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Abstract

Modeling and understanding BitTorrent (BT) dynamics is a recurrent research topic mainly
due to its high complexity and tremendous practical efficiency. Over the years, different models
have uncovered various phenomena exhibited by the system, many of which have direct impact
on its performance. In this paper we identify and characterize a phenomenon that has not
been previously observed: homogeneous peers (with respect to their upload capacities) expe-
rience heterogeneous download times. This behavior has direct impact on peer and system
performance, such as high variability of download times, unfairness with respect to peer arrival
order, bursty departures and content synchronization. Detailed packet-level simulations and
prototype-based experiments on the Internet were performed to characterize this phenomenon.
We also develop a mathematical model that accurately predicts the heterogeneous download
rates of the homogeneous peers as a function of their content. In addition, we apply the model
to calculate lower and upper bounds to the number of departures that occur in a burst. The
heterogeneous download rates are more prevalent in unpopular swarms (very few peers). Al-
though few works have addressed this kind of swarm, these by far represent the most common
type of swarm in BT.
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1. Introduction

Peer-to-peer (P2P) applications have widely been used for content recovery in Internet.
Among them, BitTorrent (BT) [1] is one of the most popular, used by millions daily to retrieve
millions of files (movies, TV series, music, etc), accounting for large fractions of today’s Inter-
net traffic [2]. The mainstream success of BT is closely related to its performance (e.g., fast
download times) and together with its high complexity, has triggered the interest of researchers.

Understanding and characterizing the performance of BT through mathematical models
has been an active topic of research [3]. Several studies have uncovered peculiar aspects BT’s
dynamic, many of which have direct impact on system performance. Moreover, models that
capture user and system performance under homogeneous and heterogeneous peer population
(with respect to their upload capacities) have been proposed for various scenarios [4, 5, 6, 7].
However, most proposed models target large-scale systems, either with a large and fixed initial
peer population or relatively high peer arrival rates.

We consider a BT swarm where all peers have identical upload capacities but unconstrained
(or large) download capacities. In this context, we identify and characterize a phenomenon that
has not been previously observed: homogeneous peers experience heterogeneous download rates.
Although this is expected in swarms where peers have different capacities, in homogeneous
swarms, peers should, at first, exhibit similar average performance. Thus, we focus in the latter
type of swarm, for which the described behavior has not been captured by any prior model
(to the best of our knowledge). Moreover, this observation has several important implications,
such as high variability of download times, unfairness with respect to peer arrival order, bursty
departures and content synchronization among the peers. Two peers are said to be content-
synchronized after their content become identical at a given instant. This last consequence is
particularly critical since it is closely related to the missing piece syndrome [8, 9, 10], a scenario
where a very large number of peers have all except a single missing piece.

We characterize the fact that homogeneous peers experience heterogeneous download rates
and its various consequences by using detailed packet-level simulations and prototype-based
experiments on the Internet. To underpin critical parameters for this behavior, we consider
various scenarios. We show that peer arrival times strongly influence their average download
rate. We also develop a mathematical model that explains the phenomenon and predicts the
heterogeneous download rates of the homogeneous peers as a function of their content. The
comparison of model predictions with simulation results indicate the model is quite accurate.
More importantly, the model sheds light on the key insight for this behavior: upload capac-
ity allocation of peers in BT depends fundamentally on piece interest relationship, which for
unpopular swarms can be rather asymmetric. We also apply the model to calculate lower and
upper bounds to the number of departures that occur in a burst.

Remark: The case for unpopular swarms with seeds

The phenomenon we identify is more prevalent in swarms that have a very small peer
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population and a single seed (peer with entire content) with limited bandwidth. However, this
is by far the most prevalent kind of swarm in BT, as observed by different and independent
measurement studies. In particular, it has been shown that inter-arrival times of peers into
swarms increase exponentially with the age of the swarm [11, 12]. Thus, some time after it
has been created, swarms receive few peers and therefore have a very small size. A detailed
measurement study of swarm sizes in BT considering various repositories and various media
types has also recently appeared in the literature [13]. Their results indicate that 70% of active
swarms from different repositories have less than 10 peers (Figure 2 in [13]). When considering
swarms that do not change size over a relative short time, 97% of them have less than 5 peers
(Figure 3 in [13]).

We have also conducted measurements in Torlock.com, one of the most popular Torrent
Search Engines available in the Internet nowadays. In particular, we collected information
concerning swarm health (number of peers, number of seeds, etc) on all available swarms in
the website (around 150,000) once a day for ten consecutive days in November 2011. Each
swarm has a size which is given by the number of peers connected to the swarm (seeders
plus leechers) at the time data was collected. Figure 1a shows the empirical complementary
cumulative distribution of swarm sizes for all ten days, considering only swarms that have at
least one seed (around 130,000 swarms). Interestingly, swarm size distribution is heavy tailed,
with some swarms having a size 1000 times larger than the average. Moreover, most swarms
are very small: about 58% of the swarms have less than 5 peers and about 73% have less than
10 peers. Finally, this observation is persistent and consistent over the ten measurement days,
indicating that small swarms are very prevalent in BT. Intuitively, swarms without any seeds
are not likely to exist in BT since the content may not be fully available in them. Figure 1b
shows the fraction of swarms of size K with at least one seed. As expected, the fraction of
swarms with at least one seed is very large, more than 90% for all swarm sizes greater than 2.
Moreover, as the size of the swarm increases, this fraction also increases. Again, we observe
that this is consistent over the ten measurement days, indicating that swarms with at least one
seed are very frequent, even when considering unpopular swarms, with sizes less than 5.

