
Hierarchical Modeling to Facilitate Personalized Word Prediction for Dialogue

Richard G. Freedman and Jingyi Guo
School of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003, USA

{freedman, jingyi}@cs.umass.edu

William H. Turkett, Jr. and V. Paúl Pauca
Department of Computer Science

Wake Forest University
Winston-Salem, NC 27106, USA
{turketwh, paucavp}@wfu.edu

Abstract

The advent and ubiquity of mass-market portable computa-
tional devices has opened up new opportunities for the devel-
opment of assistive technologies for disabilities, especially
within the domain of augmentative and alternative communi-
cations (AAC) devices. Word prediction can facilitate every-
day communication on mobile devices by reducing the phys-
ical interactions required to produce dialogue with them. To
support personalized word prediction, a text prediction sys-
tem should learn from the user’s own data to update the ini-
tial learned likelihoods that provide high quality “out of the
box” performance. Within this lies an inherent trade-off: a
larger corpus of initial training data can yield better default
performance, but may also increase the amount of user data
required for personalization of the system to be effective.
We investigate a learning approach employing hierarchical
modeling of phrases expected to offer sufficient “out of
the box” performance relative to other learning approaches,
while reducing the amount of initial training data required to
facilitate on-line personalization of the text prediction sys-
tem. The key insight of the proposed approach is the sepa-
ration of stopwords, which primarily play syntactical roles in
phrases, from keywords, which provide context and meaning
in the phrase. This allows the abstraction of a phrase from an
ordered list of all words to an ordered list of keywords. Thus
the proposed hierarchical modeling of phrases employs two
layers: keywords and stopwords. A third level abstracting the
keywords to a single topic is also considered, combining the
power of both topic modeling and trigrams to make predic-
tions within and between layers.
Empirically relaxed versions of the developed models are
evaluated on training data composed of a mixture of slightly
modified dialogues from the Santa Barbara Corpus of Spoken
American English. Performance is measured in terms of the
number of user interactions (keystroke or touch screen event)
required to complete a phrase. We compare their performance
against a system employing no prediction.

1 Introduction
The availability of commodity-priced portable computa-
tional devices has opened up new opportunities for assistive
communication. While these devices are traditionally used
to enable long-distance communication, they also offer new

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ways to assist people with disabilities. It is estimated that
between 2.5 to 4.7 million people in the US have conditions
severely affecting natural modes of communication, such as
speech, gestures, or writing, and require the use of exter-
nal augmentative and alternative communication (AAC) de-
vices to supplement their communication needs (Beukelman
and Mirenda 2006). These conditions may be developmental
such as autism, L1 syndrome, and cerebral palsy, or acquired
conditions such as brain injury, stroke, or amyotrophic lat-
eral sclerosis (ALS). With their increasing computing power
and built-in sensors, portable devices have the capability to
reshape the world of AAC for a variety of disabilities.

Until recently, AAC devices have been stand-alone tools
varying significantly in cost, power, and sophistication.
Lower-end devices (ranging from a few hundred to a couple
of thousand dollars) offer limited interfaces while high-end
devices (up to tens of thousands of dollars) can provide com-
plex interfaces and a great deal of content. However, such in-
terfaces are not easy to use and can often lead to slower com-
munication rates which can have negative impacts on con-
versations. Also, for disabilities such as ALS where the per-
son has full cognitive capabilities and limited physical mo-
bility, slow communication can be physically stressful and
mentally frustrating since one cannot easily express what he
intends to say. In response, a new series of assistive tech-
nology applications, designed for tablet and phone devices,
are being developed, focusing on improving user interfaces
over traditional AAC devices as well as reducing costs by
utilizing contemporary mobile device development toolkits
and methodologies (Pauca and Guy 2012).

The common framework behind an AAC device involves
receiving letters and words as input that produce verbal
phrases. A standard keyboard can be challenging to use
depending on the disability, and it is common for a list of
pictures or words to be the primary source of input. How-
ever, scrolling through these lists can be just as challenging
and time consuming since the interface is limited in how
many items may be displayed at one time. Thus word pre-
diction, an intent recognition task in natural language pro-
cessing (NLP) and generation (NLG), has been used to re-
duce the number of keystrokes necessary to type the phrases.
This facilitates the use of the keyboard to type the desired
word since only part of the word needs to be present before
the entire word is selected from an adapting list of possi-

ble words (Garay-Vitoria and Abascal 2006; Trnka 2008a;
2008b; Trnka and McCoy 2007; 2008; Trnka et al. 2006;
2008; 2009). Such methods may also be used to reduce
the number of keystrokes used in general purpose text-based
communication applications.

Trnka et al. have developed a word prediction system that
primarily uses two statistical methods: trigrams and topic
modeling (Trnka 2008a; Trnka et al. 2006) (discussed further
in Section 2). As statistical methods, training data is neces-
sary for learning the likelihoods used in the predictions. Due
to the personal nature of an AAC device, Trnka et al. have
also discussed incorporating the user’s text into the training
data so that the system can adapt to his/her manner of speak-
ing and vernacular (Trnka and McCoy 2008). However, this
requires a large amount of user data since a large corpus of
training data is necessary to develop accurate initial likeli-
hood estimates. Thus introducing a bias towards the user
will require adding sufficient user data to the corpus so that
its sample size dwarfs the initial unbiased sample size. It can
take a long time before enough user data becomes available.

Clearly decreasing the size of the initial corpus will re-
duce the required amount of user data, but this presents a
trade-off for less accurate initial likelihood estimates. If
the AAC device is not effective “out of the box,” then the
user may not be as motivated to use it until enough data
is produced. Recent work in abstraction has shown that
learning with a hierarchical model can drastically reduce the
amount of training data necessary to learn relations and esti-
mate likelihoods (Tenenbaum et al. 2011). The information
learned at higher levels of the hierarchy can influence what
should be learned at the lower levels through constraints im-
posed by the hierarchy. For example, the higher-level topic
model used by Trnka et al. groups documents together by
similar topic, and then lower-level trigram likelihoods are
estimated for each group. The application of abstraction and
generalization to study higher-level features that influence
lower-level features has been used in a variety of artificial
intelligence tasks such as hierarchical planning (Knoblock
1991), portfolio-based methods for SAT solving (Xu et al.
2008), hierarchical hidden Markov models (HHMM) (Bui,
Phung, and Venkatesh 2004), and metalevel control of any-
time algorithms (Hansen and Zilberstein 2001).

