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Abstract. Abrupt changes in the miner hash rate applied to a proof-of-
work (PoW) blockchain can adversely affect user experience and security.
Because different PoW blockchains often share hashing algorithms, min-
ers face a complex choice in deciding how to allocate their hash power
among chains. We present an economic model that leverages Modern
Portfolio Theory to predict a miner’s allocation over time using price
data and inferred risk tolerance. The model matches actual allocations
with mean absolute error within 20% for four out of the top five miners
active on both Bitcoin (BTC) and Bitcoin Cash (BCH) blockchains. A
model of aggregate allocation across those four miners shows excellent
agreement in magnitude with the actual aggregate as well a correlation
coefficient of 0.649. The accuracy of the aggregate allocation model is
also sufficient to explain major historical changes in inter-block time
(IBT) for BCH. Because estimates of miner risk are not time-dependent
and our model is otherwise price-driven, we are able to use it to antici-
pate the effect of a major price shock on hash allocation and IBT in the
BCH blockchain. Using a Monte Carlo simulation, we show that, despite
mitigation by the new difficulty adjustment algorithm, a price drop of
50% could increase the IBT by 50% for at least a day, with a peak delay
of 100%.

Keywords: Economic modeling · Performance · Cryptocurrencies

1 Introduction

Understanding how and why miners apply their hash rate to a given proof-of-
work (PoW) blockchain is critical to understanding both the security and user
experience of that chain. In this paper, we show that miner hash rate allocations
among blockchains can be largely explained by miner risk tolerance and fiat trade
price movements in the coins minted by those chains. Our aim is not to establish
causation, but we find that abrupt changes in the price of one coin relative to
the others is correlated with an abrupt change in miner hash rate allocations.
Such rapid drops in hash rate on a given blockchain present a security risk in
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that the probability of a double-spend attack increases inversely proportional to
the work applied to the chain [15]. A sudden drop in hash rate can also result
in a temporary increase in inter-block time, which constitutes a lapse in user
experience. Such a direct link between trade price and service quality is without
precedent among conventional financial services. It is analogous to credit card
transactions being processed more slowly whenever the stock price of Visa Inc.
drops.

Miners typically invest in ASICs, which are hardware implementations of a
particular PoW algorithm. Therefore, they can easily shift or reallocate their
hash rate between blockchains that share the same PoW algorithm. Currently,
the two largest blockchains, by market cap, that share the same algorithm are
Bitcoin (BTC) and Bitcoin Cash (BCH). It is broadly acknowledged that the
price of BCH relative to BTC is a strong determinant of miner allocation [3–
5]. But direct comparison of prices is problematic. For example, the difficulty
adjusted reward index (DARI) is a popular measure of the relative profitability
of mining on BTC versus BCH [6]. However, according to the DARI, one coin is
always more profitable than the other— so why does each miner typically divide
its hash rate allocation between chains? In the present work, we show how the
allocation can be explained by miners’ tolerance to variance in coin prices.
Contributions. Our primary contribution is an economic model for miner hash
rate allocation, which we develop as an application of the Modern Portfolio The-
ory of Markowitz [13]. We show that the model is capable of accurately explaining
the hash rate allocations of four out of the top five mining pools mining both
BTC and BCH over a six and a half month period1. During that timespan, the
model’s mean absolute error is at or less than 20% for those four miners, and the
predicted aggregate allocation demonstrates a Pearson correlation coefficient of
0.649 when compared to actual. In contrast, estimates of allocations based only
on short-term price changes or the DARI result in correlation coefficients of just
0.298 and 0.165, respectively. Our second contribution is demonstrating that
the hash rate allocation resulting from the economic model is capable of accu-
rately predicting major changes in the inter-block time (IBT) for BCH. Over
the same time interval, the IBT predicted by our economic model shows a Pear-
son correlation coefficient of 0.849 with the actual IBT. Because our predictions
are based primarily on the volatility of historical prices, the implication of this
strong agreement is that deviation in IBT can be largely explained by the risk
associated with fluctuations in coin prices. Finally, we use synthetic price data
and hash rate allocations from our economic model in simulation to shows how
the IBT would be affected by large fluctuations in the price of BCH. We find
that even with the new difficulty adjustment algorithm employed by BCH, a
price drop of 50% could increase the IBT by 50% for at least a day, with a peak
delay of 100%.