Finally, as supported by experimental evidence, unpopular swarms (swarms of very small
sizes, e.g., five or less peers) with at least one seed are very common in the real world. Thus,
they are the focus point of this paper, although we will present and discuss some generalizations.

The rest of this paper is organized as follows. In §2 we present a brief overview of BT and
motivate the phenomenon we have identified. In §3 we characterize the phenomenon and its
consequences using simulations and experiments with a real BT application. §4 presents our
mathematical model, its validation in comparison with simulations, and some model general-
izations. In §5 we apply the model to make predictions about bursty departures. We include
a discussion and possible model extensions as well as present some related work in §6 and §7,
respectively. Finally, we conclude the paper in §8.
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Figure 1: Distribution of swarm sizes and fraction of swarms with at least one seed in Torlock.com for ten
consecutive measurement days.

2. BT overview and the observed behavior

2.1. Brief BT overview

BT is a swarm based file sharing P2P application. Swarm is a set of users (peers) interested
in downloading and/or sharing the same content (a single or a bundle of files). The content is
chopped into pieces (chunks) which are exchanged among peers connected to the swarm. The
entities in a swarm may be of three different types: (i) the seeds which are peers that have a
complete copy of the content and are still connected to the system altruistically uploading data
to other peers; (ii) the leechers which are peers that have not yet fully recovered the content
and are actively downloading and simultaneously uploading the chunks; and, (iii) the tracker
which is a kind of swarm coordinator, it keeps track of the leechers and seeds connected to the
swarm.

Periodically, the tracker distributes lists with a random subset of peers connected to the
swarm to promote the interaction among participating peers. In a first interaction, two peers
exchange their bitmaps (a list of all file chunks they have downloaded). All updates in their
bitmaps are reported by the leecher to its neighbors.

In order to receive new chunks, the leecher must send “Interested” messages to all peers
that announced to have the wanted pieces in their respective bitmaps. Because of the rarest
first approach specified in BT protocol, leechers prioritize to download first the chunks that are
scarcer in the swarm. Once a sub-piece of any chunk is received, the “strict priority” policy
defines that the remaining sub-pieces from that particular chunk must be requested before
starting the download of any other chunk.

Whenever an “Interested” message is received, peers have to decide whether to “unchoke”
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that leecher and serve the piece or to “choke” the peer and ignore the request. Leechers prefer-
entially upload content to other leechers that reciprocate likewise, it is based on a “tit-for-tat”
incentive strategy defined by BT’s protocol. More precisely, a major fraction of its bandwidth
is allocated to serve the peers that have contributed the most to the leecher. However, a minor
fraction of its bandwidth must be dedicated to altruistically serve leechers that have never
reciprocated. This policy, referred to as “optimistic unchoke”, is useful for leechers to boot-
strap new reciprocity relationships. As the seeds do not reciprocate, they adopt the “optimistic
unchoke” approach all the time. These BT policies were designed with the main purpose of
giving all leechers a “fair share” of bandwidth. It means that peers uploading in higher rates
will receive in higher download rates, and in a population of leechers uploading at the same
rate, they all must reach equal download rates.

2.2. The observed behavior

Having presented BT’s mechanisms, we now illustrate the heterogeneous download rate
phenomenon and its consequences with two simple examples. Consider a swarm formed by a
seed and 5 leechers. All peers, including the single seed, have identical upload capacity (64
kBps), but large (unconstrained) download capacity. The leechers download a file containing
1000 pieces (256 MB) and exit the swarm immediately after download completion. The seed
never leaves the swarm. This system was evaluated using an instrumented implementation
of the BitTorrent mainline 4.0.2 client (also used in [14]) running on PlanetLab as well as a
detailed packet-level simulator of BT. Both the PlanetLab experiments and the simulations
use fully functional BT clients that implement all BT control messages and policies, including
peer selection strategies: TFT, optimistic unchoke; and piece selection modes: random-first,
rarest-first, strict priority.

The simulation model was developed in the modeling tool Tangram-II [15] (open source and
publicly available software). The model we developed is very detailed and faithfully implements
the protocol of the BitTorrent mainline 4.0.2 client, including all control messages and policies.
In accordance with Tangram-II’s modeling paradigm, entities that participate in the system are
implemented as separate objects that communicate by message passing. Thus, peers (leechers
and seed) and tracker are represented by objects that can be fully parametrized (upload rate,
file size, seed after download, etc).

