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I. INTRODUCTION
For robots to properly interact with humans, it is important

that they are able to recognize users’ plans and activities so
that they may respond accordingly. Many activity recognition
(AR) algorithms involve signal processing [1] or supervised
learning [2], [3] to label raw sensor data with a human-
defined action, but these methods restrict the generalizability
of the learned activity models. In particular, sensor inputs that
drastically differ from the training data cannot be labeled
correctly, making it hard to build robots that respond appro-
priately to novel actions. This is evident in the codebook
method used by Wang and Mori [2] to cluster the set of
all sensor readings into k clusters via k-means clustering
of the training data. The signal input at the center of each
cluster is used to represent all sensor readings that fall
within the cluster. This means that any novel signal input is
aliased with one from the training data so that a misclassified
action/activity is certain. Such a phenomenon was observed
by Zhang and Parker [4] when they derived a codebook for
compressed vector representations of spatial-temporal input
signals, but they used an unsupervised topic model for AR.

Unsupervised learning methods such as the latent Dirichlet
allocation topic model (LDA) [5] were recently proposed for
AR tasks which enable machines to derive their own activity
clusters [6]. The primary challenge with such methods is
the inability for humans to clearly interpret these machine-
defined actions, which can lead to difficulty in verification
and determining response behaviors. The original work by
Huỳnh et al. [6] provided interpretive evidence by aligning
the learned topics with an annotated timeline of activities, but
few other applications have had access to such annotations.
Furthermore, it is evident that machine learning of practical
activity clusters can be difficult when displaying sensor read-
ings since numbers are not always easy to relate. Freedman
et al. [7] represented activity clusters learned using LDA on
red, green, blue, depth (RGB-D) sensor data as collections
of stick figures in an attempt to resemble the topic modeling
literature where collections of words are presented for each
topic. As snapshots of an activity in progress, stick figures
still cannot reveal the underlying trend(s) between each
other like actual words can because words have semantic
definitions.

We thus propose the use of feature vectors for signal
data such as postures read by a RGB-D sensor in order to
autonomously derive descriptions of activity clusters learned
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using unsupervised methods. This will remove ambiguity
in the learned models because the machine can explain the
trends in terms that humans comprehend. After providing an
example of deriving such feature vectors for RGB-D sensor
data and using them to present descriptions of a learned
activity, we discuss how this may be used to develop more
robust resposnsive behaviors during human-robot interaction.

II. LABELING RGB-D SENSOR INPUT

To derive commonalities between sensor readings in an
activity cluster, we must have a list of human-defined prop-
erties for each reading. We then define a feature descriptor
for input v as binary vector −→xv ∈ {0, 1}|F | where F is the list
of possible features and xv (i) = 1 if and only if v has the ith

feature. For describing activity cluster t’s features, we define
a weighted feature descriptor as vector −→xt ∈ [−1, 1]|F |
where xt (i) → 1 as the ith feature is more common in the
cluster’s readings and xt (i)→ −1 as it is less common.

A. GENERATING FEATURE DESCRIPTORS

RGB-D sensor data produces a sequence of three-
dimensional point clouds which present a colored surface of
the region facing the sensor over time. Each point cloud may
be used in AR to represent the environment where regions
of changing points over time indicate objects of interest [4],
and human bodies may be identified from these regions [8]
to extract postures independent of the environment [7]. When
a person looks at a single posture, she is able to explain it
in terms of the appendages and joints’ relative positions. For
example, Fig. 1 is standing with the arms slightly bent, one
which is raised, and one lifted leg that is bent. The conditions
for discerning these features are not arbitrary because specific
angles of orientation for each joint dictate the orientation
and position of the limbs. As most software packages provide
RGB-D sensor data in the form of [−π, π]45 (roll, pitch,
and yaw for 15 joints), it is possible to compute Euler
angles and determine these features using a list of conditional
statements. For example, an elbow joint may be considered
bent if the angle between the upper and lower arm is in
[0, 3π/4] and straight if it is in (3π/4, π].

