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Abstract

Plan, activity, and intent recognition (PAIR) have much in
common and are often discussed within the same research
community. However, the actual methods for each type of
recognition are rarely considered with respect to the others.
This leads to lost opportunities where the work in one type
of PAIR can play a role in the advancement of other types.
To motivate taking advantage of commonalities between dif-
ferent types of PAIR, we propose a generalized formalization
of recognition that can be used in all three types of recog-
nition. We also propose a perspective that emphasizes how
PAIR applies to different aspects of the generative planning
and execution process. The relations between PAIR in this
perspective enable us to illustrate a few examples of how cur-
rent PAIR methods can be used in other types of recognition
outside the one for which they were developed.

1 Introduction
Several decades since the establishment of automated plan-
ning as an area of study, the artificial intelligence (AI) com-
munity has branched into various specialized communities
that pursue specific challenges that have been identified
within the scope of AI. Quite a few of them began to fo-
cus on perception tasks, and the majority of the early re-
search on perception was strictly interpreting sensor data.
With much inspiration from the application of intelligent
robotics, this led to a lot of research within areas such as
computer vision (Thorpe et al. 1988) and tactile sensing
(Harmon 1982). However, perception involving higher-level
thought was eventually realized in story analysis (Kautz
1991) and understanding user activities within program ap-
plications (Madani, Bui, and Yeh 2009).

The most distinguishing feature between these two forms
of perception is the observation focus. The former, lower-
level perception aims to obtain an overall environment de-
scription; this creates a world state in which the perceiving
agent can act. The latter, higher-level perception is associ-
ated with understanding agents and their underlying deci-
sion making processes. The focus on observing other agents
independently of the environment itself adds a “black box”
around their actions that must be interpreted in addition to
rules of the environment (such as physics), which all affect
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how the perceiving agent can act in the world. The formal
establishment of the plan, activity, and intent recognition
(PAIR) community studying this happened within the past
decade (Goldman et al. 2011) following a short series of
workshops originally titled “Modeling Other Agents from
Observations” (MOO). The workshop series was eventually
renamed PAIR due to the common methods and themes in
presented research, but there are still discrepancies regarding
what PAIR specifically studies in each type of recognition.

One goal of this manuscript is to begin addressing these
discrepancies and investigate how all the types of recogni-
tion are interrelated. Despite their common origin and be-
ing discussed at the same venues, they are not often dis-
cussed with respect to the other types of recognition (though
a recent compendium does mention in the preface that plan
and intent recognition are strongly related (Sukthankar et al.
2014)). Each form of recognition is considered to be dif-
ferent to some degree, but these degrees have not been for-
mally described outside qualitative descriptions. Section 2
will introduce our proposed formalization of recognition as
a whole and respectively describe each type of recognition in
PAIR with it. This will ideally establish a basis for compar-
ing and contrasting each type of recognition, and we invite
the PAIR community to revise and extend it.

The second goal of this manuscript is to provide a con-
text that illustrates how each aspect of PAIR is related to the
overall task of perceiving other agents. This perspective can
serve as a means for the formalization above to better iden-
tify when techniques developed for one type of recognition
can be used to aid or perform other types as well. We de-
scribe this perspective of PAIR in Section 3, which is based
on both the generative decision making process that derives
a plan or policy for how to act and the execution process that
performs the selected actions. Section 4 follows with a few
examples that we identified where past PAIR research can
be applied to other types of recognition. We also invite the
PAIR community to identify additional examples and further
investigate how their work can play a role in other types of
recognition besides the one of their focus.