In the following simulations and experiments, leechers start to join the swarm only after
the seed is connected and they leave immediately after finishing the download. The simula-
tion/experiment ends when the last leecher leaves. Figures 2a and 2b show the evolution of
the swarm size as a function of time for both simulation and experimental results and two
different leecher arrival patterns. In Figure 2a, peers leave the swarm in the order they arrived
(i.e., FIFO) and have a relatively similar download time. Thus, the download time is relatively
indifferent to arrival order (with the exception of the first peer).

Figure 2b shows the same metric just for different arrival times (in fact, the inter-arrival
times of peers are also mostly preserved). Surprisingly, an unexpected behavior can be observed
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(b) Arrival intervals: 4 min, 4 min, 4 min, 10
min.

Figure 2: Evolution of the number of leechers in the swarm.

in the system dynamics: despite the significant difference on arrival times, all five leechers
completed their respective download nearly at the same time. The time inter departures is
small comparing to the download time, which characterizes bursty departures. It means that
peers that arrive later to the swarm have a smaller download time. In fact, the fifth peer
completed the download in about half the time of the first leecher. Thus, the system is quite
unfair with respect to the arrival order of leechers, with late arrivals being significantly favored.
What is happening? Why does BT exhibit such dynamics? We answer these questions in the
next sections.

3. Heterogeneity in homogeneous BT swarms

In order to understand the behavior exhibited by BT in Figures 2a and 2b, we will analyze
the total number of pieces each leecher has downloaded over time. Consider Figures 3a and
3b where each curve indicates the total number of pieces downloaded by a given peer for the
corresponding scenario in Figures 2a and 2b, respectively. Note that the slope of each curve
corresponds to respective leecher’s download rate.

We start by considering Figure 3a. Despite the slope of the first leecher being smaller
than that of the remaining peers, the curves never meet. In particular, a leecher finishes the
download (and leaves the swarm) before the next leecher reaches the number of blocks it has.
We also note that all other leechers have very similar slopes. In addition, we observe a peculiar
behavior: the slope of the fifth leecher suddenly decreases when it becomes the single leecher
in the system.

The results illustrated in Figure 3b which correspond to the scenario considered in Figure 2b
show a very different behavior. Several interesting observations can be drawn from this figure.
The slope of the first peer is practically constant, remaining unchanged by the arrival of other
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Figure 3: Evolution of the number of downloaded pieces.

peers. The slope of all other peers is larger than that of the first peer, meaning the curves may
eventually meet. When two curves meet, the corresponding leechers have the same number of
blocks and possibly the same content (we will comment on this point in the following section).
The figure also shows that a younger peer does not overcome the first peer, but instead the two
maintain the same number of downloaded pieces, possibly with their contents synchronized.
Finally, the slope of the second, third and fourth peer are rather similar. However, the slope of
the fifth peer is slightly larger than the others, meaning a higher download rate and consequently
smaller download time.

In summary, we make the following general observations:

• The first leecher downloads approximately at constant rate.

• Subsequent leechers download at a faster rate than the first.

• Once a leecher reaches the total number of pieces downloaded by the first leecher, their
download rates are identical.

• The greater is the number of leechers with the same number of pieces of the first leecher,
the higher is the download rate of the other leechers.

All these observations are related to the dynamics of BT and will be discussed and explained
in Section 4 using a simple mathematical model. In the remainder of this section, we discuss
the consequences of the observed phenomenon and illustrate that it happens even when peer
arrival is random (i.e., Poisson process).

3.1. Consequences of heterogeneity in homogeneous swarms

Despite the homogeneous upload capacity of peers, the observations above lead to the fol-
lowing consequences:
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• Variability in download times. Since peers can experience a consistently different
download rate, their download times can also differ.

• Unfairness with respect to peer arrival order. Since peers download rates, and
thus download times, may depend on their arrival order, the system is inherently unfair,
potentially benefiting latecomers in a swarm.

• Content synchronization. Due to different download rates and BT’s piece selection
mechanisms (most notably rarest-first), leechers can synchronize on the number of pieces
they have and, more strongly, on the content itself. This means that peers may end up
with exactly the same content at some instant, despite arriving at different points in time.

• Bursty departures. A direct consequence of content synchronization is bursty depar-
tures. This means that peers tend to leave the swarm within a small interval of time
despite arriving at the swarm at relatively far apart instants.

Although the figures do not show the content synchronization explicitly, since the first
leecher is downloading the file at the same rate at which the seed pushes new pieces into the
swarm (seed upload capacity), whenever a leecher reaches the same number of pieces than it,
they have exactly the same content.

Of course, the prevalence of the phenomenon and its consequences depend directly on the
parameters of the swarm. In particular, the arrival times of peers is certainly the most deter-
minant. However, parameters like upload capacity of seed and leechers and number of pieces
are also fundamentally important. Intuitively, a file with a larger number of pieces or a seed
with a lower upload capacity increase the probability that the consequences above occur. In
fact, for any arrival order of a small set of peers, one can always find system parameters for
which this behavior and its consequences occur.