In this paper, we add another level to the hierarchical
model implied by Trnka et al. that utilizes keywords. For
our purposes, a keyword is any word in the English lan-
guage that is neither an article nor a preposition. This level
will be placed between the topic model level and trigram
level so that each phrase is abstracted to its ordered list of
keywords which is abstracted to a single topic. In order to
further reduce keystrokes, the user only types the keywords
and our word prediction system will be tasked with deter-
mining the keyword and then the missing words that be-
long between adjacent keywords. Uchimoto et al. have per-
formed text generation from keywords in the Japanese lan-
guage to synthesize sentences that are both grammatically
and semantically appropriate based on training from news-
paper articles (Uchimoto, Sekine, and Isahara 2002). For
each keyword, they generated phrasal units called bunsetsu
and then matched likely combinations of bunsetsus using

several variations of n-grams and dependency rules imposed
by the Japanese language. Although the Japanese language
is more structured than the English language, we have the
advantage of user confirmation during sentence generation;
this serves as evidence in our model by fixing the choice of
words.

This intermediate level is more informative since key-
words are more closely related to the semantic information
of the sentence. Thus the topics in the topic model are more
relevant to the keywords than the non-keywords, often re-
ferred to as stopwords in NLP and NLG and function words
in linguistics. The purpose of stopwords is to provide syn-
tactic structure to the sentence which does not concern top-
ics. Griffiths et al. present this distinction in their composite
model that generates sentence frameworks using stopwords
from a hidden Markov model and fills in the semantic blanks
with keywords from a topic model (Griffiths et al. 2005). We
use the opposite approach where the keywords are generated
before the stopwords.

Our contribution through this paper is to show how the
utilization of abstraction through a hierarchical model can
provide reasonable prediction performance with little train-
ing data. By reducing the initial number of training samples,
user adaptation may occur quicker (due to less data required
from the user) in an AAC application. In Section 2, we
provide greater detail about assistive technologies, the text
prediction problem, and the statistical NLP and NLG tech-
niques used in our text prediction system. Section 3 follows
with an overview of our text prediction system’s hierarchical
model and explanation regarding how our approach works.
We present experimental results in Section 4 and conclude
with discussion and future work in Section 5.

2 Background
2.1 Assistive Technologies
Assistive technologies represent a broad range of innova-
tions that have been developed to facilitate common activ-
ities for persons with physical or cognitive disabilities. A
sub-area of assistive technologies, AAC devices are mecha-
nisms to improve both the generation and understanding of
language, either in spoken or written form. In the domain
of language generation, a spectrum of language components
may be presented to an AAC device user, ranging from let-
ters to symbols and words to whole phrases. AAC devices
also consider non-typing and non-speaking input mechan-
sisms, such as eye- or head-tracking and touch interfaces.

A broad range of research into intelligent AAC devices
is being undertaken. Recent work includes Kanagarajan’s
investigation (Kanagarajan 2012) of the initial presentation
of different symbol sets for symbol-based systems based on
features such as the time of day, user location, and recent
symbol presses in an attempt to minimize swipes between
pages of symbols. The information exploited, such as time
and user location, can be easily gathered from most modern
tablet and phone devices. Trnka and McCoy have done sig-
nificant work exploiting predictions of topic for word pre-
diction and augmented keyboards (Trnka, Yarrington, and
McCoy 2006).

2.2 Word Prediction Tasks
In textual communication devices such as AAC devices,
SMS, and on-line chat, a user must type the words that
he/she would normally speak in face-to-face communica-
tion. Since the interfaces require pressing keys to type let-
ters or select words from lists, the rate of words expressed
per minute is often slower than the verbal rate. For people
with disabilities, the reduction can be dramatic compared to
others involved in a conversation. Thus methods for speed-
ing up the rate of word expression on textual communication
devices are essential.

Word prediction is an intent recognition task commonly
used for such speed up. The goal is to predict the word that
the user intends to type as soon as possible. A list of m pre-
dictions is provided on the interface alongside the keyboard,
and the user may select a word from the list by a single
keystroke. When the word is not present in the prediction
list, the user may select another letter from the keyboard
which will provide more accurate information about the
word to predict. Various features including current letters
typed, previously chosen words, and grammatical deriva-
tions of the current sentence have been employed to improve
word prediction. A survey of features, techniques, and inter-
faces used up to 2006 has been written by Garay-Vitoria and
Abascal (Garay-Vitoria and Abascal 2006).

2.3 n-Grams
Word ordering plays a key role in sentence formation. Due
to grammatical rules and semantic situations, specific word
patterns make more sense than others which can be utilized
in word prediction. For example, it is more likely that an ar-
ticle and noun follow ‘go to’ while a verb most likely follows
‘to go,’ yet ‘to go the’ usually precedes words such as ‘ex-
tra’ and ‘whole’ which complete several common English
idioms.
n-grams are a statistical representation of this phe-

nomenon that considers the ordering of n consecutive words.
For word prediction, we find the most likely word in our dic-
tionary D to follow the (n− 1) previously viewed words

argmax
w(n−1)+k∈D

P
(
w(n−1)+k

∣∣w(n−2)+k, w(n−3)+k, . . . , wk

)
As seen in the example above, greater values of n allow
more accurate predictions. However, the number of parame-
ters that must be learned increases by an order of magnitude
for each increment of n since there are |D|n orderings of n
consecutive words. This requires both more training data as
well as more memory. Lesher et al. have studied the effec-
tiveness of various n and training data sizes and found that
for the English language, trigrams (n = 3) is sufficient in its
trade-off of performance for amount of necessary training
data (Lesher, Moulton, and Higginbotham 1999).

