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Abstract

Unsupervised activity recognition introduces the opportunity
for more robust interaction experiences with machines be-
cause the human is not limited to only acting with respect to
a training dataset. Many approaches currently use latent vari-
able models that have been well studied and developed by the
natural language research communities. However, these mod-
els are simply used as-is or with minor tweaks on datasets
that present an analogy between sensor reading sequences
and text documents. Although words have well-defined se-
mantics so that the learned clusters can be interpreted and
verified, this is not often the case for sensor readings. For ex-
ample, novel data from new human activities need to be clas-
sified, which relies on the learned clusters; so how does one
confirm that new activities are being correctly processed by
a robot for interaction? We present several ways that motion
capture information can be represented for use in these meth-
ods, and then illustrate how the representation choice has the
potential to produce variations in the learned clusters.

1 Introduction
Closed-loop interactions between humans and robots have a
heavy dependence on the robot’s sensing capabilities. With-
out some form of feedback from the human and/or environ-
ment, the robot is unable to make dynamic responsive deci-
sions with respect to the partner’s newest stimuli or the con-
sequences of its own recent actions. With the recent broad
introduction of ‘smart’ technologies, a number of new sen-
sors are becoming available that are affordable for everyday
users, easy to wear and use ubiquitously, and connectable
to other devices such as robots. Just as important as hav-
ing this ability to sense is being able to effectively use the
sensed information. Activity recognition is the study of how
to use these low-level sensor readings to receive higher-level
interpretations of the world, including users and their envi-
ronments.

While supervised learning has been a well-studied ap-
proach for activity recognition (Aggarwal and Xia 2014),
unsupervised learning has only gained popularity over the
past decade. Its benefits for human-robot interaction are
clear since humans are not restricted to precisely follow the

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

training data, and therefore a label may not exist. So hu-
mans may perform a known action differently or execute
a novel action that, though not labeled, can be clustered
with proximity to a learned activity cluster. The initial work
by Huỳnh, Fritz, and Schiele (2008) involved wrist sensor
data and confirmed its effectiveness through comparison to
a timeline of the user’s activities. Since then, other works
that have used unsupervised approaches for activity recogni-
tion often validate their results using either high evaluation
scores with held-out testing data (Zhang and Parker 2011;
Seiter et al. 2014) and/or visualizations of learned clusters
that appear to justify interpretations of the dataset (Freed-
man, Jung, and Zilberstein 2014; Duckworth et al. 2016).
However, many of these are relative or subjective methods
that do not provide direct information for decision making.
That is, they simply confirm nameless labels without the in-
clusion of semantic explanations. Although semantics can
be added through annotation, such methods are both ineffi-
cient and defeat the purpose of unsupervised approaches.

There has been some past research investigating ways
to autonomously interpret such information from unsuper-
vised models. Because the related research we discuss from
unsupervised activity recognition has frequently involved
topic models on sensor data, we will particularly focus on
works that study their interpretations (rather than some of
the newer approaches that are being explored such as deep
autoencoder neural networks (Li et al. 2014)). As a contrast
to latent semantic analysis (LSA), which has been a primary
tool for natural language research involving topic models
(Steyvers and Griffiths 2007), Gabrilovich and Markovitch
(2009) developed explicit semantic analysis (ESA) that pro-
duces descriptive features by mining relevant information.
In this specific case, they identified keywords to use as fea-
tures and then mined the vocabularies’ Wikipedia articles for
commonly associated keyword counts via term frequency-
inverse document frequency (TF-IDF); this allowed text
documents to be described by the keywords with greatest
association (ESA) rather than by a set of word lists that
were commonly in the same cluster (LSA) as the documents’
words. Rather than deviate from latent semantic analysis,
Kim, Rudin, and Shah (2014) created a new topic model
called the Bayesian Case Model that extended the tradi-
tional latent Dirichlet allocation (Blei, Ng, and Jordan 2003)
to handle inputs with discrete features - each cluster can



be summarized via a ‘prototype’ input and its features that
make it a representative of the cluster. The effectiveness of
such a model is that it can use the prototypes to refine clus-
ters during retraining, and they provided actual experiments
where human users performed better in a recipe classifica-
tion task using the prototype representation of clusters over
the set of input lists from traditional clustering.