2 Background and Formalization
As Section 1 briefly mentions, there are relations between
the AI specializations of PAIR and automated planning that
we will explore in this manuscript. We thus provide a brief



description on planning and each type of recognition, using
our proposed general definition:
Definition 1 A recognition problem is a tuple R =
(KB,O,H) where KB is a knowledge base representing
what the observing agent knows (and thus what information
is at its disposal), O provides a sequence of observations,
andH lists the possible hypotheses that can be recognized.
For each type of recognition, we will describe the typical
values that it uses for the elements of R. This will serve as
a common ground for PAIR’s formalizations, which broadly
resemble matching O to some element of H based on KB.
KB and H are often intertwined such that the question “is
h ∈ H the correct match?” can be answered using a por-
tion of KB that relates to just h. KB is specifically defined
with respect to the observing agent that performs recogni-
tion, Ring . Any information regarding the observed agent
that is recognized, Red, is only in KB if Ring knows or as-
sumes it.

Automated Planning
One of the earliest challenges posed to the AI community
involved machines being capable of making decisions au-
tonomously at or above the level of human experts. This led
to the establishment of the automated planning and schedul-
ing community that particularly studies representation of
tasks, problem solving under various conditions ranging
from uncertainty to resource constraints, and higher-level
decision making processes such as metareasoning.
Definition 2 A planning problem is a tuple P = (D, I, G)
where D is a domain that models the world, I provides the
initial setup of the world, and G lists the task’s completion
conditions.

Definition 3 A planning domain models the world in which
the agents act. The contents of its tuple should describe the
set of states S and the set of actions A that transition be-
tween states.

There are many different automated planning formalisms
that each represent some problem aspects more efficiently
than others, which allows there to be different classes of
problems with specialized algorithms that can effectively
solve them. Common representations include various orders
of logic (Gerevini et al. 2009; Bäckström 1992; Pednault
1989), task hierarchies (Erol, Hendler, and Nau 1994), and
degrees of uncertainty (Bellman 2003; Younes and Littman
2004; Sanner 2010; Fu et al. 2016). Depending on the
amount of certainty in the problem’s formulation, there are
several types of solutions that determine how the agent(s)
should act to solve the problem.
Definition 4 A plan π is a sequence of actions
a1, a2, . . . , a|π| ∈ A such that each action ai is applicable
in the state derived from performing the previous actions
in order from the initial state ai−1 (ai−2 (. . . a1 (I) . . .))
and the resulting state after completing all the actions in
order satisfies the goal conditions. If the actions do not
have costs, then the cost of π is costπ = |π|. If the actions
do have costs, then the cost of π is the total action cost
costπ =

∑|π|
i=1 costai .

Definition 5 A policy is a function π : S → 2A that in-
structs what action to perform at each state in the state
space. The policy is deterministic iff |π (s)| ≤ 1 for all s ∈ S
and non-deterministic otherwise (Cimatti et al. 2003).

The majority of automated planning solvers use a search
technique to find a plan or policy for P . The specific space
that is searched and how it plays a role in finding the solution
varies per algorithm.

Plan Recognition
Plan recognition is viewed as an inverse problem to auto-
mated planning because the observation sequence is com-
posed of executable actions. That is, each o ∈ O often
satisfies o ∈ A. However, O is not often complete; Ring
might ‘blink’, a certain action might not be observable with
the available sensors, or a transcription might only point
out ‘key actions’ rather than provide a ‘play-by-play’ sum-
mary. Thus the primary challenge in plan recognition is to
answer the question, “what is the agent doing overall?” H
is usually a set of plans or high-level tasks. However, the
answer to the question is paired with the secondary chal-
lenge that has received more emphasis lately (Geib 2009;
Mirsky, Gal, and Shieber 2017): “why is this the correct an-
swer?”

Definition 6 An explanation is a plan or policy π that best
resemblesO’s sequence and justifies why some h ∈ H is the
answer to plan recognition problemR.

Depending on KB, the explanation may have contingen-
cies, be a task network, or more. Overall, the structure of,
and information in, the knowledge base has the most impact
on the different plan recognition algorithms. Two common
knowledge bases are based on how much Ring knows about
Red and the world in which they are acting.