2.4 Topic Modeling
Topic modeling, also known as latent Dirichlet allocation
(LDA), is a three-level generative probabilistic model for
text documents (Blei, Ng, and Jordan 2003). It aims to
discover the hidden thematic structure in text corpora. The

main idea of a topic model is to associate each word in the
document with a latent topic variable. In this way, each
document could be represented as a mixture of K “top-
ics.” Topic modeling was first developed as a way to au-
tomatically summarize topics in scientific papers (Griffiths
and Steyvers 2004). Currently some researchers also apply
topic models to areas including social networks and uncon-
ventional data such as Twitter and IRC.

The generative process of a topic model is as follows: for
corpus W = {w0, w1, · · · , wN}, the jth word in the ith doc-
ument wi,j is generated by latent topic variable zi,j whose
value is drawn from a multinomial distribution with param-
eter φzi,j . φ1:K is the topic distribution over all words in the
vocabulary and φk,v represents the probability of token type
v appearing in the kth topic. zi,j is drawn from a multinomial
distribution with parameter θi. Here θ1:D denotes the topic
distribution associated with each of the D documents and
θi,t represents the probability of topic t appearing in docu-
ment i. φ1:K and θ1:D are drawn from Dirichlet distributions
with hyperparameters β and α respectively.

2.5 Hierarchical Abstraction of Data
Objects can be clustered based on their shared features.
These clusters form generalized representations of the ob-
jects omitting the specifics that make them distinct. For ex-
ample, ‘jump,’ ‘run,’ and ‘play’ are all verbs while ‘boy,’
‘store,’ and ‘ball’ are all nouns. These clusters can often
be grouped further into higher-level abstractions; both verbs
and nouns are words. This yields a hierarchy of abstraction
where the lowest level contains the objects themselves and
each level above is a generalization of the level below con-
taining clusters of similar objects/clusters.

Underlying patterns and rules that govern the function-
ality and design of objects can be viewed at different lev-
els of abstraction in this hierarchy. If we know the highest
level of abstraction to which each pattern and rule applies,
then we can impose constraints at lower levels of the hierar-
chy. That is, we can use the smaller abstracted framework to
gain insights into relationships between a larger number of
lower-level attributes. One of the greatest benefits of these
constraints is reduction in computational complexity at the
lower-levels of the hierarchy. For example, if we consider
the rule that the English language does not allow two verbs
to follow consecutively, then we can prune the list of words
to consider following ‘jump’ in a sentence. Rather than com-
puting the likelihood of “... jumpw” for every wordw in our
dictionary, we can prune the set of valuesw may be assigned
to all non-verbs in our dictionary. As most data collected for
machine learning applications belong to the lower levels of
the hierarchy, these constraints can aid the learning process
by finding the “big picture” at higher-level abstractions of
the data which will reduce the number of parameters that
need to be learned at the lower levels of abstraction.

3 Methods
3.1 Hierarchical Model Derivation
Our hierarchical models of a phrase consist of two to three
levels: (topic), keyword, and stopword. We define a phrase

Figure 1: The graphical representation of the hierarchical
model of a phrase. The levels of abstraction of a phrase
depicted by the model from highest to lowest are topic, key-
words, and entire phrase (both stopwords and keywords).
Directed edges indicate conditional dependence and undi-
rected edges indicate joint dependence. The two-level model
simply removes the topic layer and all undirected edges.

to be the ordered collection of all words typed until the user
submits the text for transmission; this can range from a sin-
gle word such as ‘yes’ to several sentences such as a formal
greeting. The graphical representation of our three-level hi-
erarchical model may be seen in Figure 1.

The topic level is the highest level in our hierarchy with
a single node t denoting the topic of the phrase being typed
into the device. A single phrase in a conversation will usu-
ally relate to a particular topic such as greeting, shopping, or
cooking. We use unsupervised methods to cluster the train-
ing phrases from the corpus into a predetermined number of
topics as described in Section 2.4. That is, we determine the
topic of a phrase by its keywords.

Inversely, the topic of the phrase will clearly have an im-
pact on the keywords used. For example, fruits are more
likely to be mentioned when discussing shopping or cook-
ing rather than sleeping. Trnka used topics in this way to
learn a specific trigram table for each topic (Trnka 2008a;
Trnka, Yarrington, and McCoy 2006). However, we use top-
ics to learn frequencies of each keyword per topic instead.
The primary reason for this relaxation is that we want to use
a smaller corpus for training. If we have a separate trigram
table for each topic, then there would be |T | · |D|3 parame-
ters to learn rather than |T | · |K| parameters for the separate
unigram tables, where T is the set of topics, D is the dictio-
nary of all words, and K ⊂ D is the set of all keywords.

The secondary reason is that we will learn a single trigram
table for all the keywords. At the keyword level of the hier-
archy, we have x nodes representing the ordered keywords
in the phrase k0, k1, . . . , kx with a trigram dependency re-
lationship between them. Trigrams over keywords are more
informative than trigrams over all words because stopwords
have syntactic rather than semantic purposes. Given two
consecutive stopwords “to the,” there is a wide variety of
plausible predictions using trigrams including ‘boy,’ ‘dog,’
‘store,’ ‘left,’ etc.. 4- or 5-grams would be more useful
for pruning the list of possible predictions in this case with
such consecutive word lists as “give it to the” or “let’s go to
the.” On the other hand, removing the stopwords contracts
these five-word lists to three-word lists and the semantics

Figure 2: The graphical representation of the relaxed em-
pirical hierarchical model. The joint dependencies between
the topic and keyword levels are replaced by conditional de-
pendencies that allow evidence to be observed in real time.
This allows incremental predicitions of the phrase topic and
current keyword.

of these keywords gives us the same pruning options. The
keywords ‘boy’ and ‘dog’ are more reasonable for “give it”
while ‘store’ and ‘left’ are more likely to follow consecutive
keywords “let’s go.”