Unlike text documents and other naturally discrete inputs,
sensor data is often continuous (omitting numerical limita-
tions of computers, which makes the data inherently dis-
crete) and may be interpreted in multiple ways. Each repre-
sentation of the same sequence of sensor readings that may
seem reasonable could yield different results. As red, green,
blue-depth (RGB-D) cameras are becoming more popular
(Zhang and Parker 2011; Freedman, Jung, and Zilberstein
2015; Faria et al. 2015; Duckworth et al. 2016) for both point
cloud and human figure representations, we focus on the lat-
ter format of sensor data. After a brief background on topic
modeling and LSA for activity recognition in Section 2, we
introduce the various representations and their reasonable
derivations in Section 3. Then we explore how these differ-
ent representations of the same sensor data can identify dif-
ferent activities in Section 4. We lastly conclude with some
observations, implications, and next steps in Section 5.

2 Background
LSA is a generative modeling approach that assumes that the
observations have relevance shared by similarity in seman-
tic meaning. However, even though each observation has its
own set of meanings, it is unknown which ones relate it to
the other observations. That is, there is a set of hidden defi-
nitions that describes what overall kinds of information may
be observed, and identifying these definitions can explain
the phenomena captured in the dataset.

From a graphical modeling perspective, these latent se-
mantics are represented as unobserved nodes containing
distributions over the set of observations. As a generative
model, the ‘story’ explaining their presence in the dataset’s
creation involves sampling some distribution over distribu-
tions (such as the Dirichlet1) for the latent semantic distri-
butions, and then those distributions are sampled to identify
the actual observations. Learning the parameters for these
distributions creates clusters of observations, and the modes
of each cluster represent its semantic interpretation.

One of the most well-known applications of latent seman-
tic analysis is topic modeling; the observations are words in
a document and the latent semantic distributions are topics.
Because the modes of a distribution of related words can be
easily interpreted as their shared definition, topics are eas-
ily defined by the learned clusters of words. The most fre-
quently used and tweaked topic model is Latent Dirichlet

1The Dirichlet is a random probability mass function that cap-
tures the variance of distributions identified from observed events
that actually occur based on some true distribution (Frigyik, Kapila,
and Gupta 2010). For example, flipping a fair coin should produce
heads half the time when observed over many trials, but getting
heads forty-nine percent of the time would also not be too surpris-
ing. However, getting heads ten percent of the time is unlikely.
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Figure 1: LDA’s generative process, graphical model, and
mathematical representation.

Allocation (LDA) that accounts for the fact that a document
can be described topically without needing to know the or-
der of the words (Blei, Ng, and Jordan 2003). Its graphical
model, generative process, and mathematical representation
are presented in Figure 1.

Activity recognition research that uses vanilla LDA has to
assume that in a similar manner, describing what generally
happens during a sequence of sensor readings does not rely
on the ordering. Then the clusters of sensor readings can
be interpreted by the modes, if interpretation is desired at
all. However, temporal consistency has been acknowledged
and considered with LDA and similar topic models. Zhang
and Parker (2011) applied a sliding window over sequences
of RGB-D point clouds and compressed the large amount
of observed data into smaller vectors, and Freedman, Jung,
and Zilberstein (2015) used a topic model that includes LDA
within a hidden Markov model called the composite model
(Griffiths et al. 2004). The former approach embedded the
temporal information within the observation while the latter
approach applied a temporal aspect to the model.

3 Representations of Human Posture Data
Human posture data can be read today using a variety of sen-
sors, including traditional motion capture (Hodgins 2002),
RGB-D camera point cloud analysis (Shotton et al. 2011),
and IMU sensors attached to the body (Jung et al. 2015).
Using the links and/or joints of the body, the sensor data
is able to render three-dimensional stick figures of the ob-
served agent - this is often done through computation of
the homogeneous matrix transformations between adjacent
links of the body.

Depending on the number of links that the sensor can
identify, each reading can be very high-dimensional. There-
fore, due to both this and the continuous space of transfor-
mations, the data must be compacted to be useful with a rea-
sonable amount of data collection. The opportunity to com-
press the data not only lies within each frame, but also be-
tween frames. We consider various cases that will compress
the human posture data differently, but also present the mer-
its for why it could be the best choice for representation of



observations in latent semantic analysis.