1 Data is available from http://traces.cs.umass.edu.
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2 Background

Mining Markets. Nearly every blockchain project uses a proof-of-work (PoW)
algorithm that is common to other projects. For example, of the top 50 cryp-
tocurrencies by market capitalization2, eight use SHA256 [15] including Bitcoin
Cash and Bitcoin, seven use Ethash [2] including Ethereum and Ethereum Clas-
sic, and 11 use Scrypt [16] including Litecoin and Dogecoin. For PoW algorithms
common to multiple currencies, miners are able to apportion their hardware
among them, and can also rapidly change this allocation. Miners began man-
ufacturing ASICs for SHA256 in 2013 [7], and ASICs for the Scrypt algorithm
became available in 2014 [1]. ASICs for the Ethash algorithm were also intro-
duced recently [20]. Mining with ASICs requires a large capital expenditure to
purchase the hardware, and that investment has the effect of locking miners into
a specific PoW algorithm in the medium-term. As a result, blockchain projects
that share the same PoW algorithm form multi-chain mining markets comprised
of miners who possess ASICs suitable for that algorithm.
Profitability of Mining. Although mining markets have existed for several
years, a miner’s choice of hash rate distribution among blockchains, which we
term allocation, remains somewhat mysterious [8]. A complicating factor is that
most miners participate via a mining pool, which aggregates the hash power
of its constituents and distributes mining rewards according to their hash rate.
The allocation represented by a mining pool depends on that pool’s policy. Most
allow individual miners to either choose the blockchain on which they wish to
mine, or follow the pool’s choice of the most profitable chain [4,5]. However, it’s
not always obvious how to determine profitability [3]. What seems clear is that
the choice of allocation is related to short-term profitability [6]. But long-term
financial and idealogical concerns likely also play an important role.

Ignoring idealogical and long-term financial determinants, there are several
factors that contribute to the relative profitability of mining between blockchains
in the same mining market, including: (i) the relative fiat trade value of each coin;
(ii) any hinderances to converting mining profits into fiat currency (e.g., poor
coin liquidity); and (iii) the relative difficulty in mining the coins. The question of
relative difficulty is particularly interesting from a technical standpoint because
generally each blockchain in a mining market implements a different difficulty
adjustment algorithm (DAA). The update frequency and accuracy of each DAA,
relative the others, plays a critical role in how profitability changes over time.
Difficulty Adjustment Algorithms. In this paper, we present an in-depth
analysis of mining profitability in the SHA256 mining market where Bitcoin
(BTC) and Bitcoin Cash (BCH) together comprise 99% of the market cap;
together these two comprise 67% of the market cap of all cryptocurrencies. In
BTC, the difficulty is recalibrated every 2016 blocks by adjusting it either up
or down inversely proportional to the deviation in mean inter-block time from
optimal3. Since the hard fork on November 13, 2017, BCH performs a similar

2 https://minethecoin.com.
3 http://github.com/bitcoin/bitcoin/blob/master/src/pow.cpp#L49.
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adjustment except that it occurs every block and covers a window of 144 prior
blocks4. Prior to the November 13 hard fork, BCH used the same DAA as BTC
except that it also implemented an Emergency Difficulty Adjustment algorithm
(EDA) [18]. The EDA simply cut the difficulty by 20% any time that it took
more than 12 h to mine the last six blocks.

3 Related Work

There are several past works related to our contributions. To the best of our
knowledge, we are the first work to evaluate, in a multi-blockchain market, the
link between prices, hash rate allocation, and system performance. Most past
work related to mining efficiency has focused on mining on a single blockchain.
Rosenfeld [17] was one of the first authors to explore financial incentives in
mining pools. He detailed several payout schemes and showed how they fare
against several types of miner behavior. One particularly interesting behavior is
called pool hopping, which involves a miner switching between pools mining the
same coin in order to gain higher profits. This behavior is the single-blockchain
analog to the multi-blockchain mining we analyze in this paper. Fisch et al. [12]
conducted an analysis of pool payout strategies for mining on a single blockchain
using discounted utility theory. They found that the geometric pay pool—in
which rewards are concentrated at the winning block and decay exponentially
over the preceding shares—achieves the optimal equilibrium utility for miners.
Our focus is not on payout strategies for pools.

Meshkov et al. [14] considered miners switching between multiple blockchains.
They argued that it is profitable for a miner to hop between blockchains with
the same PoW algorithm, causing oscillations in difficulty that the miner can
use to boost profit. The paper calculates the expected additional reward for the
miner and shows that under this scheme the expected average inter-block time
(IBT) on both chains exceeds the target time. The work is similar to ours in that
it considers the profitability of moving hash rate between blockchains—however,
it stops short of developing an economic model of hash rate allocation. In par-
ticular, the authors do not account for the influence of coin price on allocation;
nor do they attempt to determine an equilibrium allocation. Moreover, it is not
clear that chain hopping is currently pervasive in blockchains. For example, if
miners do commonly engage in chain hopping on BCH, then the results from the
paper predict that IBT should substantially exceed the target of 600 seconds,
but we find the mean IBT to be 604 seconds since the November 13, 2017 hard
fork.