Definition 7 A plan library is a type of knowledge base that
contains precomputed plans for solving some set of auto-
mated planning problems. This includes a grammar that
can construct plans without solving the automated planning
problems.

Definition 8 A planning domain is a type of knowledge base
that models the world in which the agents act. This is identi-
cal to Defintion 3, but is now a tool for “thinking in another
agent’s shoes” rather than personal decision making.

The knowledge base was partitioned with plans for each
possible hypothesis in earlier research, which became plan
libraries (Kautz 1987). While libraries are still used and
have their advantages, knowledge bases are more expres-
sive and generalized when the domain itself is provided
(Ramı́rez and Geffner 2009). In particular, H can change
independently of updating KB as long as the new hypothe-
ses are solvable in the original domain. Unlike automated
planning, it is much harder to define the case where there
is no solution in H. Some algorithms return a distribu-
tion over H rather than returning a subset of elements in
H (Ramı́rez and Geffner 2010), but this is still a relative
comparison that implies more ambiguity as the distribu-
tion over some subset of H becomes uniform. The spread



metric S% (Ramı́rez and Geffner 2010) and quality metric
Q% (E-Martı́n, R-Moreno, and Smith 2015) have been pro-
posed to quantify the number of most-likely hypotheses in
H% = {h ∈ H | P (h |O ) is at the % percentile or greater}
and how often H% contains the correct answer respectively.
Ideally, for greater values of %, Q% will be large and S%

will be small.
Methods used to solve plan recognition problems vary

widely. The early works simply matched sequences based
on the available plan library (Kautz 1987), and they were ex-
tended through tie-breaking methods like abduction (Char-
niak and Goldman 1991) and weighted clauses (Hobbs et al.
1993; Inoue and Inui 2011). Task hierarchies later became
the automated planning representation of choice (Geib and
Steedman 2007), which yielded parsing approaches (Geib
and Goldman 2009; Mirsky, Gal, and Shieber 2017). Recog-
nition as planning uses logic-based planning representations
and runs an automated planning solver to simulate plans that
comply with O (Sohrabi, Riabov, and Udrea 2016).

Activity Recognition
Activity Recognition is the process of identifying a sin-
gle action or task given a sequence of lower-level obser-
vations. Lower-level is relative to H’s contents. Task hier-
archies and logic-based representations with complex tasks
and/or macroactions in H often observe the simpler tasks
that make up larger ones so that each o ∈ O again satisfies
o ∈ A. However, it is also possible that H ⊆ A so that the
high-level information is a single action; then the low-level
information in O might range from sensor data to environ-
ment configurations. In both cases, the challenge in activity
recognition is to answer the question, “what is the agent do-
ing at the moment?”

The majority of the solutions to activity recognition in-
volve either probabilistic models or machine learning classi-
fiers (Anjum and Ilyas 2013; Gori et al. 2015). In particular,
they commonly use or extend traditional time-series models
that rely on latent state information that depends on up to
one previous state.
Definition 9 A hidden Markov model (HMM) is a proba-
bilistic model with random variables X0, X1, . . . , Xn ∈ V
and O1, O2, . . . , On ∈ Ω where X· form a Markov chain
and each Oi’s value only depends on the value of Xi. The
O· random variables are all observed, but the X· random
variables are not observed.

Definition 10 A bag of words (BOW) model is a probabilis-
tic model with random variables X0, X1, . . . , Xn ∈ V and
O1, O2, . . . , On ∈ Ω where all X· are sampled from some
global distribution independently of each other and each
Oi’s value only depends on the value of Xi. The O· random
variables are all observed, but the X· random variables are
not observed.