3.2. Heterogeneity under Poisson arrivals

The behavior above does not require deterministic arrivals or any crafted leecher arrival
pattern. It arises even when arrival patterns are random. In this section we characterize the
consequences of the heterogeneous download rates phenomenon under Poisson arrivals.

We conducted a large amount of evaluations using detailed packet-level simulations. In
particular, we consider a BT swarm where a single seed is present at all times, while leechers
arrive according to a Poisson process and depart the swarm as soon as their download is
completed. In the evaluation that follows, all leechers have the same upload capacity of 64
kBps (and very large download capacities) and download a file with 1000 pieces. The upload
capacity of the seed (cs) varies between 48 kBps, 64 kBps, and 96 kBps, and the leecher arrival
rate (λ) is 1/1000 s. These scenarios generate a swarm that has a time average size of 3.7, 3.4
and 3.0 leechers, respectively.
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Figure 4: Average download time as a function of arrival order in a busy period.

We start by characterizing the variability in the download times and the unfairness with
respect to leecher arrival order. Figure 4 illustrates the average download time for a peer as a
function of the number of leechers in the swarm at its arrival time. Thus, if a peer joins the
swarm when i leechers are present, it is mapped to index i. The different curves correspond
to different upload capacities of the seed. The results clearly indicate that the download time
depends on leecher arrival order. In particular, for the case cs = 64 kBps, the average download
time tends to decrease with increasing arrival order, and so the first arrival has the largest
average download time. Moreover, the download time differences are also significant, and can
reach up to 30% (e.g., difference between first and fourth arrival).

Figure 4 also indicates that variability in download times strongly depends on the seed
upload capacity. In particular, a fast seed yields the reverse effect: leechers’ download times
tend to increase with arrival order. Intuitively, when a slow seed is present, late arrivals to a
busy period obtain large download rates from other leechers, thus exhibiting a lower download
time. However, when a fast seed is present, the first leecher has the larger upload capacity of the
seed until the second arrival, thus exhibiting a lower download time. The results also illustrate
second order effects. For instance, a very late arrival can have an average download time slightly
larger (or smaller) than a late arrival (e.g., the sixth leecher arrival has longer download time
than fourth for cs = 64 kBps). Intuitively, this occurs because a very late arrival is likely to
be alone in the busy period, having to resort to the seed for finishing the download. Since
the upload capacity of the seed can be smaller (larger) than the aggregate download rate it
receives from other leechers, its download time can increase (decrease). This behavior and its
consequences will be explained and captured by the mathematical model presented in the next
section.

We now characterize the burstiness in the leecher departure process. Figure 5a shows
the empirical CCDF (Complementary Cumulative Distribution Function) of the leecher inter-
departure times conditioned on a busy period (i.e., not including the inter-departure time
between the last leecher in a busy period and the first leecher of the next). Note that the peer
inter-arrival times follow an exponential distribution with rate 1/1000. However, the results
indicate a very distinct departure process. In particular, many peers tend to leave the swarm
at roughly the same time: up to 30% of peers leave the swarm within a couple of seconds from
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Figure 5: Characterization of consequences of heterogeneous download rates for different values of seed capacity.

each other when cs = 64 kBps. Moreover, the departure process also exhibits high variability
and some peers take as much as ten times more to leave the system after a departure than
the average (when cs = 64 kBps). The figure also clearly shows that this observation strongly
depends on the seed upload capacity, and is more pronounced when the seed is slow. Intuitively,
a slower seed increases the average download time, thus increasing the chances that leechers
synchronize their content during the download and depart almost at the same time. Finally,
we also note that a fast seed yields a much less bursty departure process, although still favoring
short inter-departure times.

Table 1: Average number of leechers and average number of synchronized leechers conditioned on intervals
where the number of leechers is greater than 1.

cs cond. avg. number cond. avg. number
(kBps) of leechers of synch. leechers
48 4.45 2.40
64 3.86 1.44
96 3.57 0.87

One consequence of the heterogeneous download rates that is closely related to the bursty
departures is content synchronization. Here we refer to as synchronized, leechers that are not
interested in more than 50 pieces (5% of the file) of any other. In this context, we compare
the average number of leechers in the system and the average number of those which are
synchronized. These metrics are conditioned on time intervals where the number of leechers is
greater than 1, because synchronization is not defined otherwise. Table 1 shows the results of
our simulations. The conditional average number of synchronized leechers corresponds to 53.9%,
37.3% and 24.4% for cs equal to 48, 64 and 96 kBps respectively. While the synchronization is
less pronounced when the seed capacity is high, it is very significant when cs ≤ cl.

It is possible to have different download times even when all peers that are simultaneously
in the swarm have the same instantaneous download rate. Since peers join the system at
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Figure 6: Characterization of consequences of heterogeneous download rates for different values of average
inter-arrival time.

different times, they observe the swarm in different sequences of states, in some of which there
is more bandwidth available. Those peers will have smaller download times. Nevertheless, as
we discussed in Section 3.1, heterogeneous download rates also contribute to the variability
in the download times. Figure 5b shows the empirical CCDF of the leecher download time for
different values of seed capacity (cs). While the maximum download time is 45.5% and 52.8%
higher than the minimum respectively for cs equal to 96 and 64 kBps, it is 218.7% higher for
cs = 48 kBps. Surprisingly, the minimum download time is the smallest when the seed capacity
is the lowest (i.e., 48 kBps). This is because leechers synchronize with high probability under
these circumstances and, as we will see in Section 4.2, non-synchronized leechers receive at very
high download rates in the presence of many synchronized ones.