Several authors have formulated economic models of the mining ecosystem
in an effort to predict or explain coin price. In contrast, we are not attempting
to discover what drives price, but rather how price drives system performance.
For example, Cocco and Marchesi [10] used an agent-based model of the mining
process to show its relationship to Bitcoin price. The model had some success in
4 http://github.com/bitcoincashorg/bitcoincash.org/blob/master/spec/nov-13-hard-

fork-spec.md.
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Fig. 1. Fraction of miner hash rate allocated to the BCH blockchain instead of the BTC
blockchain (left) and square root of risk tolerance (right). Shown here are only the top
five miners that historically mine on both chains. In the right plot, risk tolerance is in
units of the USD price of BTC + BCH at the given time.

predicting large price peaks as well as some statistical properties of the Bitcoin
ecosystem. Chiu et al. [9] developed a general equilibrium monetary model for
Bitcoin and similar cryptocurrencies. A major consequence of the model is that
cryptocurrencies must trade off between immediacy and finality of settlements.

4 Miner Hash Allocation

In this section, we develop a theory of how and why, in economic terms, miners
distribute their hash power among competing blockchains. The recent split of
Bitcoin Cash (BCH) from Bitcoin (BTC) provides an important case study for
us: each currency is highly valued and both rely on the same PoW algorithm.
As a result, it is trivial for miners to distribute their hash power among the
two blockchains as they see fit. This presents a conundrum for us: at any given
time, it is almost always more profitable to mine exclusively on one chain or the
other; yet, among miners that participate in mining on both chains, hash rate
allocation is typically divided between the two. Figure 1 (left) plots the history
of several mining pools’ allocation of hash rates to BCH as a fraction of their
respective total resources. Thus, it appears that miners are not actually acting
in purely greedy fashion, and we require a model that accounts for this nuance.

We hypothesize that miners are acting in a manner so as to maximize their
profit subject to a particular risk tolerance. That is to say, miners seek greater
profits, but they are also sensitive to the high volatility of holding cryptocurren-
cies. The exposure to this volatility is quantifiable: most blockchains impose a
multi-block cooldown period during which miners are not allowed to spend their
newly minted coins. For example, in both BTC and BCH, miners are required to
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hold their mined coins for a minimum of 101 blocks (roughly 17 h)5. Thus, miners
hold a short-term portfolio of the cryptocurrencies that they mine6. The Modern
Portfolio Theory (MPT) of Markowitz [13], a seminal result in economics, pro-
vides a framework for determining the best allocation of assets with respect to
profit expected value and volatility. We next develop a model of optimal miner
hash rate allocation using the MPT framework.

4.1 An Economic Model

Consider a set of distinct blockchains C = [C1, . . . , Cn] that share the same PoW
algorithm, and let vector π denote the miner profit for each. For miner j, define
wj = [w1j , . . . , wnj ] to be the allocation of this hash rate to the blockchains C.
And let vector h = [h1, . . . , hm] denote the total hash rate for each miner across
all blockchains. The aggregate allocation among all miners is given by

w =
∑

j

wj
hj

eT h
, (1)

where e is the vector of all ones. Aggregate allocation captures the overall dis-
tribution of mining power among all blocks chains C.

We pause here to illustrate the definitions above. Suppose that miner M1

produces 5E total hashes per second (where “E” denotes Exahash) and allo-
cates 30% of his hash rate to BTC and 70% to BCH. Meanwhile miner M2

produces 3E hashes per second and allocates 10% and 90% of her hash rate to
BTC and BCH, respectively. In terms of the notation above, we let C1 and C2,
respectively, denote the BTC and BCH blockchains. Vectors w1 = [0.3, 0.7] and
w2 = [0.1, 0.9] are the allocations for miners M1 and M2, respectively. And the
total hash rate vector is h = [5E, 3E]. Finally, the aggregate allocation is given
by w = [0.3 5

8 + 0.1 3
8 , 0.7 5

8 + 0.9 3
8 ] = [0.225, 0.775].

Next, define Σ = Cov(π), or the covariance of π, which we call the volatility
matrix. For a miner’s allocation wj , the risk is given by wj

T Σwj . And the risk
tolerance of miner j, given by ρj , is defined as his maximum allowable risk. MPT
predicts that a rational miner j seeking to maximize expected profits will solve
the following problem (although perhaps not explicitly):

PROBLEM MaxProfit(j):
Maximize: E[wj

T π]
Subject to: wj

T Σwj = ρj , wj
T e = 1,

and e = [1, . . . , 1]

5 http://github.com/bitcoin/bitcoin/blob/master/src/consensus/consensus.h#L19,
http://github.com/BitcoinUnlimited/BitcoinUnlimited/blob/release/src/
consensus/consensus.h#L31.