When H’s elements use higher-level action representation,
the model is often extended to account for its composi-
tion from smaller tasks (Fine, Singer, and Tishby 1998;
Bui, Venkatesh, and West 2002; Bui, Phung, and Venkatesh
2004). On the other hand,H that contain simpler action rep-
resentations just use out-of-the-box HMM and BOW models

on the raw sensor input (Jung et al. 2015; Chikhaoui, Wang,
and Pigot 2012; Rieping, Englebienne, and Kröse 2014;
Chen, Diethe, and Flach 2016). However, some research has
looked at techniques for processing sensor data into alter-
native representations that either take advantage of domain
information or embed more complex temporal-spatial fea-
tures; then the processed observations are used in a stan-
dard classifier or model (Huỳnh, Fritz, and Schiele 2008;
Zhang and Parker 2011; Freedman, Jung, and Zilberstein
2014).

For activity recognition, KB usually stores the informa-
tion needed to generate and run the classifier or probabilis-
tic model. This includes the probability tables (defined by
Bayesian priors or computed with training data) and pos-
sible values for each variable, including the observed and
hidden ones.

Intent Recognition
Intent Recognition studies the ‘driving motivation’ behind
what is observed. In most cases, the underlying motivation
for doing something has been characterized as a subset of
possible goal conditions; logic-based representations define
H ⊆ 2F where F is a set of features that can describe states
in S and task hierarchies defineH as a set of high-level tasks
(much like plan recognition with task hierarchies). This is
the reason that the term goal recognition is also used some-
times. However, goals themselves can be selected for vari-
ous reasons. We are not aware of any research on recognition
at the metareasoning level, but Callaway et al. (2017) trace
users’ decision making processes to study their planning
and information-gathering strategies. Without approaching
metareasoning for decision making, it is viable that some ac-
tions are performed for the sake of facilitating another action
that is crucial to Red’s plan. This resembles taking actions
to repair missing causal links that are required to perform
upcoming actions in a plan (Levine and Williams 2014). If
these reparation actions are not useful for the goal’s comple-
tion, though, then there might be a misinterpreted motive. In
this case, intent recognition can be viewed as a prediction
problem instead where H ⊆ A or H ⊆ S (Baker, Saxe, and
Tenenbaum 2009).

Though there is potential overlap with plan recognition’s
formulation, the fundamental question is different: “why is
the agent doing this?” The variation of recognition as plan-
ning cited in the Plan Recognition subsection above mod-
ified H from sets of goal conditions to sets of plans, but
others made variations for intent recognition with a fo-
cus on only identifying the goal conditions rather than the
plan or policy explanations (Ramı́rez and Geffner 2011;
E-Martı́n and Smith 2017; Pereira, Oren, and Meneguzzi
2017). In all the intent recognition approaches mentioned
so far, each observation o ∈ O is again an executable action
such that o ∈ A. However, prediction based on agents’ tra-
jectories in continuous space (Unhelkar et al. 2015; Vered
and Kaminka 2017) is usually observed as either spatial co-
ordinates such as o ∈ R2 or kinematic configuration spaces
consisting of rotations and translations of joints (Mainprice,
Hayne, and Berenson 2016).

As with plan recognition and activity recognition,KB will



contain the underlying information to construct any mod-
els that are used in the intent recognition algorithm. Though
the specific implementations are different, they are typically
probabilistic models, plan libraries, and/or plan domains.
Furthermore, a newer area of research inspired by intent
recognition problems is goal recognition design (Keren, Gal,
and Karpas 2014; 2015), which studies how to optimize
the performance of intent recognition algorithms by modi-
fying the environment (and thusKB). The approaches prune
grounded actions from A that are not mandatory to reach a
goal in H and are ambiguous when Ring observes Red per-
forming them.

Definition 11 Let D be an automated planning domain,
I be an initial state, and G be a set of goal conditions;
then we can define automated planning problems Pi =
(D, I, Gi ∈ G) with their respective set of optimal plan solu-
tions Π∗i . A sequence of actions π is non-distinctive if there
exists unique problems P1 and P2 (that is, G1 6= G2) such
that π is a prefix of both some optimal plan π∗1 ∈ Π∗1 and
some other optimal plan π∗2 ∈ Π∗2.