Utilizing a single trigram table for all keywords also al-
lows us to easily extract a two-level version of the model in
which the topic level is removed. The incentive behind this
is that LDA contains many parameters to learn for each word
and topic. Furthermore, the trigrams between keywords may
intrinsically denote the topic locally within the phrase.

The stopword level of the hierarchical models simply pre-
dicts which stopwords, if any, should be placed between two
consecutive keywords from the keyword level. By restrict-
ing our choice of stopwords to just the articles and prepo-
sitions of the English language, we are able to assume that
there are at most two stopwords between consecutive key-
words: a preposition followed by an article (as part of a
prepositional phrase). Thus there are two nodes s1i and s2i
in the stopword level between nodes ki and ki+1 in the key-
word level. Because it will not always be the case that both
stopwords will be used, these nodes may also be assigned
an empty string token ε. Considering how to adjust this
assumption for additional closed classes of function words
such as conjunctions will be left as future research. The de-
pendency for stopwords are trigrams over all words without
conditioning for an observation of ε. To enforce this, s1i = ε
only if s2i = ε and s1i depends on ki, s2i−1, s1i−1, and ki−1
(see the conditional probability tables in Section 3.3).

Empirical Relaxation Due to the joint dependencies be-
tween nodes in the topic and keyword layers, prediction of
values for these variables would resemble inference over a
Markov Random Field. However, this is the Maximum-a-
Posteriori (MAP) problem which is known to often be com-
putationally intractable. Although there exist many efficient
MAP estimation algorithms, we will instead use a relaxed
version of the hierarchical model that takes advantage of the
user’s involvement with predictions. Since the user selects
keywords one by one, each selection serves as evidence, an
observed (and thus fixed) assignment of a value to a variable.

With this incrementally obtained evidence, we may bet-

ter predict the topic of the sentence. Thus we denote ti as
the topic of the phrase with respect to observed keywords
k0, k1, . . . , ki−1. We may then use ti to make a more ac-
curate prediction of keyword ki. So instead of assigning
one topic per phrase, the relaxed empirical model assigns
one topic per keyword. Due to this, we use LDA to imple-
ment the topic model in the highest level of the hierarchi-
cal model. In terms of modifying the graphical representa-
tion in Figure 1, node t is replaced by nodes t0, t1, . . . , tx
and there are directed edges from ki to tj for all i < j
as well as from ti to ki for all i ∈ {0, 1, . . . , x}; there
are no undirected edges in the relaxed empirical hierarchi-
cal model. The graphical representation is presented in Fig-
ure 2. The two-level hierarchical model remains unchanged
since it lacks any joint dependencies.

3.2 Corpus for Training
As in any machine learning application, the relevancy of
the training data is crucial. The closer the relationship be-
tween the training corpus and the user’s typical conversa-
tional word and phrase usage, the greater the accuracy of the
model from the user’s viewpoint. We do not have any user
input a priori and must instead use a default training corpus,
after which user adaptation occurs by training on-line with
additional phrases as they are generated by the user. Without
decent “out of the box” performance from the initial corpus,
the user may not be inclined to use the application to the
point that user adaptation can improve it.

However, dialogue spans a broad range of topics and
multiple applications that all require different training cor-
pora. For example, Kerr and Szafron use fantasy genre
movie scripts for their application of dialogue generation
for videogame characters (Kerr and Szafron 2009). In our
case, users of AAC devices will most often participate in ev-
eryday conversations while using the device. Compilations
of such conversations have been recorded and transcribed
over the years into a few corpora. Yet Trnka and McCoy
(Trnka and McCoy 2007) as well as Vertanen and Kristens-
son (Vertanen and Kristensson 2011) have noted that AAC
dialogue can differ from the contents of these corpora; no
formal corpus of actual AAC input currently exists. Verta-
nen and Kristensson have publicly released a crowd-source
generated AAC-themed corpus that empirically improved
their text prediction results. Trnka showed that the syner-
gistic effects of combining AAC examples with non-AAC
dialogue have also been effective. However, the crowd-
source generated AAC-themed corpus was developed for
row-column scanning AAC devices rather than those that
use a keyboard input. Thus our training corpus is a hybrid of
select conversations from the Santa Barbara Corpus of Spo-
ken American English (SBC) (Du Bois et al. 2000; 2003;
Du Bois and Englebretson 2004; 2005). We chose the SBC
for its variety of discussions and simple linguistic annota-
tions which facilitated setup for training in our hierarchical
model. Using fourteen of the dialogues, the corpus currently
contains 6477 phrases of varying lengths.

Corpus Setup and Training To train our hierarchical
model on the SBC selections, we have to make additional

modifications to the text. In particular, the dialogues have to
be stratified by speaker, special keyword tokens may need to
be inserted for specific situations, and empty string tokens
need to be inserted where necessary. The stratification by
speaker simply sorts the dialogue so that all phrases spoken
by a single individual are listed consecutively. This mim-
ics an AAC device since only its user’s input is known; the
phrases of others involved in the conversation are not ob-
served. By having a single stream of dialogue for a speaker,
relations regarding transition of topic for a user may be
learned from the successive phrases presented. Although we
currently do not utilize this feature, it may be useful in dy-
namic variations of our hierarchical models.

At the keyword-level, stopwords are ignored. A complete
list of stopwords based on Huddleston and Pullum’s analy-
sis of the English language (Huddleston and Pullum 2002)
are included in the supplement (http://people.cs.umass.edu/
∼freedman/freedmanSupplement.pdf). The alterations to
the text at this level serve sentence parsing and generaliza-
tion purposes. We use a special keyword token to denote
punctuation for terminating sentences since some keywords
are more common at the start and/or end of sentences. Sim-
ilarly, special keyword tokens signifying the start and end of
each phrase are inserted into the phrase; due to the trigram
model, two special start tokens and one special end token are
added. Special keyword tokens generalizing specific names,
numbers, locations, and times can trigger the replacement
of the standard list of keyword predictions with other fea-
tures of the AAC device such as contact lists, number pads,
maps, etc.. However, the use and recognition of these tokens
are left for future research. To learn the trigrams over key-
words for training our models from the corpus, we simply
count the frequencies of all sequences of three consecutive
keyword tokens.