6 Note that miners can conceivably sell their coins to another party before the end of
the cooldown period, but because the purchasing party must assume the associated
risk, we expect that the transaction price must also take into account the volatility
of the coin.

http://github.com/bitcoin/bitcoin/blob/master/src/consensus/consensus.h#L19
http://github.com/BitcoinUnlimited/BitcoinUnlimited/blob/release/src/consensus/consensus.h#L31
http://github.com/BitcoinUnlimited/BitcoinUnlimited/blob/release/src/consensus/consensus.h#L31
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We solve MaxProfit using Lagrange multipliers in similar fashion to
Dhrymes [11]. However, in our formulation we do not allow for a portion of
the portfolio to be allocated at the risk-free rate of return because we assume
that miners are locked into their investment in mining hardware. Thus, we
solve the system of equations associated with the critical points of the following
Lagrangian:

Lj = wj
T E[π]+

λj1(ρj − wj
T Σwj )+

λj2(1 − wj
T e),

(2)

which yields the following solution.

wj = Σ−1 E[π ]−λj2e
2λj1

λj1 = 1
2 (b − aλj2)

λj2 = b
a ±

√
(b2−ac)(1−aρj)

a(1−aρj)

a = eT Σ−1e

b = eT Σ−1E[π]

c = E[π]T Σ−1E[π].

(3)

4.2 Profit and Volatility in Multi-chain Mining

In a typical portfolio optimization problem [13], the profit for an asset, π, is
defined as the change in asset value over a given period of time Δt. However,
miners are creating assets as opposed to merely acquiring them, so their profit
should nominally account for the full fiat trade value of each coin that they
mine. Still, miners contribute hash power to each blockchain, which amounts to
an associated cost. Therefore, the ideal measure of profit is one that normalizes
the fiat price of cumulative coinbase rewards by the relative difficulty.

Another complication is that miners can change their allocation at any time
and for little-to-no cost. Thus, we hypothesize that they will re-evaluate Prob-
lem MaxProfit at every instant t. Hence, we seek parameterized representa-
tions of the profit vector and volatility matrix: π(t) and Σ(t). To that end, let
R = [R1(t), . . . , Rn(t)] be a vector representing the fiat value of coinbase reward
for each blockchain at time t (fees are ignored in this model). And define
D = [D1(t), . . . , Dn(t)] to be the associated difficulties for those chains at the
same time. We define the profit at time t by

π(t) = R(t)/D(t)
eT D(t)
eT R(t)

, (4)

where “/” denotes component-wise division and e is the vector of all ones. Note
that our definition for π(t) is equivalent to the Difficulty Adjusted Reward Index
(DARI), a popular mining profitability metric [6], except that we ignore fees and
normalize by the aggregate fiat value of all chains, eT R(t), and total difficulty,
eT D(t). Normalizing by eT R(t) is necessary because cryptocurrency prices can
fluctuate significantly over short periods, and normalization allows us to more
directly compare profits at different times. Similarly, normalizing by eT D(t)
allows us to ignore the effect of fluctuations in total hash rate on miner profit.
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Given our definition for π(t), the expected profit vector, E[π(t)], can be
approximated by the sample mean over all π from time (t − Δt) until t. For
volatility, we hypothesize that miners are concerned about price changes only
over the short cooldown period Δc that extends from the time a coin is mined
until the time it can be traded for fiat currency. Thus, we seek to capture relative
changes in profit between all blockchains during Δc. For simplicity, we assume
that Δc is the same for all chains. Finally, we define the volatility matrix by
Σ(t) = Cov(π(t) − π(t − Δc)). Σ(t) can be approximated by the sample covari-
ance over the set of vectors: {π(x) − π(x − Δc) | t − Δt ≤ x ≤ t}.

5 Model Validation and Parameter Fitting

In general, a miner’s choice in hash rate allocation results from a complex combi-
nation of economically rational profit seeking and more subtle idealogical consid-
erations. As such, we do not expect that the solution to Problem MaxProfit can
fully predict miner allocations; however, in this section we seek to demonstrate
that it is capable of explaining much of their behavior. To do so, we analyzed
approximately 6.5 months of price and blockchain data from BCH and BTC
between November 14, 2017 and June 1, 2018. We intentionally omit data prior
to the BCH hard fork on November 13, 2017, which introduced a new DAA.
Prior to the fork, both BCH block times and prices were exceptionally irregular
due to high price volatility as well as rampant manipulation of the EDA [19].
As a result, it is very difficult to accurately estimate actual miner allocations or
infer their risk tolerance during the EDA time period.

For each blockchain, we calculated the time-parameterized profit vector and
volatility matrix as described in Sect. 4.2 using hourly price data from the
Bitfinex exchange. We chose unique but fixed values for lookback Δt and risk tol-
erance ρ for each miner using the techniques described in Sects. 5.1 and 5.2. For
both BTC and BCH chains, we set Δc = �101/6� hours to match their 101-block
cooldown period. We analyzed each of the top five mining pools on BCH that
are also active on BTC, excluding the mining by pools that do not claim blocks.
We determined the actual allocations for each miner, wj(t), by first calculat-
ing the average fraction of blocks produced per hour on each blockchain using
an exponentially weighted moving average with a half-life of 10 h. Estimating
hash allocation from mined blocks is very noisy, and using a weighted average
of recent blocks allowed us to arrive at a more smooth estimate. These aver-
age block rates were translated into allocations after normalizing by the relative
difficulty of each chain.

