importantly, the combination of general implicit matrix construc-
tion techniques with iterative inference results in flexible inference
capabilities for plan authors. With relative freedom, authors can
construct measurement matrices, or combine measurements from
di↵erent parts of a plan, and apply a single generic inference oper-
ator, which will run e�ciently.

6. ALGORITHMIC INNOVATIONS
The operator-based model of ✏ktelo enables novel improvements

to algorithm design through (i) operator inception, in which a new
operator is proposed for an operator class; (ii) recombination, where
di↵erent operator instances are substituted for those in an existing
plan to form a new plan; and (iii) plan restructuring, in which a plan
is systematically restructured by applying a general design princi-
ple or heuristic rule. In the original version of this paper [40], we
provide detailed examples of each of these innovation types. Below
we provide a single example, improving the well-known MWEM
algorithm, through operator inception and recombination.

The Multiplicative Weights Exponential Mechanism (MWEM)
[16] algorithm computes answers to a given workload of linear
queries. MWEM operates in a sequence of rounds, determined
by an input parameter. In each round it selects the worst-approx-
imated workload query with respect to its current estimate of the
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data, measures the selected query, and then uses the multiplicative
weights update rule to refine its estimate of the data.

When viewed as a plan in ✏ktelo, a deficiency of MWEM be-
comes apparent. Its query selection operator selects a single query
to measure in each round, whereas most query selection operators
select a set of queries, each measuring disjoint partitions of the data.
By the parallel composition property of di↵erential privacy, mea-
suring the entire set has the same privacy cost as asking any single
query from the set. This means that MWEM could be measuring
more than a single query per round (with no additional consump-
tion of the privacy budget).

To exploit this opportunity, we designed a new query selection
operator that adds to the worst-approximated query by attempting
to build a binary hierarchical set of queries over the sequence of
rounds of the algorithm. In round one, it adds any unit length
queries that do not intersect with the selected query. In round two,
it adds length two queries, and so on.

Adding more measurements to MWEM has an undesirable side
e↵ect on runtime, however. Because it measures a much larger
number of queries across rounds of the algorithm and the runtime
of multiplicative weights inference scales with the number of mea-
sured queries, inference can be considerably slower. Thus, we
also use recombination to replace it with a version of least-squares
with a non-negativity constraint (NNLS) and incorporate a high-
confidence estimate of the total which is assumed by MWEM.

Using ✏ktelo, it was easy to describe three MWEM variants,
which are shown in Fig. 2: an alternative query selection operator
(Plan #13) which augments selected measurements with hierarchi-
cal queries, an alternative inference operator (NNLS) (Plan #14),
and the addition of both alternative operators (Plan #15).

Table 1 shows the experimental results over a collection of 10
datasets taken from [17]. The performance of the first variant on
line (b) shows that the new query selection operator can signif-
icantly improve error: by a factor of 2.8 on average and by as
much as a factor of 7.9. As explained above, it also has a con-
siderable impact on performance because inference must operate
on a larger set of queries: the slow down is a factor of more than
300. Line (c) shows that using the original MWEM query selec-
tion with NNLS inference has largely equivalent error and runtime
to the original MWEM. However, combining augmented query se-
lection with NNLS inference, shown on line (d), reduces runtime
significantly while maintaining good accuracy: it is still slower than
the original MWEM algorithm, but by only a factor of 9. The per-
formance gains of NNLS inference over MW appear to be most
pronounced when the number of measured queries is large. Over-
all, the algorithm variant (d) would likely be favored by users, who
are typically willing to sacrifice e�ciency for greater accuracy.

7. RELATED WORK
A number of languages and programming frameworks have been

proposed to make it easier for users to write private programs [10,
29,32,35]. The Privacy Integrated Queries (PINQ) platform began
this line of work and is an important foundation for ✏ktelo. We
use the fundamentals of PINQ to ensure that plans implemented in
✏ktelo are di↵erentially private. In particular, we adapt and extend
a formal model of a subset of PINQ features, called Featherweight
PINQ [10], to show that plans written using ✏ktelo operators sat-
isfy di↵erential privacy. Our extension adds support for the parti-
tion operator, a valuable operator for designing complex plans.

Additionally, there is a growing literature on formal verification
tools that prove that an algorithm satisfies di↵erential privacy [4,6,
13,38]. For instance, LightDP [38] is a simple imperative language
in which di↵erentially private programs can be written, allowing

verification with little manual e↵ort. LightDP’s goal is orthogonal
to that of ✏ktelo: it simplifies proofs of privacy, while ✏ktelo’s goal
is to simplify the design of algorithms that achieve high accuracy.

Concurrently with our work, Kellaris et al. [19] observe that al-
gorithms for single-dimensional histogram tasks share subroutines
that perform common functions.

The use of inference appears in many di↵erentially private algo-
rithms [3, 5, 7, 18, 22, 23, 25, 31, 36, 37, 43]. Proserpio et al. [31]
propose a general-purpose inference engine based on MCMC that
leverages properties of its operators to o↵set the otherwise high
time/space costs of this form of inference. Our work is comple-
mentary in that we focus on a di↵erent kind of inference (based on
least squares) in part because it is used, often implicitly, in many
published algorithms.

A full treatment of automated plan optimization is an important
future goal for ✏ktelo, however ✏ktelo could directly incorporate
limited forms of automation already proposed in the literature. The
matrix mechanism [25,27] formulates an optimization problem that
corresponds to automated query selection in ✏ktelo. Other recent
work [20, 26] considers the problem of data-dependent algorithm
selection. These methods could be adapted to automatically select
from a set of predefined plans in ✏ktelo.

8. CONCLUSIONS AND FUTURE WORK
We have described the design and implementation of ✏ktelo: an

extensible programming framework and system for defining dif-
ferentially private algorithms. Many state-of-the-art di↵erentially
private algorithms can be specified as ✏ktelo plans, consisting of
sequences of operators, increasing code reuse and facilitating more
transparent algorithm comparisons. Algorithms implemented in
✏ktelo are often faster and return more accurate answers.
✏ktelo is extensible and we hope to expand the classes of tasks

that can be supported. First, ✏ktelo is currently focused on statisti-
cal queries on a single table. Supporting more expressive aggregate
queries, for example those expressible as SQL queries over multi-
relational schemas, will require a number of extensions, including
more complex transformations, advanced stability analysis, and im-
proved inference [21].

Second, ✏ktelo currently relies on materializing the data vector
in memory. Larger data vectors often occur with high-dimensional
data, and while parallel computation is one possible solution, pri-
vate algorithms may perform better when they are structured as a
collection of private measurements over lower-dimensional projec-
tions of the original data. The ✏ktelo architecture is well-suited to
perform transformation, selection, and measurement in such plans,
and could adopt recently proposed methods [28] to perform “global”
inference without materializing the full data vector.

Third, ✏ktelo provides a promising foundation for automatic op-
timization. Much like a relational optimizer, we envision adding a
component that can explore a plan space implied by the collection
of operators implemented in ✏ktelo. However, optimization here
has dual objectives (accuracy and e�ciency) and, in addition, it
may be important to accommodate user-defined accuracy metrics.
Further, the accuracy of some plans depends on the input data and
may incur a privacy cost if it is used naively by the system during
optimization.
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