Definition 12 The worst case distinctiveness (WCD) is the
greatest amount of ambiguity possible between optimal
plans for two different goals. That is, wcd (D, I,G) =
maxπ∈ΠI→G

D
|π| where ΠI→G

D is the set of all non-distinctive
paths for D, I , and G.

Goal recognition design with respect to stochastic action
outcomes (Wayllace et al. 2016) uses similar definitions to
those above with policies instead of plans.

3 A Unified Perspective of Recognition
In order to focus on what each type of recognition shares
and how they complement each other, we need a single con-
text in which they all apply. As Definition 1 and Section 1’s
general history of PAIR both imply, PAIR revolves around
understanding other agents from their actions. Thus we will
consider the generative planning context in which Red se-
lects actions that are then performed while Ring observes:

1. We assume that Red generally uses some automated plan-
ning algorithm A to solve its problems. We will also as-
sume that Red has some degree of awareness so that Red
knows about the surrounding environment and can rea-
sonably identify the current state of the world.

2. Suppose that Red now has a goal G that must be satisfied,
either directly assigned by some agent or derived from
some personal desire (Riedl and Young 2010) or interac-
tive task (Freedman and Zilberstein 2017).

3. Using the assumptions, Red is able to construct an auto-
mated planning problem P using the current world state
(or belief if there is partial observability) for I , knowledge
about the environment for D, and the given G.

4. Red now uses A to solve P . Depending on A, the plan or
policy π can be a sequence of actions, have contingencies,
only map a subset of the state space, be a task network,
etc.; what matters most is that Red now has instructions
for how to act.

This process provides insight into two components of
recognition problems: KB and H. Specifically, the knowl-
edge base is primarily built upon the assumptions aboutRed
and the hypotheses are derived from the possible ways that a
goal can be assigned. Because we do not know exactly what
Red knows or is thinking (if we did, then recognition would
be a more trivial task), these are designed for Ring to use
as models for each observed agent. Interactive systems that
combine recognition and planning sometimes imposeRing’s
own knowledge on those it observes (Levine and Williams
2014; Freedman and Zilberstein 2017) such as shared plan-
ning algorithms and/or plans, and others use unique models
for Ring and Red (Geib et al. 2016). However, the thought
process alone is not often sufficient for the recognition prob-
lem because Ring needs to observe the actions itself. This
progresses the process above to Red’s execution of actions
and how they affect the world state:

5. Without any form of intervention, only the ‘natural
physics’ of the environment apply as a closed system. We
can represent this closed system as a Markov chain be-
cause it is usually not the case that every physics calcula-
tion is accounted for. In a deterministic world where they
are perfectly predictable, each row of the transition matrix
is simply a vector of all 0’s except for a single entry with
value 1 for the guaranteed state transition.

6. When Red performs a particular action a ∈ A that ma-
nipulates the environment, a’s effects will change the
world state with respect to its own transition matrix. As
a generalized case, consider a corresponding Markov de-
cision process’s state transition function T that yields the
distribution over states given a current state and the ac-
tion performed. Then we have a new Markov chain for
the environment while this action is being performed;
this should also account for the intervention of ‘natural
physics’ alongside Red’s action. If the action is determin-
istic alongside the world, then the transition matrix rows
will again be vectors of all 0’s and a single 1.