5.1 Inferred Miner Risk

Our economic model predicts that each miner allocates her hash rate based
on the historical profit for each coin as well as her personal risk tolerance. A
miner’s risk can be inferred from her current allocation and volatility matrix
Σ(t). According to the model, we assume that any given miner will exhibit a
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consistent risk tolerance. Furthermore, for a given risk tolerance, we anticipate
that the actual allocation chosen by miners will match the economic allocation
produced by the model.

Risk ρj is measured in units of squared deviation in profit. And because
profit is normalized by the sum of fiat prices of each chain in C (see Sect. 4.2),
the square root of risk, or root risk, also has units of BTC + BCH (which we
write as BTC+, for short). Therefore, the root risk can be interpreted as the
maximum deviation in profit, in units of BTC+, that is tolerated by the miner
during the cooldown period Δc. For example, when 1 BTC trades for 10 BCH
(BCH/BTC = 0.1), a miner with root risk 0.043, who is allocated entirely to
BCH, will tolerate a decrease to BCH/BTC = 0.05 during Δc.

Figure 1 (right) shows the root risk for each of the top five mining pools that
mine both BTC and BCH. The relative risk tolerance among miners remains
very consistent over time. The Bitcoin.com mining pool exhibits the highest
risk tolerance, while BTC.com shows the lowest. ViaBTC maintains root risk
roughly between 0.01 and 0.1 BTC+, while AntPool and BTC.TOP typically
range from 0.003 to 0.03 BTC+, and BTC.com fluctuates between 0.001 and 0.01
BTC+. In absolute terms, Bitcoin.com also demonstrates the largest variation
in risk tolerance, showing a high of 0.3 BTC+ at the end of November and
recent low near 0.06 BTC+. From Fig. 1 (left) we can see that differences in risk
tolerances are roughly reflected by the choice in miner allocations. For example,
Bitcoin.com is mostly allocated to mining BCH, while BTC.com mines BTC
almost exclusively.

Fig. 2. Risk and price juxtaposed. The top two facets show the risk for BTC and
BCH associated with allocating all hash rate to either the BTC or BCH blockchain,
respectively. The bottom facet shows the price ratio of BCH to BTC; the price for each
was drawn from the Bitfinex exchange where it was quoted in terms of USD.

Figure 2 juxtaposes the risk associated with mining exclusively on the BTC or
BCH blockchains with the BCH/BTC trade price ratio taken from USD quotes
on the Bitfinex exchange. The risks for each blockchain were calculated using
a lookback of Δt = 48. Problem MaxProfit utilizes information from all three

https://www.bitcoin.com/
https://btc.com/
https://btc.com/
https://www.bitcoin.com/
https://www.bitcoin.com/
https://btc.com/


164 G. Bissias et al.

facets to derive the economic allocation. There are several notable features in
these curves. First, from Fig. 1 (right), we can see that risk rose sharply for
miners allocated to BCH near the end of 2017. The top two facets of Fig. 2
indicate that this was a period where risk in mining BCH rose far faster than for
BTC, while the bottom facet shows that BCH simultaneously made major gains
on BTC in terms of price. We hypothesize that this indicates that miners are
willing to relax their risk tolerance at times when they anticipate major gains for
one coin over another (in this case BCH over BTC). Second, not all major price
movements will result in increased risk for the current allocation. Because it was
gradual, the increase in the price of BCH relative to BTC at the end of April is
not accompanied by a large rise in risk for either blockchain. Nevertheless, we
do see from Fig. 1 (left) that mining pools BTC.TOP and AntPool substantially
increased their BCH allocation during this time. As a result, their risk rose
accordingly.

Despite the tendency for risk tolerance to fluctuate during abrupt price move-
ments, Fig. 1 (right) still reflects overall consistency in inferred root risk for most
miners except Bitcoin.com. For the remaining miners, we believe that a single
risk tolerance ρj chosen for each miner j is sufficient to describe much of that
miner’s behavior, and therefore our economic model may provide a reliable pre-
diction of their allocation of hash power. In order to choose ρj for a given miner,
we tested 8 equally spaced risk values falling between the 25th and 75th per-
centiles of the historical inferred risk values for that miner. For each risk value,
and each possible lookback chosen from the set described in Sect. 5.2, we cal-
culated the economic allocations using our model and compared them to the
actual allocations chosen by the miner using the Kolmogorov-Smirnov test for
goodness-of-fit. We selected the value for ρj that yielded the best fit of the
economic allocation to the actual. Results are shown in Table 1.