The stopword-level modifications are used to provide the
model with values for all its variables. Due to our model’s
two-stopword assumption, every pair of consecutive key-
words needs two stopwords between them. However, it is
often the case that there are fewer stopwords. Empty string
token ε will be inserted in place of the missing stopwords.
When there is only one stopword present, ε will follow it
to maintain consistency. In the few cases where more than
two stopwords are found, stopwords are removed by human
selection until only two remain. To learn the trigrams over
all words for training our models, we count the frequencies
of all sequences of three consecutive non-ε tokens (that is,
empty strings are ignored). In order to find the trigram like-
lihood that some s1i = ε, we count the sequences of three
consecutive tokens where only the third token is ε (other ε
are omitted).

3.3 Word Prediction with Hierarchical Model
The word prediction system for our hierarchical model re-
ceives keystrokes from the user at the keyword level and has
two prediction phases. When a phrase is initialized, we de-
fault the values of k0 and k1 to the special start token and
set s10 = s20 = ε so that the trigram model may be applied
for predicting the first keyword of the phrase before the user
provides any input. Due to the joint dependence between

topic and keywords, we predict the tuples of topics and key-
words that maximize the joint likelihood of topic t and cur-
rent keyword kc (which are assumed to be independent):

argmax
(t,kc)∈T×KLs

P (t, kc |kc−1, kc−2, . . . , k0, H, I)

= argmax
(t,kc)∈T×KLs

P (t |kc−1, kc−2, . . . , k0, H, I)

· P (kc |kc−1, kc−2, t)

= argmax
(t,kc)∈T×KLs

P (t |kc−1, kc−2, . . . , k0, H, I)

· P (kc |kc−1, kc−2) 1 · P (kc |t)

where KLs
is the set of keywords that start with the se-

quence of s typed letters Ls, H is the set of hyperparam-
eters, and I is other information provided by the AAC de-
vice (time of day, location, etc.) and/or previously typed
phrases (topic history, etc.). Since all keywords k0 through
kc−1 and stopwords s10 through s2c−2 have been selected by
the user as part of the phrase, we may consider them as
evidence in the model. The m most likely predicted key-
words in these tuples are displayed for the user to select. If
there are less thanm possibilities, then the remaining predic-
tion slots are filled with the most likely predicted keywords
in
(
KLs−1

−KLs

)
under the assumption that the previous

keystroke was an error. This is repeated for each set of key-
words

(
KLs−i

−KLs−i+1

)
until all m prediction slots have

an option.
In the relaxed empirical hierarchical model, we only find

keyword kc and topic tc at each step. Thus, since the user
does not select the topic with the keyword, it suffices to pre-
dict kc by summing over its joint likelihoods with each topic:

argmax
kc∈KLs

∑
tc∈T

P (tc, kc |kc−1, kc−2, . . . , k0, H, I)

For the keywords that serve as stopwords for LDA (that
is, the keyword is a function word that is neither a prepo-
sition nor an article - please refer to the supplement for
a complete list), only the n-grams are applicable because
function words appear frequently enough in documents
of any topic. So for these keywords and all tc ∈ T ,
P (tc |kc−1, kc−2, . . . , k0, H, I) · P (kc |tc) = 1. This also
holds for all keywords when using the two-level model since
the topic variables are not present.

Once keyword kc has been assigned by either selecting it
from the prediction list or pressing the space bar, the second
prediction phase begins. Using the conditional dependencies
between the keyword and stopword levels in tandem with the
trigrams of all words, we find the stopwords that maximize
their joint likelihood between keywords kc−1 and kc:

argmax
s1c−1,s

2
c−1∈S

P
(
s1c−1, s

2
c−1

∣∣kc, kc−1, s2c−2, s1c−2, kc−2)
∝ argmax

s1c−1,s
2
c−1∈S

P
(
kc
∣∣s2c−1, s1c−1, kc−1, s2c−2, s1c−2, kc−2)

· P
(
s1c−1, s

2
c−1

∣∣kc−1, s2c−2, s1c−2, kc−2)

= argmax
s1c−1,s

2
c−1∈S

P
(
kc
∣∣s2c−1, s1c−1, kc−1, s2c−2, s1c−2, kc−2)

· P
(
s2c−1

∣∣s1c−1, kc−1, s2c−2, s1c−2, kc−2)
· P
(
s1c−1

∣∣kc−1, s2c−2, s1c−2, kc−2)
where S = (D −K)∪ {ε} and the proportionality simplifi-
cation is a consequence of the conditional variant of Bayes’s
Rule. Because our trigram tables over all words do not al-
low conditioning on an observed empty string, we have the
following conditional probability tables for the probabilities
(X represents “does not matter” and any value assignments
not listed imply a probability of 0):

P
(
kc
∣∣s2c−1, s1c−1, kc−1, s2c−2, s1c−2, kc−2)

s2c−1 s1c−1 s2c−2 s1c−2 Probability
6= ε 6= ε X X P

(
kc
∣∣s2c−1, s1c−1)

ε 6= ε X X P
(
kc
∣∣s1c−1, kc−1)

ε ε 6= ε 6= ε P
(
kc
∣∣kc−1, s2c−2)

ε ε ε 6= ε P
(
kc
∣∣kc−1, s1c−2)

ε ε ε ε P (kc |kc−1, kc−2)1

P
(
s2c−1

∣∣s1c−1, kc−1, s2c−2, s1c−2, kc−2)
s2c−1 s1c−1 s2c−2 s1c−2 Probability

X 6= ε X X P
(
s2c−1

∣∣s1c−1, kc−1)
ε ε X X 1

P
(
s1c−1

∣∣kc−1, s2c−2, s1c−2, kc−2)
s1c−1 s2c−2 s1c−2 Probability

X 6= ε 6= ε P
(
s1c−1

∣∣kc−1, s2c−2)
X ε 6= ε P

(
s1c−1

∣∣kc−1, s1c−2)
X ε ε P

(
s1c−1 |kc−1, kc−2

)
The m most likely values of s1c−1 ∈ SLs that maximize∑
s2c−1∈S

P
(
s1c−1, s

2
c−1 |. . .