B. GENERATING WEIGHTED FEATURE DESCRIPTORS
After learning the unsupervised AR model, we will have

k clusters which partition the sensor inputs from the training
data. In the case of unsupervised topic models such as LDA,
our inputs are documents d ∈ {1, . . . , D} (a sequence of
sensor readings) whose attributes are its words −→wd (sensor
readings) so that we specifically learn a topic (activity
cluster) assignment −→zd for each reading. Then each sequence
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Fig. 1. Example of a feature descriptor for the pose above.

has a distribution of activities θd based on the ratio of
assignments in −→zd and each activity t has a distribution over
readings φt based on the ratio of each pose v in all −→wd
assigned t:

φt (v) =

(∑D
d=1

∑|−→wd|
n=1 1 (wd (n) = v ∧ zd (n) = t)

)
(∑D

d=1

∑|−→wd|
n=1 1 (zd (n) = t)

)
where 1 is the indicator function that equals 1 when the

condition is true and 0 otherwise. Smoothing is usually
applied based on some hyperparameter settings as well.

Because each θd is easily interpreted as a mixture of
activities, we are most interested in finding interpretations
for each φt because the relationships between sensor readings
(poses) are not often as obvious. From the AR perspective,
we want to identify which features best describe the majority
of the sensor readings represented by each cluster’s learned
distribution. Using feature descriptors, we propose three
approaches for computing a weighted feature descriptor:

1) Center of Mass: Let us consider each possible sensor
input v as an independent particle in space with mass φt (v)
and position −→xv . Then each particle is located at some corner
of this |F |-dimensional space and has mass proportional to
its probability density. The center of mass for a system of
particles is the weighted average position between all the
particles: −→xt =

∑|φt|
v=1 φt (v) ·

−→xv where the normalizing
constant would be 1, the cumulative distribution over φt.
Although simple to compute, this approach is naı̈ve because
it simply finds the weighted union of features. Thus a single
sensor input with a large mass would contribute all its
features to the cluster’s weighted feature descriptor even if
no other inputs with considerable mass share some of them.

2) Agglomerative Clustering: Agglomerative clustering
hierarchically builds sets of objects that share like features,
beginning with singleton sets that contain each sensor input.
The likeness between sets C1 and C2 for cluster t is mea-
sured using d (C1, C2) =

∣∣∑
v∈C1

φt (v)−
∑
v∈C2

φt (v)
∣∣ ·

||−−→xC1
−−−→xC2

||2 where −→xCi
is the weighted feature descriptor

for set Ci. d is not a metric because a distance of 0 does
not guarantee that the two sets are equal. At each iteration,
the set(s) with the smallest distance between each other are
merged together as a new set; this process terminates when
the distances are all greater than some threshold. While these
distanced sets’ weighted feature descriptors may be joined
by weighted union like in the particle system above, the
sensor inputs within each set are joined by the intersection
of features: −−−→xC1,2 =

∑
v∈C1∪C2

φt (v) ·
⊙

v∈C1∪C2

−→xv where
� is element-wise multiplication. Intersection may be too
strong since it has the opposite problem of the union: a
single sensor input with a large probability density may

not have one feature that the remaining inputs of signif-
icant probability share. To address this, we introduce a
soft intersection which accounts for the number of inputs
sharing the presence/lack of a feature. We first convert each
feature descriptor into x′v (i) = −11+xv(i) and then compute
−−−→xC1,2 =

∑
v∈C1∪C2

φt (v) · (|C1|+ |C2|)−1 ·
∑
v∈C1∪C2

−→
x′v .

3) Supervised Learning: The last approach acknowledges
the fact that supervised learning methods such as decision
trees learn interpretable functions. If we consider every sen-
sor input in every recording sequence as a separate data point,
then we have inputs −−−−→xwd(n) with assigned outputs zd (n)
from our AR model. We may use off-the-shelf supervised
learning algorithms to learn a function mapping between
each feature descriptor and its associated topic. The only
limitation is that each algorithm has a specific type of
function which it can learn. For example, decision trees can
only learn perpendicular partitions of the space.

III. FUTURE WORK

We are currently implementing the generators described in
Section II so that we may compare how well each approach
performs. It is necessary that the derived interpretations not
only make sense, but match a human’s so that programmed
response behaviors are appropriate. Furthermore, clearer
breakdowns of actions perceived by the robot will enable
more robust interaction since the perceived actions will have
specific features such as which limbs are used. This will
enable a robot to do motion planning with respect to these
features rather than just the generic action; for example,
a robot may plan to receive an item from the user’s left
hand rather than wait for the person to bring the item to it.
Besides applying this to AR, we will also investigate whether
it applies to a natural language analogue of topic modeling.
This could further assist the field of human-robot interaction
by improving semantic interpretation in dialogue systems
when humans use synonyms or describe object features.
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