5.2 Determining Miner Lookback Period Δt

Risk is only one factor used to determine the optimal allocation. Another impor-
tant factor is the lookback period Δt. This period dictates how much historical
data will be used to calculate expected profit and volatility. For miners there
is a tradeoff between accuracy and immediacy. On one hand, using the entirety
of historical data will yield the most accurate estimate of the overall value of
the statistics. But on the other hand, older data is likely to be less relevant,
particularly when market characteristics can change abruptly.

We determined the optimal Δtj for miner j by testing the following values.

S = {4-22 in increments of 6} + {24-144 in increments of 24}
+{168-1344 in increments of 168} (5)

For each Δtj ∈ S and each potential risk value ρj (chosen according to the
procedure described in Sect. 5.1), we determined the optimal economic allocation
by solving MaxProfit using statistics E[π(t)] and Σ(t), which were formed as
described in Sect. 4.2. We then chose the values for Δtj and ρj for miner j

https://www.bitcoin.com/
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Table 1. Optimal lookback (hours) and risk parameters and mean absolute error for
the top 5 miners who mine both BTC and BCH based on observable data.

Mining Pool Lookback Risk Mean error

ViaBTC 144 6.42 e-04 20.0%

BTC.TOP 16 8.54 e-05 20.7%

Bitcoin.com 1,008 2.40 e−03 36.0%

AntPool 10 3.33 e-05 17.0%

BTC.com 4 3.81 e−06 14.4%

corresponding to the economic allocation that yielded the best fit relative to the
actual allocation according to the Kolmogorov-Smirnov test. Table 1 shows the
chosen values for Δtj and ρj for the top five miners. We use these values in the
remainder of our analysis.

Fig. 3. Actual and economic hash rate allocations for the two largest pools that mine
both BTC and BCH: ViaBTC (left) and Bitcoin.com (right). In each figure, the actual
allocation (blue) is compared to the optimal economic allocation (orange), the latter
of which is formed using parameters chosen from Table 1 for each miner.

5.3 Comparing Actual to Optimal Allocations

Figure 3 compares actual allocations to allocations from our risk and price-driven
economic model for the two largest pools participating in both BTC and BCH
mining: ViaBTC and Bitcoin.com. We determined the optimal economic alloca-
tions by selecting the parameters from Table 1 and solving Problem MaxProfit.
Figure 3 shows strong agreement between economic and actual allocations for
ViaBTC. On the other hand, the economic allocation for Bitcoin.com shows
very poor agreement with actual during the months prior to April, 2018. As a
result, we hypothesize that there do not exist any single values for risk toler-
ance and lookback that can describe the hash rate allocation of Bitcoin.com over

https://www.bitcoin.com/
https://btc.com/
https://www.bitcoin.com/
https://www.bitcoin.com/
https://www.bitcoin.com/
https://www.bitcoin.com/
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the entire time period. This hypothesis is corroborated by Fig. 1 (right), which
shows that inferred root risk has been decreasing rapidly since late November
2017. For this reason, we omit the Bitcoin.com mining pool from the remainder
of our analysis, as its allocations are not described well by our economic model.

Figure 4 shows the absolute error and aggregate allocation for the top four
pools (excluding Bitcoin.com) that participate in mining on both BTC and BCH.
Together, these pools constitute approximately 48% of the total hash rate for
BCH. From the plot of absolute error, we can see that economic and actual
allocations are typically quite close for the four mining pools; Table 1 shows that
their mean error is at or below 20%. The low error results in strong agreement
between the actual and economic aggregate allocations, shown in Fig. 4 (right).
We used Eq. 1 for aggregating both actual and economic allocations.

For comparison, we also plot two other price-driven allocations: D(BCH)
/ (D(BCH) + D(BTC)) and P (BCH) / (P (BCH) + P (BTC)). The function
D denotes the DARI, which is the value of the given chain’s coinbase in USD
divided by the current difficulty (we ignore fees). And the function P denotes the
USD trade price. Neither the relative DARI nor relative price show strong agree-
ment with actual allocations. Their Pearson correlation coefficients are 0.165 and
0.298, respectively, and the magnitudes of the allocations are also quite different
than actual. In contrast, the economic allocation provided by our model shows
strong agreement with the actual allocations both in terms of correlation coeffi-
cient, 0.649, as well as general similarity in the magnitude of the allocation. For
this reason we believe that it is valid to employ our economic model in describing
the aggregate behavior of the top four mining pools, excluding Bitcoin.com.

Fig. 4. Absolute error between economic and actual allocations (left) and aggregate
allocation (right) for the top four pools (excluding Bitcoin.com) mining both BTC and
BCH.

6 Using Risk to Explain Change in Inter-Block Time

Based on the economic model introduced in Sect. 4.1, we hypothesize a direct
relationship between short-term price fluctuations and deviation in inter-block
time (IBT). In particular, we hypothesize that a large change in the expected
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profit E[π(t)] will lead to a large change in a miner’s hash rate allocation wj(t),
which will propagate to the aggregate allocation w(t) defined by Eq. 1, and
ultimately impact IBT until the difficulty is adjusted.