)
are listed for the user to select.

Then s1c−1 is used as additional evidence when listing the
m most likely values of s2c−1 ∈ SLs . After predicting the
final two stopwords s1x−1 and s2x−1 that may preceed the
special end token (when the user selects the button to submit
or process the phrase), the text prediction process starts over
and reinitializes the model for a new phrase.

4 Experiment
4.1 Performance Metric
We measure performance as the percentage of keystrokes
used which is simply the ratio of the minimum number of
keystrokes necessary to generate the sentence with the text
prediction system to the minimum number of keystrokes
necessary to generate the sentence without a text prediction

1The probability P (kc |kc−1, kc−2) for predicting stopwords is
not equal to the one used for predicting keywords. Stopword pre-
diction uses trigram counts of all words in the phrase while key-
word prediction uses trigram counts of the keyword abstraction
of the phrase. For example, the trigram ‘I,’ ‘ran,’ ‘it’ will not be
counted in the phrase “I ran away from it,” but it will be counted in
the keyword abstraction since ‘away from’ is removed.

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 0 5 10 15 20

P
e
rc

e
n
t
o
f
K

e
y
s
tr

o
k
e
s
 U

s
e
d

Number of Predictions Shown

Average Percentage of Keystrokes Used

With Topic Level (35 Topics), Traditional Count

Without Topic Level, Traditional Count
With Topic Level (35 Topics), New Input Method Count

Without Topic Level, New Input Method Count

Figure 3: The average percentage of keystrokes used in the
experiment. The change in savings indicates that at least 15
predictions should be displayed for best performance.

system. A keystroke is defined as the selection of a keyboard
button or predicted word. This measure is commonly used
for evaluating the effectiveness of text prediction systems;
there is a lower bound to this percentage since at least one
keystroke is necessary to select each prediction.

Normally, the minimum number of keystrokes needed to
generate a sentence without a text prediction system is sim-
ply the number of characters, including white spaces. How-
ever, our two-stopword assumption and backtracking to in-
sert stopwords alters this. In particular, after typing all the
characters of keyword kc and a space, the user types the
characters of preceeding stopwords s1c−1 and s2c−1. When
one of these is ε, a single space is typed to indicate “no
more stopword text.” This extra space increases the mini-
mum number of keystrokes since many pairs of consecutive
keywords have less than two stopwords between them. For
example, “hello world!” increases from fourteen keystrokes
to nineteen keystrokes; this is detailed in the supplement.

4.2 Procedure and Results
To test the text prediction performance of our hierarchical
models, we ran ten trials using our SBC-derived corpus. In
each trial, 5182 phrases were randomly selected for train-
ing and the remaining 1295 phrases were tested. Both mod-
els received the same set of phrases for training and testing.
During testing, the word was selected as soon as it was pre-
dicted.

Initial results of our current implementation may be seen
in Figure 3. Both methods for determining minimum
keystrokes are plotted for comparison. Because the new in-
put method requires more keystrokes, the average savings
are better for it than the traditional method. However, the
number of keystrokes used in the worst case with prediction
is, on average, equal to the number of keystrokes tradition-
ally used without prediction. It may also be noted that the
hierarchy performed better without the topic level. As dis-
cussed in Section 3.1, this could be a consequence of the
large amount of data necessary for learning topic models.

5 Conclusion
We have introduced two new models for use in text predic-
tion tasks that utilize a hierarchy of topics, keywords, and
stopwords that designate different levels of abstraction of a

user’s dialogue. The hierarchy requires fewer learning pa-
rameters in order to enable efficient initial performance with
less training data. A consequence of this is that users, es-
pecially those with disabilities who use AAC devices for
communication, are able to own devices that can quickly
be personalized in order to facilitate their communication
experience. The results show reasonable performance with
only 5182 training samples, but the extra keystrokes for the
new input method prevent reducing the number of necessary
keystrokes to a minimum. Now that the initial framework
is developed, model modifications and larger-scale testing
with corpora of various sizes is possible. Since the SBC is
freely available to the public, we will also make our adapta-
tion of the corpus freely available as a possible standard test
for text prediction system performance. Such standard tests
do not yet exist for evaluating AAC devices.

5.1 Future Work
In future work, we hope to further develop the abstraction hi-
erarchy in order to maximize performance and minimize the
size of the training corpus. One way to do this is to insert
a morpheme and/or lexeme level above the keyword level
of the hierarchy. Morphemes are atomic definition units of
words. Uchimoto et al. (Uchimoto, Sekine, and Isahara
2002) used them as an abstraction of our keywords definition
in order to generate bunsetsus. Lexemes are groups of word
variants such as representing all conjugations of a verb with
its infinitive. This higher-level information serves as latent
variables for the observed words giving our models a struc-
ture resemblant of HHMM’s (Bui, Phung, and Venkatesh
2004). A second way to improve the model would be to
allow additional closed classes such as conjunctions to be
stopwords and allow the number of stopwords to vary be-
tween consecutive keywords.

Besides improving the model, we must also revise the in-
terface to reduce the minimum keystroke increase. In partic-
ular, we plan to investigate accurate insertion of predicted ε’s
so that the user is not forced to select them. We also intend
to integrate information from the device via special keyword
tokens as described in Section 3.2. Lastly, we plan to test our
word prediction system with human subjects as Trnka et al.
(Trnka et al. 2008) did to evaluate how efficient and intuitive
it is for users. It is crucial that typing at the keyword level
is as simple as typing the entire phrase sequentially; it may
not be the case that most users consciously think from an ab-
stracted point of view. Likewise, we would be interested to
see how long it takes for user adaptation to become apparent
and its impacts on the human subject’s communication rate.

Acknowledgments
The authors thank Shlomo Zilberstein and the anonymous
reviewers for their comments that have improved this pa-
per. They additionally thank Duane Szafron and Christopher
Kerr for their advice about creating a dialogue corpora as
well as Keith Trnka for his insight regarding the reasons for
the lack of stopwords in the crowd-source corpus. Support
for this work was provided in part by the National Science
Foundation under grant IIS-0915071.