We observe that the seed capacity plays an important role on the occurrence of the described
consequences under unpopular swarms. In the following, we characterize the impact of another
important aspect on these consequences, namely the content popularity, which can be captured
through leecher arrival rate. For this purpose, we conducted simulations where the seed and
the leechers have the same upload capacity of 64 kBps and average inter-arrival time (i.e, 1/λ)
varying between 500, 1000, 1500, 2000 and 2500 s.

We consider the influence of the average inter-arrival time of leechers on the download
times, independently of arrival order. Figure 6a shows the empirical CCDF of the download
times of peers as a function of the average inter-peer arrival time (i.e., the inverse of arrival
rate), for cs = 64 kBps. Note that there are sharp drops for t > 4000 which correspond to
leechers whose average download rate is approximately equal to cs. These sharp drops are more
pronounced when the inter-arrival time is large. In addition, as the inter-arrival time grows, the
10th-percentile decreases and the 90th-percentile increases, indicating that the download times
become less concentrated around the average. However, the variability between minimum and
maximum download time does not diminish with the inter-arrival time.
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Figure 6b illustrates the intensity of content synchronization for different arrival rates. It
shows the average number of leechers in the system and the average number of those which are
synchronized. We observe that, the number of synchronized leechers remains practically the
same as we increase the inter-peer arrival time, indicating that a larger fraction of peers have
similar content when popularity decreases.

As with content synchronization, the fraction of bursty departures is also strongly dependent
on the leecher arrival rate. While approximately 5% of the intervals between departures are
smaller than 10 seconds for an arrival rate λ = 1/500, more than 30% of intervals are smaller
than 10 for λ = 1/2500. On the other hand, the unfairness with respect to the arrival order in a
busy period is almost insensitive to the leecher arrival rate (considering 1/2500 ≤ λ ≤ 1/500).

3.3. Real experimental evaluation

The results shown above were all obtained through simulations and we now present results
from prototype-based experiments deployed in more realistic scenarios. The real experiments
were performed in the Internet using machines from Planetlab[16] and running an instrumented
version of a BT client[14]. Although a large number of experiments were conducted, we report
only on a limited set of these results due to space constraints. The goal here is to validate
the phenomenon of heterogeneity in homogeneous BT swarms and its consequences in real BT
application running over the Internet.

In the experiments, the PlanetLAB machines were selected using a quick and simple per-
formance test. Before starting every experiment, a controller dispatches a command via ssh
for a set of few hundred machines randomly chosen from the complete list of all PlanetLAB
machines. The command line basically makes the machines to download and install all the
necessary files (including BT client and scripts) to execute locally the experiment. The set
of machines that had the best performance downloading and installing the files was used in
the experiments. This performance test was enough to avoid using machines overloaded or
connected through congested links.

We consider only private swarms in the experiment, in the sense that only peers controlled by
the experiment can connect to the swarm for uploading and downloading content. Each private
swarm consists of a single file of size S MB which is owned by a single seed that is always
available and has upload capacity of cs. Leechers interested in downloading the content arrive
to the swarm according to a Poisson process with rate λ. All leechers that arrive to the swarm
are homogeneous and have upload capacity equal to cl. The maximum upload capacities used
in the experiments are defined as parameters of any BT client (including the one we use). Note
that those upload capacity values used for the experiments were far below the limit imposed
for each slice (user) in PlanetLAB. Each experiment run is executed for t = 5, 000 seconds and
leave the swarm once the download is completed.

We start by analyzing the evolution of the swarm size for an unpopular swarm. Figure 7a
shows the number of leechers in the swarm over time for the duration of the experiment, with
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(c) Zoom-in of the first busy period.

Figure 7: Swarm dynamics in real experiments.

parameters λ = 1/125 peers/s, S = 20 MB, and cs = cl = 50 kBps. We can observe several
occurrences of bursty departures, even if leechers arrive according to a Poisson process. As
previously discussed, bursty departures are consequence of content synchronization among the
leechers in the swarm.

Using the same experiment as above, we investigate the impact of the leechers’ arrival
order on their download times. Figure 7b illustrates the dynamics of the swarm, where each
horizontal line corresponds to the lifetime of a leecher in the swarm, starting when the peer
arrives and ending when it departs the swarm. Note that peers exhibit significantly different
download time (which corresponds to their lifetime in the system). In particular, in many cases
leechers arrive at different time instants but depart in the same burst. For instance, the fifth
leecher to arrive to the swarm departs in a burst almost together with all four prior arrivals
(see Figure 7c for a zoom-in of the first busy period). Thus, the fifth leecher has a much
smaller download completion time, when compared to the first leecher. Similar behavior occurs
between the fifteenth leecher and the three leechers that arrived immediately before. Besides
illustrating the variability of the download times, this observation also indicates the unfairness
with respect to leecher arrival order. In particular, late arrivals to a busy period tend to have
smaller download times.
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(b) cs = 60 kBps and cl = 50 kBps.