7. Observations are restricted by Ring’s available sensors.
They might provide information about some part of the
current state such a subset of state features F (Sohrabi,
Riabov, and Udrea 2016) (hardware sensor readings or
environment descriptions), the action that was performed
(Kautz 1991) (a story or broadcast), or Red’s underlying
thought process (Mirsky and Gal 2016; Geib et al. 2016;
Fox, Long, and Magazzeni 2017) (querying the agent di-
rectly).
The observations about the other agents and/or the envi-

ronment are thus dependent on Ring’s sensing capabilities
and the state of the world. This implies that the sequence
of observations O are constrained snapshots of the world
state. Because the state transitions with respect to one of
many Markov chains, we can view a short-term version of
this context as a HMM. Red’s current action ar ∈ π deter-
mines which transition matrix to apply to the latent states,
and Ring extracts some information from these states to get
some oi, . . . , oi+j ∈ O. Then the action changes to ar+1

based on what π says to do next, which also changes the
transition matrix between the latent states while Ring per-
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Figure 1: A visualization of Red’s decision making and action execution processes. Directed edges indicate a dependency
between two components, but dependencies are not necessarily probabilistic. The dashed boxes indicate the same variable
under two different names to bridge the HMMs: sk,nk

= sk+1,1. Shaded nodes indicate observations. The partially shaded
action nodes a1, a2, . . . , ai are the executed actions according to π, which might be observed depending on the observation
inputs. Plan recognition typically identifies π and intent recognition typically identifies G or some ai+j where j ≥ 1. A, D,
and I are not shaded nodes because they are assumed, rather than observed.

ceives oi+j+1, . . . , oi+j+k ∈ O. This continues until Red
has satisfied G.

Given a subsequence of O over the duration of a single
action, activity recognition with simple-action hypotheses
H = A can be performed in a similar fashion to early works
in speech recognition using HMMs (Gales and Young 2007).
Specifically, O and KB provide enough information to in-
fer the sequence of states that generated the observations.
This sequence of states provides information about the tran-
sition matrix that defines the Markov chain, and the transi-
tion matrix is more likely associated with certain actions in
A. Likewise, given a sequence of these performed actions
either directly observed or obtained via lower-level activ-
ity recognition, we have a new observation sequence where
each o ∈ O′ also satisfies o ∈ A. Then higher-level activity
recognition with complex-action or macroaction hypotheses
can be performed based on the transition function between
inferred states in which the observed actions are applicable.

When there are no further abstractions over the actions, or
if there is a task hierarchy in KB, the action sequence serves
as observationsO′′ for plan recognition. This is becauseO′′
is effectively a subsequence of π, whichRed is using to solve
G. A is assumed to be included in KB, and Ring had some
degree of knowledge about the world state when it began
observing so that I ∈ KB as well. Then we only need to
define H based on the environment’s context and possible
plans.

If we instead define H to be sets of possible goal condi-
tions (ideally including G), then we are performing intent

Observations
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Environment
(World State)

Action
(Execution)

s1,1 s1,2 s1,3

o1,1 o1,2 o1,3

a1

s1,n1

o1,n1

...
Steps 5 and 6

Step 7

Figure 2: A focus on a single action execution HMM from
Figure 1, broken down into its steps. Activity recognition
typically identifies a1 given o1,1, . . . , o1,n1 ∈ O. These ob-
servations can range from raw signal data to discrete actions.

recognition to identify the motives behind why Red com-
puted π in the first place. If we do not have enough obser-
vations for such an all-encompassing recognition problem,
then we can also try to predict upcoming actions in π that
come after the last action in O′′ using intent recognition.

From this perspective of reverse-engineering the plan gen-
eration and execution steps, all the types of recognition in
PAIR rely on each other in order to completely understand
the observed situation. An illustration of these interdepen-
dencies with respect to the HMM, higher-order latent vari-
ables, and step-by-step procedure are shown in Figures 1
and 2.