References
Beukelman, D. R., and Mirenda, P. 2006. Augmentative &
Alternative Communication: Supporting Children & Adults
with Complex Communication Needs. Paul H. Bookes.
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent
dirichlet allocation. J. Mach. Learn. Res. 3:993–1022.
Bui, H. H.; Phung, D. Q.; and Venkatesh, S. 2004. Hier-
archical hidden markov models with general state hierarchy.
In Proceedings of the 19th National Conference on Artificial
Intelligence, AAAI’04, 324–329. AAAI Press.
Du Bois, J. W., and Englebretson, R. 2004. Santa Barbara
Corpus of Spoken American English, Part 3. Philadelphia:
Linguistic Data Consortium.
Du Bois, J. W., and Englebretson, R. 2005. Santa Barbara
Corpus of Spoken American English, Part 4. Philadelphia:
Linguistic Data Consortium.
Du Bois, J. W.; Chafe, W. L.; Meyer, C.; and Thompson,
S. A. 2000. Santa Barbara Corpus of Spoken American
English, Part 1. Philadelphia: Linguistic Data Consortium.
Du Bois, J. W.; Chafe, W. L.; Meyer, C.; Thompson, S. A.;
and Martey, N. 2003. Santa Barbara Corpus of Spoken
American English, Part 2. Philadelphia: Linguistic Data
Consortium.
Garay-Vitoria, N., and Abascal, J. 2006. Text prediction
systems: A survey. Univers. Access Inf. Soc. 4(3):188–203.
Griffiths, T. L., and Steyvers, M. 2004. Finding scientific
topics. PNAS 101(suppl. 1):5228–5235.
Griffiths, T. L.; Steyvers, M.; Blei, D. M.; and Tenenbaum,
J. B. 2005. Integrating topics and syntax. In Saul, L. K.;
Weiss, Y.; and Bottou, L., eds., Advances in Neural Infor-
mation and Processing System 17. Cambridge, MA, USA:
MIT Press. 537–544.
Hansen, E. A., and Zilberstein, S. 2001. Monitoring and
control of anytime algorithms: A dynamic programming ap-
proach. Artificial Intelligence 126(1-2):139–157.
Huddleston, R., and Pullum, G. K. 2002. The Cambridge
Grammar of the English Language. Cambridge University
Press.
Kanagarajan, S. 2012. Assistive mobile interface using
machine learning. Master’s thesis, Wake Forest University,
Winston-Salem, NC 27109.
Kerr, C., and Szafron, D. 2009. Supporting dialogue gen-
eration for story-based games. In Proceedings of the Fifth
Artificial Intelligence and Interactive Digital Entertainment
Conference, AIIDE-09, 154–160.
Knoblock, C. A. 1991. Search reduction in hierarchical
planning solving. In Proceedings of the Ninth National Con-
ference on Artificial Intelligence, 686–691.
Lesher, G. W.; Moulton, B. J.; and Higginbotham, D. J.
1999. Effects of ngram order and training text size on word
prediction. In Proceedings of the RESNA ’99 Annual Con-
ference, 52–54. RESNA Press.
Pauca, V. P., and Guy, R. T. 2012. Mobile apps for the
greater good: A socially relevant approach to software en-
gineering. In Proceedings of the 43rd ACM Technical Sym-

posium on Computer Science Education, SIGCSE ’12, 535–
540. New York, NY, USA: ACM.
Tenenbaum, J. B.; Kemp, C.; Griffiths, T. L.; and Goodman,
N. D. 2011. How to grow a mind: Statistics, structure, and
abstraction. Science 331(6022):1279–1285.
Trnka, K., and McCoy, K. F. 2007. Corpus studies in word
prediction. In Proceedings of the 9th International ACM
SIGACCESS Conference on Computers and Accessibility,
Assets ’07, 195–202. New York, NY, USA: ACM.
Trnka, K., and McCoy, K. F. 2008. Adaptive word predic-
tion for aac. In 2008 ISAAC Biennial Conference Proceed-
ings, ISAAC 2008.
Trnka, K.; Yarrington, D.; McCoy, K. F.; and Pennington,
C. 2006. Topic modeling in fringe word prediction for acc.
In Proceedings of the 11th International Conference on In-
telligent User Interfaces, IUI ’06, 276–278. New York, NY,
USA: ACM.
Trnka, K.; McCaw, J.; Yarrington, D.; McCoy, K. F.; and
Pennington, C. 2008. Word prediction and communi-
cation rate in aac. In Proceedings of the IASTED Inter-
national Conference on Telehealth/Assistive Technologies,
Telehealth/AT ’08, 19–24. Anaheim, CA, USA: ACTA
Press.
Trnka, K.; McCaw, J.; Yarrington, D.; McCoy, K. F.; and
Pennington, C. 2009. User interaction with word predic-
tion: The effects of prediction quality. ACM Trans. Access.
Comput. 1(3):17:1–17:34.
Trnka, K.; Yarrington, D.; and McCoy, K. 2006. Topic
modeling in fringe word prediction for aac. In 2006 ISAAC
Biennial Conference Proceedings, ISAAC 2006.
Trnka, K. 2008a. Adapting word prediction to subject matter
without topic-labeled data. In Proceedings of the 10th Inter-
national ACM SIGACCESS Conference on Computers and
Accessibility, Assets ’08, 315–316. New York, NY, USA:
ACM.
Trnka, K. 2008b. Adaptive language modeling for word
prediction. In Proceedings of the 46th Annual Meeting of
the Association for Computational Linguistics on Human
Language Technologies: Student Research Workshop, HLT-
SRWS ’08, 61–66. Stroudsburg, PA, USA: Association for
Computational Linguistics.
Uchimoto, K.; Sekine, S.; and Isahara, H. 2002. Text gen-
eration from keywords. In Proceedings of the 19th Interna-
tional Conference on Computational Linguistics - Volume 1,
COLING ’02, 1–7. Stroudsburg, PA, USA: Association for
Computational Linguistics.
Vertanen, K., and Kristensson, P. O. 2011. The imagina-
tion of crowds: Conversational aac language modeling us-
ing crowdsourcing and large data sources. In Proceedings of
the Conference on Empirical Methods in Natural Language
Processing, EMNLP ’11, 700–711. Stroudsburg, PA, USA:
Association for Computational Linguistics.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
Satzilla: Portfolio-based algorithm selection for sat. Journal
of Artificial Intelligence Research 32:565–606.