Figure 8: CCDF of download time from real experiments.

We now focus on the distribution of the leechers’ download times to illustrate their relative
high variability. Figures 8a and 8b show the complementary cumulative distribution function
(CCDF) of download times computed for two experiments with distinct upload capacities for the
seed (cs = 50 kBps and cs = 60 kBps, respectively, with all other parameters the same). In both
results, download times exhibit a high variance, as shown in the figures. In the case cs = 50 kBps
(Figure 8a), the minimum and maximum values are 145 and 480 seconds, respectively, with the
maximum being more than three times the minimum. When the upload capacity of the seed is
higher than that of the leechers, Figure 8b shows that the variance in download times decreases,
as expected, since the system capacity is increased. Finally, we note several discontinuities (i.e.,
sharp drops) in both CCDF curves which are caused by sets of leechers that have approximately
the same download time.

4. Model

We develop a simple model attaining to understand the origin of the heterogeneous download
times and its consequences. Our model obtains an approximation to the average upload and
download rates observed by each leecher on different time intervals for unpopular swarms.

Consider a homogeneous swarm of some unpopular content with a single seed to which
leechers arrive sequentially and depart as soon as they complete their download, such as the
one illustrated in Figure 2a. By unpopular content we imply a swarm with an arrival rate that is
small enough such that there is never too many peers in the swarm. In particular, our modeling
framework assumes that the maximum number of upload connections of peers is always larger
than (or equal to) the swarm size. In such scenario, Tit-for-Tat (TFT) and optimistic unchoke
algorithms have no effect, since all peers upload to one another. Thus, such mechanisms are
not present in our model. However, note that rarest-first mechanism continues to operate since
is not affected by this assumption and is therefore captured by our model.
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In the described scenario, bursty departures can only happen if younger leechers obtain
roughly the same number of pieces as older ones, and leave the swarm at about the same
instant. This in turn implies that younger leechers must have higher download rates than older
ones, at least for some periods of time. Why is that? At a given moment, an older leecher i
may have all pieces owned by a younger leecher j. Thus, leecher’s j uplink capacity will be
used to serve other leechers until j receives a piece that i does not have. During this period
of time, j simply cannot serve i, even if it has no other leecher to serve. Therefore, the sets of
pieces owned by each leecher are the root causes for heterogeneous download rates and must
be considered.

In order to capture the observation above, each peer, either a seed or a leecher, is represented
by a queueing system with multiple queues (see Figure 9), one for each neighbor, under a
processor sharing discipline. Queue j of peer i contains the pieces interesting to peer j (i.e.,
all pieces that i has that j has not). When peer j downloads one of these pieces, from i for
instance, this piece is removed from the j-th queue of i, and from the j-th queues of other peers
where the piece was present. On the other hand, whenever a peer downloads a piece that other
neighbors are interested in, this piece is placed in the queues corresponding to those neighbors,
increasing their queues sizes. Finally, the queues of the seed always have all pieces that are
needed by the leechers. As a leecher downloads pieces from the seed and other leechers, this
queue decreases, eventually becoming empty when the leecher downloads the entire content and
departs the swarm. We note that the order at which these pieces are served from these queues
depend on the piece selection policy.

1st queue

j-th queue

Leecher i

uplink
capacity

N-th queue

Figure 9: Leecher i can be represented as server with multiple queues, one for each neighbor, containing pieces
that are interesting to them.

Let cs and cl be the seed and leechers’ uplink capacities, respectively. Assume that the
leechers’ downlink capacities are much larger than cs and cl. Let N(t) be the number of
leechers in the system at time t. Since the seed always has interesting pieces to every leecher,
all the N(t) queues in the seed are backlogged. Thus, all queues will be served at rate cs/N(t).
Note that, since the swarm is unpopular, we assume the swarm size is small enough such that
every leecher is neighbor of every other peer (including the seed) and can serve all of them
simultaneously.

A leecher may not have interesting pieces to some of its neighbors at time t. Let a leecher
be identified by its arrival order, thus leecher i is the i-th leecher to join the swarm. Also let
ni(t) ≤ N(t)− 1 be the number of leechers interested in pieces owned by i. The instantaneous
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upload rate from i to any of these leechers is cl/ni(t).

Whether a leecher has or has not pieces interesting to another depends on the leechers’
respective bitmaps, i.e. the current subsets of pieces owned by a leecher at time t. The set
of bitmaps of all leechers would precisely determine the exact pieces in each queue. However,
the dynamics of the bitmaps are intricated and to keep track of them would be unnecessarily
complicated for modeling the phenomenon we are interested in. Instead, we consider the number
of pieces owned by each leecher i, bi(t), and infer whether a leecher has interesting pieces to
other leechers.