Let T = [T1, . . . , Tn] denote the target IBT for each blockchain. If we assume
that the elapsed time δt was short enough that no blockchain has yet substan-
tially updated its difficulty, then the expected IBT will have changed by

δT = w(t)/w(t + δt) ◦ T , (6)

where “◦” and “/” denote element-wise vector multiplication and division.
Prediction of Change in IBT. Equation 6 provides a means of using our
economic model to predict the change in IBT from only historical price data and
miner risk tolerances. We analyzed historical data from November 14, 2017, until
June 1, 2018 using the aggregate economic allocation (with parameters chosen
from Table 1) to estimate the change in IBT for the BCH blockchain from one
6 h period to the next (non-overlapping) 6 h period. The experiment used the
top four mining pools, excluding Bitcoin.com, which constitute approximately
48% of the total hash rate on BCH during that time. Figure 5 shows the result of
these predictions compared to actual change in IBT using a 7-day rolling average
for both curves.

Despite being quite noisy, the figure shows a strong correlation between pre-
dicted and actual IBT change throughout the six and a half month timeframe.
The Pearson correlation coefficient between predicted and actual IBT is 0.849.
In addition to correlation, the predicted change in IBT also echoes the mag-
nitude of changes in actual IBT. However, the predicted result does appear to
consistently under-estimate the extent of change by as much as 0.05. There are
two possible reasons for this inaccuracy. First, our price data is accurate only
to the nearest hour, so it is possible that the full extent of large price shocks
is not reflected in the economic allocation. And second, ignoring the effects of
the DAA introduces a subtle bias. The DAA is much better at compensating for
an IBT that is too short as opposed to too long. When the IBT is short, more
blocks are arriving, so the algorithm has more opportunities to adjust the diffi-
culty. In contrast, when the IBT is very long, few adjustments are made since
the difficulty cannot be changed between blocks. Thus, IBT change less than 1
tends to be minimal while change greater than 1 tends to be exaggerated. Indeed
changes below 1 are small enough that the 7 day rolling average of the actual
IBT eliminates them entirely. But because the predicted IBT does not model
the effects of the DAA, it treats drops in allocation identically to spikes.

7 DAA Susceptibility to Price Shocks

In this section, we use our economic model to quantify how specific price changes
affect inter-block times (IBTs) via changes in hash rate allocation. We show that
even with a proactive controller that adjusts the difficulty every block, like the
DAA currently implemented for BCH, large enough price shocks can still lead to
long delays in IBT with affects being felt for a day or more. In reality, prices and

https://www.bitcoin.com/


168 G. Bissias et al.

Fig. 5. Predicted (blue) and actual (pink) change in BCH inter-block time during one
6 h period compared to the next (non-overlapping) 6 h period. Predicted change in
block time is calculated using Eq. 1 and solving Problem MaxProfit with parameters
chosen from Table 1. (Color figure online)

their volatility are not the only determinants of miner behavior, but in Sects. 5
and 6 we presented evidence that these economic factors are often sufficient for
accurately explaining real world miner allocations and ultimately IBT.

Blockchains compensate for changes in hash rate with an algorithmic change
in difficulty. Ideally, the difficulty is changed so that IBT remains at a desired
mean, which is 600 seconds per block for BCH. Below, we quantify how a price
shock—a single, sudden rise or drop in price of BCH compared to BTC—can
change IBT given the current BCH difficulty adjustment algorithm (DAA). We
begin by characterizing typical price changes in BCH relative to BTC using
price data from November 2017 through May 2018. We then quantify how var-
ious changes in BCH price can affect allocation and IBT under a simplifying
assumption that all miners are applying the economic model.
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Fig. 6. The fraction of a given hour’s price to the price 24 h earlier, where price is
defined as BCH/(BTC+BCH). 98% of the time, the fraction is between 0.8 and 1.2.
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Figure 6 shows, for each hour, the fraction change in price from the previ-
ous 24-h period to the next (non-overlapping) 24-h period. Price is defined as
BCH/(BTC+BCH). As the plot shows, 98% of the time, daily price changes are
no greater than 20%. However, eight times the price changed approximately 30%
or more and once it changed by 80%. Thus, there exists historical precedence
for a maximum 24-h change of nearly 100%.