Independence between Frames
As each sensor reading corresponds to a single frame of ani-
mation, it is the most indivisible unit of the sequence. Al-
though the text analogy is not exact in this case because
words can be broken down semantically into phonemes and
further down without semantics into orthographic symbols
(letters, numbers, etc.), this is the simplest input and carries
a reasonable amount of semantic information by itself. Just
as the adage “a picture can be worth 1000 words” implies,
one can describe a single frame’s posture with various fea-
ture assignments; this was slightly explored in an attempt to
use ESA to describe the modes of clusters learned via LSA
(Freedman and Zilberstein 2016). One advantage of running
an activity recognition model frame-by-frame is for on-line
artificial intelligence used during interaction - every sensor
reading may, but not necessarily has to, be used right away
for decision making purposes.
Joint Angles Joint Angles are the rawest format for the
posture representation. Often provided as a triplet of Eu-
ler angles per joint, but sometimes in quaternions to avoid
gimbal lock (removing ambiguity when visualizing the an-
gle), these values derive the matrix rotation transformations
that render the stick figure. Translations come from the link
lengths, which vary per individual, but the rotations are gen-
erally independent of the individual. This makes them ideal
for generalizing the learned activity models to other people
who may interact with the robot, and it allows training data
to come from multiple subjects. It is also the reason that the
relative distance or position of points in Cartesian space is
less ideal for representing the stick figure instead. In particu-
lar, the additional information of the actual points in space is
not very useful for representing other individuals while the
joint angles that can be generalized to others require more
steps to extrapolate.
Derivatives Just as the rawest format of a posture is the
joint angles, the rawest format between consecutive postures
is the derivative. Motion is a continuous process, which has
been used to find keyframes in motion capture videos and
present them in comic book form with ‘whoosh’ lines to
summarize the motions (Choi et al. 2012). This allows the
temporal aspect to be embedded within the representation to
a very small extent, but still keep the dimensionality much
smaller than through the use of a sliding window. By com-
puting approximations of the derivative as the difference be-
tween joint angles in consecutive frames, each derivative is
still easy to obtain and then use right away. However, with-
out a frame of reference such as a starting joint angle con-
figuration, these derivatives can be very vague and lead to
ambiguity during clustering. For example, raising the arm
above the head from in front will be identical in this repre-
sentation to raising the arm to the front from the side.
Features As briefly mentioned above, it is possible to ex-
tract features mathematically from a single human posture.
In particular, the posture was broken down into labeled fea-
tures such as whether each arm was bent, the back was
straight, a leg was raised, etc.. If such information is already

available, then it may be worth clustering feature vectors di-
rectly so that one may inspect the shared features between
the modes of a cluster. Furthermore, because many of the
features have finite possibilities (e.g. the arm is above the
head, at the side, or in front of the body), it is possible to
take advantage of the Bayesian Case Model that broke its
inputs/observations down in a similar way (Kim, Rudin, and
Shah 2014). A prototype would be a posture with specific
parts of the body in fixed relative positions (joint angle) or
simple motions (derivative) while the rest the body remains
flexible.

This is different from unsupervised feature learning (Li
et al. 2014), which employs unsupervised learning tech-
niques on a dataset to get clusters as lower-dimensional fea-
tures. These clusters are used to aid in supervised learning
tasks; thus unlabeled features are obtained for classification
with labeled classes. Instead, we propose extracting lower-
dimensional labeled features from data to use for classifica-
tion without labeled classes.
Parametric In contrast to the above representations that
view each frame as a single observable input, it is possi-
ble to break the information down into smaller pieces. For
example, each joint’s angles or derivatives may be viewed
as an individual triplet (versus concatenating all the joints’
together) and each feature may also be inspected indepen-
dently. Although such perspectives cannot be handled by
traditional topic models that use single word inputs, we may
adjust the generative models with new ‘stories’ that better
explain the generation of human postures for various ac-
tivities. One such model that may be of use for this is Pa-
rameterized LDA (Freedman, Jung, and Zilberstein 2015),
which runs LDA with a single latent topic across multiple
vocabularies simultaneously. In this case, each vocabulary
may seem identical such as the interval triplet [−π, π]3 for
a single joint angle, but it would allow the distributions to
be more informative about how each joint is involved in an
activity’s description. A uniform distribution over this space
would imply that the joint has no significance because its
high entropy is not discerning, but a multi-modal peak would
imply that some angles for this joint are more commonly as-
sociated with the clustered activity.
Multimodal The increase in amount and types of sensors
has also led to a boom in multimodal learning. This allows
synergy because one sensor may identify things that can
complement the information missing from another sensor.
Besides using additional sensors to provide more informa-
tion than the human’s posture, we may also consider com-
bining multiple representations of the same data. Because
they all have different interpretations and a strong chance
of recognizing different activities (see Section 4), we should
consider taking advantage of multiple perspectives at once to
get the ‘complete picture’ at each frame. However, it is also
important to consider the dimensionality of the data because
the space of inputs will grow drastically as more representa-
tions are used simultaneously.