For the sake of simplicity, let bi(t) = bi and N(t) = N . Two remarks can be made with
respect to bi and the interest relationship among leechers:

Remark 1. If bi > bj, then i has at least bi − bj interesting pieces to j.

Remark 2. If 0 < bi ≤ bj, it is impossible to determine whether i has or has not interesting
pieces to j without further information.

In the following, we will use these two remarks to derive a simple model to capture the
upload and download rates between peers. With respect to Remark 2, we will assume that no
further information is available, and hence the piece interest relationship among peers will be
ignored in this case. Nevertheless, we will see that a peer with less pieces than other can still
upload pieces to the latter.

4.1. A simple fluid model

We assume that content is fluid, or equivalently, that pieces can be subdivided in infinitely
many parts that can be exchanged (uploaded and downloaded) continuously.

To simplify the explanation, assume that b1 > b2 > . . . bN , i.e. an older leecher has strictly
more pieces than a younger one. We will relax this assumption later on this section, allowing
the model to represent swarms where two peers arrived at the same time, or more generally,
where some leechers have the same number of pieces. We now make the following assumptions:

• Even if leecher i has joined the swarm after j, i.e. i > j, i can still upload pieces to j as
long as i downloads pieces from any peer k that has more pieces than j, i.e. k < j. Thus,
younger peers can upload to older peers.

• Every piece downloaded from the seed by a leecher is immediately interesting to all other
leechers, independently of their arrival time. The rarest-first piece selection policy pro-
vides support for this assumption. Figure 10 depicts the idea that a younger peer can
upload pieces to an older one. In this scenario, peer 4 can upload to peer 2, since it is
downloading pieces interesting to peer 2 from the seed and from peer 1.
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Figure 10: Peer 4 can upload pieces to peer 2, since it is downloading pieces interesting to the latter from the
seed and from peer 1.

• Since the seed’s upload capacity is cs, each leecher downloads from it at rate cs/N . Now
let gij be the rate at which peer i could potentially upload data to peer j provided that
there is no capacity constraints (i.e. independently of upload and download capacities of
peers i and j, respectively). If a leecher i is older than j, i has interesting pieces to j.
Therefore, from the perspective of the multiple queueing system, queue j in leecher i is
backlogged and gij = ∞. On the other hand, if i is younger than j, the rate gij is given
by the rate at which i downloads interesting pieces to j.

We draw the reader’s attention to the first two assumptions. They account for the upload
rate that a younger leecher can sustain to an older leecher, even though we cannot say that the
former has interesting pieces to the latter just from the number of pieces they own.

From these assumptions, we can conclude that the rate gij at which a peer i uploads inter-
esting pieces to an older peer j is equal to the rate at which peers older than j upload to i plus
the rate at which i downloads from the seed. We thus have:

gij =







∞, if i < j (1a)
cs
N

+
∑

k<j

uki, if i > j (1b)

where uki is the rate at which leecher k uploads to i.

For instance, in Figure 10, g4,2 is the sum of the rates at which peer 2 downloads from the
seed (cs/5) and from peer 1 (u1,4). Hence, g4,2 = cs/5 + u1,4. Again we see that the proposed
model accounts for the fact that a younger leecher can upload pieces to the older ones. In a
real swarm however, peer 4 may upload to peer 2 pieces downloaded from younger leechers as
well, such as peer 5. Although the pieces that peer 5 downloads from the seed are immediately
interesting to both peers 2 and 4, they will not start and finish downloading this piece from
peer 5 at the same time. Thus, leecher 4 may finish first the download of such a piece and then
help serve the remaining sub-pieces to peer 2, violating our assumption. Intuitively however,
the contribution of peer 4 in uploading this piece to peer 2 is small, since peer 4 must fully finish
the download before it can start uploading, by which time peer 2 will have downloaded most of
the piece from peer 5. Thus, we claim that such effects are negligible and can be ignored since
the model is accurate when compared to simulations and experiments, as discussed in Section
4.2.
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Figure 11: The upload bandwidth allocation of leecher i follows a progressive filling algorithm.

We now make an important observation concerning Equation (1b). Consider leecher i and
some other leecher j. The older j is with respect to i the smaller is the rate at which i can
upload to j, that is, the smaller is gij. If j is younger than i, then gij = ∞. This observation
implies that gi1 ≤ gi2 ≤ . . . ≤ giN .

In addition, note that gij > 0 for all i, j. As we consider a small swarm, all peers upload
to one another. Since the upload capacity of peers is finite, we must now determine how the
capacity of a given peer i will be divided to serve each of the N−1 other leechers. In particular,
recall that uij is the upload rate from peer i to peer j and note that

∑

k uik ≤ cl, where cl is the
upload capacity of a leecher. To determine uij given the values of gij, where 1 ≤ j ≤ N , we use
a bandwidth allocation mechanism that follows a progressive filling algorithm. This mechanism
determines the outcome of the processor sharing discipline. Figure 11 illustrates the progressive
filling algorithm for the example presented in Figure 10. Roughly, infinitesimal amounts of
bandwidth are allocated to each neighbor until (1) the leecher’s capacity is completely allocated
or (2) a leecher j is satisfied with respect to the gij constraint. In the former case, the algorithm
stops. In the latter, it continues to distribute the remaining capacity among the non-satisfied
leechers until one of the two conditions occurs again.