Section 6 argued that the aggregate allocation given by solving Problem
MaxProfit and applying Eq. 1 can be used to roughly predict actual IBT changes
even without taking into account the effect of the DAA on block time regulariza-
tion. We speculated that our failure to take the effect of the DAA into account
was a major cause of the downward bias in the prediction. Regardless of the
reason for the bias, Fig. 5 shows that the aggregate economic allocation can
accurately predict major changes in IBT, and if anything, might tend to under-
estimate the extent of increases in IBT. Thus, we believe that our economic
allocation provides a sufficiently accurate estimate of actual miner allocations to
be used to predict the effect of a price shock on IBT.
Price Shock Experiment. To quantify the effects of various price shocks, we
ran a block-generation simulator that updated the synthetic coin price every
block. All prices for BCH were initially set to p, the mean USD value for BCH
between November 2017 through May 2018. Each experiment introduced exactly
one shock x ∈ (0, 4], which set all prices subsequent to this shock block to px.
Thus, the BCH prices for each experiment formed a step function with a step
up in price after the shock block when x > 1 and a step down when x < 1. To
establish baseline volatility, we also added uniform random noise in the range
[−0.1p, 0.1p] to all prices. Prices for BTC were generated similarly except that no
shock was introduced and the base price p was set to BTC’s mean USD price over
the same time period. For each experiment, corresponding to a separate shock,
we ran at least 180 trials of the following Monte Carlo (MC) simulation. (i)
We formed the aggregate economic allocation for the top four miners (excluding
Bitcoin.com) by solving Problem MaxProfit using the synthetic prices for the
given experiment and parameters from Table 1 and substituting the result into
Eq. 1. (ii) The difficulty was initially set to an arbitrary value and allowed to
reach equilibrium at the pre-shock price. (iii) We stepped through the generation
of each block, adjusting the allocation every block according to the economic
allocations to determine the hash rate for the mining process. (iv) After each
block, we ran the DAA to adjust the difficulty according to the IBT of the mined
blocks.

Figure 7 (Top) shows the median change in economic allocation over all sim-
ulation trials that results from a single price shock x given by the value shown
in the legend. Figure 7 (Bottom) shows the corresponding changes in mean IBT.
Overall, we see that, even with compensation from the DAA, a drop in price
of as little as 50% can increase mean IBT by more than 50% for an entire day,
while a drop to 10% of the original value can double the mean IBT for at least a
day. Similarly, a rapid price increase by 50% is expected to raise the mean IBT
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Fig. 7. The change in allocations (Top) and therefore inter-block time (Bottom) that
results from a single price shock that is larger than typical. The price shock is deter-
mined by a multiplier, shown in the legend. Allocations decrease as volatility increases,
which causes inter-block time to rise. For example a shock of 1.5 increases the price by
50% on day 1 and from there the price does not change. (From Monte Carlo simulation,
risk and lookback parameters from the top four BCH miners excluding Bitcoin.com.)

by 50% for at least a day, and an 800% price increase could more than double
the mean IBT for a day or more.

It is somewhat counterintuitive that both price drops (left plots) and
increases (right plots) result in lower economic allocations initially, and in the
long run, allocations actually stabilize to higher values after a price drop and
lower values after a spike. Allocations drop immediately after the shock date
because volatility has risen for BCH relative to BTC, regardless of the direction
of the shock. Essentially the economic allocation follows the maxim, “what goes
up must come down”. However, it is reasonable to question how realistic this
aspect of the economic model is during a price spike for BCH. Indeed, Figs. 1
(left) and 2 indicate that all of the top five miners except Bitcoin.com increased
their allocation in BCH after it massively gained in price on BTC at the end of
2017, despite the commensurate rise in risk. On the other hand, both ViaBTC
and Bitcoin.com reduced their allocation after the price (and risk) increase at the
end of May. The long-term rise in allocation after a price drop is simply due to
the fact that the baseline volatility relative to BTC becomes slightly lower after
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prices have stabilized and cleared every miner’s lookback period. The opposite
is true for the relative volatility after a price spike.

Another feature of the price shock simulation is the delayed after-shock
observed approximately seven days later. Mathematically, this is the result of
the expiration of the longest lookback period, corresponding to ViaBTC (see
Table 1). Prior to the date in question, there exist prices in the lookback from
both before and after the shock. Thus, the volatility remains high relative to
the baseline. However, once the last pre-shock price has cleared the lookback
period, volatility abruptly returns to baseline, causing a substantial increase in
allocation to BCH and a corresponding decrease in IBT. Over the course of
approximately one day, the DAA returns the IBT to normal. Although we do
believe that it is plausible that miners use price data from the recent past to
determine their current allocation, it is perhaps unlikely that they implement
such a hard cutoff as to produce a sudden shift in allocation. For that reason we
regard the aftershock as a modeling idiosyncrasy.

8 Conclusions

We have presented an economic model of miner hash rate allocation inspired
by Modern Portfolio Theory. The model is sufficient to explain, with low error,
the individual allocations of four of the top five mining pools active on both
BTC and BCH blockchains. Taken together, they form a very accurate model
of aggregate miner allocation between BTC and BCH using only historical price
data, a single risk value, and a single lookback period for each miner. Using this
aggregate allocation alone, it is possible to correctly predict major changes in
actual inter-block time (IBT). Our model is also capable of analyzing theoretical
price scenarios. It predicts that either a 50% drop or increase in the price of BCH
relative to BTC can increase BCH inter-block times by 50% for a day or more.
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