Hierarchical Modeling to Facilitate Personalized Word Prediction for Dialogue
(Supplement)

Richard G. Freedman and Jingyi Guo
School of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003, USA

{freedman, jingyi}@cs.umass.edu

William H. Turkett, Jr. and V. Paúl Pauca
Department of Computer Science

Wake Forest University
Winston-Salem, NC 27106, USA
{turketwh, paucavp}@wfu.edu

1 List of Stopwords for Hierarchical Model
Due to the two-stopword assumption, not all words that are
typically considered stopwords in natural language process-
ing and natural language generation are used. In particular,
the two-stopword assumption can only be satisfied the ma-
jority of the time when articles and prepositions are consid-
ered since the only consecutive combinations of these word
types that are valid in the English language include:
• . . . article . . .
• . . . preposition . . .
• . . . preposition article . . .

The articles in the English language are a, an, some, the.
Although the word “some” may also be used as a demonstra-
tive adjective, we strictly consider it to be the plural indefi-
nite article (i.e. the plural form of “a”). Any cases of mis-
classification should not violate the two-stopword assump-
tion since demonstrative adjectives are used in place of arti-
cles.

There are many different kinds of prepositions that gener-
ate prepositional phrases. Some prespositions are formed by
a sequence of multiple words (we still designate these with a
single token) and others have specific language uses. While
our list of stopwords is likely not all-inclusive, the most
common prepositions we found using the seventh chapter of
Huddleston and Pullum’s analysis of the English language
(Huddleston and Pullum 2002) are listed below by preposi-
tion type. Some prepositions belong to multiple cateogories
and are listed for each type.
Main Prepositions

as than at by for from in of
on to with

Metaphorical Prepositions
out up down

Location Prepositions
at away to from on off onto in

out into
Quantifiable Prepositions

around over under close to up to
in excess of from to between

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Prepositions Complementing “for”
allowing for as for but for except for

Prepositions Complementing “from”
apart from as from aside from
away from far from downstage from

upstage from downstream from upstream from

Prepositions Complementing “to”
according to as to close to
contrary to counter to due to
further to near to next to

on to owing to pertaining to
preliminary to preparatory to previous to

prior to pursuant to subsequent to
thanks to unbeknown to unbeknownst to

up to

Prepositions Complementing “of”
because of exclusive of irrespective of
abreast of ahead of instead of

regardless of upward of upwards of
east of north of south of
west of alongside of inside of
off of out of outside of

Prepositions that Require Complements
amid amidst among amongst as per

beside despite during in between per
till until up against upon

Prepositions that May Lack Complements
aboard about above across
after against along alongside

apropos around before behind
below beneath besides between

beyond by down for
in inside near notwithstanding
off on opposite outside

over past round since
through throughout to under

underneath up within without

2 List of Stopwords used in Topic Model
A more expansive list of stopwords was used for the topic
model in the topic level of our hierarchical model. Some
common stopwords were still removed from this list since

there was a possibility that they could represent topics for
dialogue phrases. For example, “I” and “you” are not in-
cluded since these may denote topics regarding user features
or actions. The list of these words, including those that are
not keywords, are listed below.

about above across after
again against almost along

already also although always
am among an and

another any anybody anyhow
anyone anything anyway anyways

anywhere are around as
aside at away be
been before behind being

below beside besides but
by can cannot can’t

could despite during each
either else elsewhere enough

entirely even every everybody
everyone everything everywhere except

few for from further
furthermore had hence here

hereafter hereby herein hereupon
how if in insofar

instead into is just
may me mean might
more moreover most mostly
much must neither never

nevertheless next not of
off on onto or

otherwise ought out outside
over per quite regarding

regardless regards right should
since so that that’s
the then thence thereafter

thereby therefore therein there’s
thereupon thorough thoroughly those

though through thus to
too toward towards under

unless until unto up
upon very via was
what whatever when whence

whenever where whereafter whereas
whereby wherein whereupon wherever
whether which while with

yet

3 New Input Method Details
Traditionally, text is typed sequentially from the first word
to the last word. However, due to the use of two consecutive
keywords as evidence in our hierarchical model, only the
keywords are typed sequentially. After a keyword is typed,
we must backtrack to type the preceeding stopwords. This
leads to a more back-and-forth method of typing. Addition-
ally, due to the two-stopword assumption, it is possible that
the user would need to indicate that fewer than two stop-
words are necessary by pressing the space bar or SEND but-
ton in place of a stopword (we denote empty strings by ε).

This additional space can add to the number of keystrokes
needed to type the sentence via the tradional method. For
comparison, we provide the key-by-key typing of “hello
world!” using both methods. The traditional methods uses
fourteen keystrokes while the new input method requires
nineteen keystrokes. The cursor’s current location is denoted
by an underscore ().

Traditional New Input Method

h h
he he
hel hel
hell hell

hello hello
hello hello

hello w ε ε hello
hello wo ε ε hello w
hello wor ε ε hello wo
hello worl ε ε hello wor

hello world ε ε hello worl
hello world ε ε hello world
hello world ! ε ε hello world

hello world ! [SEND] ε ε hello ε ε world
ε ε hello ε ε world !
ε ε hello ε ε world !

ε ε hello ε ε world ε ε !
ε ε hello ε ε world ε ε ! [SEND]
ε ε hello ε ε world ε ε ! ε ε [SEND]

References
Huddleston, R., and Pullum, G. K. 2002. The Cambridge
Grammar of the English Language. Cambridge University
Press.