Joint Relationships between Frames
With the concern over whether a single frame truly repre-
sents any semantic context of an activity, it is possible to



consider a collection of frames at once. This produced the
temporal components described at the end of Section 2 to go
with the spatial representations. Although this does contain
richer context, it comes with the prices of more computa-
tion time to acquire the data (a potential bottleneck in on-
line interaction) as well as the curse of dimensionality. The
number of parameters is linear with respect to the number of
joined frames, but a single frame already has many variables
- the ones described above range from approximately 30
to 45 without the multimodal representation. To cope with
this, the training data is compressed a priori to form a code-
book, which is a discriminative unsupervised clustering of
the observations. This codebook maps each observation to
its cluster ID as the input for LSA, but then the challenge of
how many clusters to include in the codebook arises. Due to
space limitations, we simply note that the representations for
multiple frames are identical to the ones for single frames
except that we either concatenate or apply some averaging
formula over a sliding window of observations.

4 Impacts of Representation Choice
Although all the representations discussed in Section 3 come
from the same stream of sensor readings, they portray differ-
ent aspects of the observations. However, should they still be
able to recognize the same activities? In this section, we will
illustrate impacts with respect to both LSA for recognition
and available information for later decision making.

Theoretically, there is no guarantee of learning the same
activities over multiple clustering runs with the same repre-
sentation choice due to the label switching problem, which
states that the clusters learned via mixture models such as
LSA are equally likely to be any permutation of the opti-
mal latent variable assignments (Stephens (2000) provides a
good explanation of the problem and some attempts to ad-
dress it). However, even from the algorithmic perspective
where a random seed can replicate results if held constant,
will there still be clusters for the same activities when run-
ning LSA on different representations of the same data with
a constant random seed?

To simply illustrate how LSA clusters semantically, we
will consider two separate text phrases: “The dog jumped
over the fence” and “Running to buy a running refrigerator”.
If they are in the same dataset, then the words will be viewed
as ten different symbols and is not relevant to our discus-
sion. However, if they are each a separate dataset, just as we
abstract each representation of the sensor reading, then the
phrases may be encoded using the same five symbols: 1 2 3
4 1 5. This makes the two phrases appear identical symboli-
cally, and using the same random seed when running them in
a MCMC algorithm (such as Gibbs Sampling, which iterates
over each symbol in sequential order (Griffiths 2002)) for
clustering under LSA will result in clustering them the same
way. The only difference between these clusters will be the
list of modes, which are decoded into the actual words.

Although the example is an oversimplification because
this phenomena is less likely with much larger datasets of
text, should we accept that this will also not happen with
different representations of the same sensor data from the
single observed activity sequence? As a brief example that

different representations of the same sensor data would not
align symbolically, suppose a person is lifting and putting
down boxes; then the observations will have postures where
the arms are rising and then lowering. This sequence has
symmetry over the joint angles with a symbolic representa-
tion in the form of 1 2 3 ... (k− 1) k (k− 1) ... 3 2 1, but the
derivatives will lack this symmetry because of the change in
direction of movement to yield symbolic representation 1 2
3 ... (k − 1) k (k + 1) ... (2k − 1). There may be some con-
secutive duplicates in the derivative’s representation if the
acceleration happens to ever be zero, but this is still drasti-
cally different from the joint angles’ symbolic representation
when processed sequentially for clustering by MCMC. Like-
wise, if sliding windows are applied and a codebook is nec-
essary, then there may be yet another unique symbolic repre-
sentation of the same sequence of sensor readings. This will,
even with the same random seed, algorithmically produce
different clusters that may end up with different interpre-
tations. Thus we must take this into consideration because,
though an activity will be described differently from each
representation’s perspective, are we guaranteed that these
interpreted clusters will actually describe the same activity?

In addition to this potential difference, the representation
choice will impact the information available for responsive
decision making. Joint angles alone, for example, yield pos-
ture without any insight into the human’s upcoming position.
This may complicate prediction for collision avoidance and
supports the use of a derivative representation. However, ab-
stracting to just the derivative representation removes the lo-
cal posture. Because all this information is initially available
from the sensor data, we propose abstracting the correct rep-
resentation(s) for the decision making task even if they are
different from what is used for recognition.

5 Discussion
In human-robot interaction, autonomous response requires
some degree of recognizing what partners in the interaction
are doing. We have discussed how even for a single sensor,
there are multiple representation choices that can affect ei-
ther the observation format, the model, or the algorithm. Be-
sides those effects, each representation can have very differ-
ent underlying forms that may lead to the risk of altering the
performance of LSA in unsupervised activity recognition.

Does this mean a single representation is correct and the
others are wrong? Do we need to try them all and then use
the one that is best with each learning session? Are there
evaluation metrics we can develop to make such decisions?
If we can identify when each representation is best to use,
then perhaps we need to consider metareasoning during in-
teractive decision making to decide when to use each one.
We are exploring these issues and starting an empirical eval-
uation of each representation’s learned clusters, comparing
them with respect to current LSA evaluation metrics.
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