4 Using PAIR Algorithms in New Ways
The connections between each type of recognition in PAIR
present new possibilities for using PAIR algorithms in the
existing literature. For example, the unifying perspective
above introduces the potential to daisy-chain multiple PAIR
algorithms into a pipeline. If the observations are raw sen-
sor data Oraw, but we are interested in plan recognition
using an observed sequence of actions, then we can use
a lower-level activity recognition algorithm to solve each
Riactivity =

(
KBsensor,Oraw,start(i)...end(i),Haction

)
and

create a new problemRplan = (KBdomain,Oaction,Hplan)
where oi ∈ Oaction is derived from the solution toRiactivity.
Amado et al. (2018) have a similar composition of ap-
proaches in their goal recognition algorithm for still im-
age inputs based on latent space planning’s (Asai and Fuku-
naga 2018) recognition of images as grounded symbols and
recognition as planning approaches. Likewise, pipelining
multiple levels of activity recognition algorithms resembles
the hierarchical variations of HMM used for higher-level ac-
tivity recognition (Bui, Phung, and Venkatesh 2004).

We can also reconsider Ramı́rez and Geffner’s (2010)
original probabilistic recognition as planning method to rec-
ognize plans rather than just goal conditions. Under the con-
text that plan and intent recognition can both use the same
knowledge base KB and observation sequence O, we only
need to revise how KB evaluates O for the different hy-
potheses over plansHplan rather than goal conditionsHgoal.
These two sets of hypotheses are also related to each other
because the goal constrains which plans will be successful
and vice-versa. This is emphasized by their equation for es-
timating the probability of the observations given a goal:

P (O |G ) =
∑
π∈ΠG

P (O |π,G ) · P (π |G )

where ΠG is the set of plans that solve G. To avoid an infi-
nite sum, they assume that the most optimal plan is a suffi-
cient replacement for ΠG, and we can make a closer approx-
imation (Freedman et al. 2018) using the slightly larger set
Hplan ∩ΠG.

The probability is derived as the likelihood from Bayes’s
Rule on P (G |O ), whereG ∈ Hgoal. Thus we now compute
P (π |O ); Bayes’s Rule derives the likelihood:

P (O |π ) =
∑

G∈Hgoal

P (O |π,G ) · P (G |π ) .

The shared term P (O |π,G ) is not too useful because it is
binary (1 if O is a subsequence of π and 0 otherwise) by
Ramı́rez and Geffner’s definition, but P (G |π ) can be found
using Bayes’s Rule and the assigned probability

P (π |G ) = e−βc(π)

for some constant β. Specifically,

P (G |π ) = Z−1P (π |G ) · P (G)

where Z is a normalizing constant summing overHgoal. As
a prior over Hgoal is contained in KB for the original algo-
rithm, this alternative probability can be computed.

Geib et al. (2016) reveal another example that integrates
plan and intent recognition without explicitly mentioning
it. As the observations are done in real time to later nego-
tiate how Ring may assist, the derived explanations from
the ELEXIR algorithm include predictions for upcoming ac-
tions. This predictive case of intent recognition is used to
both ask Red which of the predicted tasks Ring can do and
to avoid directly getting in Red’s way.

5 Discussion
Research within the PAIR community began with the sin-
gular notion of understanding agents based on the decisions
they made, and has since divided the task into three primary
types of recognition. The community still collaborates and
acknowledges that they share common research questions;
however, the literature does not often consider how research
in one type of recognition can apply to others. To facilitate
and encourage finding these relations, we introduce a for-
mal definition for recognition as a whole that abstracts prob-
lems to a knowledge base, observation sequence, and set
of hypotheses. Though the knowledge base is the most dis-
tinguishing feature between problems even within the same
type of recognition, we believe that it may lead to identifying
characteristics of various classes of recognition problems.

In addition to a formal definition of recognition, we pro-
pose a perspective on the overall recognition process based
on reverse-engineering how an agent makes decisions and
consequently acts during observation. This context unifies
how each type of recognition plays a role in the fundamental
goal of PAIR research, and we provide some examples based
on existing recognition techniques that emphasize how they
work together. Although no one formalization and perspec-
tive is usually sufficient to describe an entire field of re-
search, we hope this will serve as an initial step towards ex-
ploring what defines PAIR and how all types of recognition
are related.
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