Due to the fact that gi1 ≤ gi2 ≤ . . . ≤ giN , the final bandwidth allocation for leecher i can
be efficiently obtained by computing the following equation in the order j = 1, . . . , N :

uij = min

(

gij,
cl −

∑

k<j uik

N − 1− |{k|k < j, k 6= i}|

)

(2)

where |A| is the cardinality of a set A. Now recall from Equation (1b) that gij depends on
u1,i, u2,i, . . . , uj−1,i, for i > j. Therefore, by calculating uij in the order i = 1, . . . , N , we assure
that every variable in Equation (2) has been previously computed.

As an example, consider the calculation of the matrix U = (uij), which determines upload
rates between peers at a given moment, for a small swarm containing a single seed and N = 3
leechers. Let their upload capacities be equal to cs = 60 kBps and cl = 96 kBps, respectively,
and assume b1 > b2 > b3. Matrix U and the order of computation of its elements are depicted
in Figure 12. The download rate di for peer i is simply cs/N plus the sum of the elements in
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Figure 12: Example of matrix U = (uij) showing the right order of calculation.

column i:

di =
cs
N

+
N
∑

j=1

uji. (3)

Hence,

d1 = 60/3 + 0 + 20 + 20 = 60 (4)

d2 = 60/3 + 48 + 0 + 68 = 136 (5)

d3 = 60/3 + 48 + 76 + 0 = 144 (6)

Equations (4)-(6) corroborate the idea that homogeneous peers can exhibit heterogeneous
download rates which depend on the number of pieces owned by each leecher. Moreover, younger
leechers tend to have a higher download rate, as they obtain a higher upload rate from other
leechers. This is the opposite of what happens in large swarms, where the older leechers usually
manage to keep the TFT for longer periods, hence achieving higher download rates.

Eventually the number of pieces owned by a leecher may reach the number of pieces owned
by an older one. In particular, this is bound to occur since younger leechers tend to have a
higher download rate. In this case, these two leechers will no longer have pieces interesting to
each other. Thus, Equations (1) and (2) must be rewritten as functions of bi, ∀i:

gij =







∞, if bi > bj (7a)
cs
N

+
∑

bk>bj

uki, if bi ≤ bj (7b)

uij = min

(

gij,
cl −

∑

k|bk>bj
uik

N − 1− |{k|bk > bj, k 6= i}|

)

. (8)

Intuitively, Equation (8) combines the two constraints on the rate at which i upload pieces to
j. The first term stands for the maximum instantaneous rate irrespective of capacity limitations.
The second term reflects the fraction of i’s uplink capacity that can be dedicated to j given
that some bandwidth has already been allocated. In this case, cl−

∑

k|bk>bj
uik is the remaining

capacity of i and N −1−|{k|bk > bj, k 6= i}| is the number of peers that will share it (including
j). Note that the equations above relax our initial assumption that bi, ∀i had to be distinct at
all times, allowing for leechers to join the system simultaneously or more generally, for leechers
to have the same number of pieces.
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In Equations (7) and (8), variables N , bi and bj change over time, representing arrivals,
departures and the acquiral of new pieces. Instead of writing those variables as a function of
time, we dropped the t variable for the sake of simplicity. Therefore, these equations can be
computed for each time interval by assigning to these variables their corresponding values at
that time. However, note that a change in bi does not necessarily imply in a change in the
download rate of leechers as what matters is the relationship between bi and bj, for all i, j.
Thus, as the system evolves the variables that govern the equations will change value, but not
the equations themselves, which can be used to compute the current download rate of leechers
given the state of the swarm.

We will see in Section 4.2 that the proposed model given by Equations (7) and (8) yields ac-
curate results for unpopular swarms, indicating that for this scenario it is sufficient to know the
number of pieces each peer possesses. Nevertheless, we further discuss two useful generalizations
to this model in Section 4.3.

4.2. Model Validation

Our model gives an approximation to the average download rate experienced by a leecher in
a unpopular swarm, which depends on the relationship between the number of pieces owned by
the peers and upload capacities. In this section, we validate the model comparing its predictions
with simulations results. We will see that even though the model does not take the TFT and
other mechanism into account, its results are very similar to those obtained from our simulator,
which implements a fully functional version of the BT protocol (see simulator description in
Section 2.2).

We consider homogeneous swarms with cs = cl = 64 kBps, where exactly N = 5 arrivals
occur. In addition, all leechers arrive before the first one completes the download and all the
arrivals occur before any two leechers synchronize their contents. In our simulations, we say
that two leechers i and j are synchronized if they have roughly the same number of pieces,
i.e., |bi − bj| < 3. We use deterministic arrivals to reproduce the exact scenarios we intend to
compare.

Consider the evolution of number of downloaded pieces in such a swarm illustrated in Fig-
ure 13a. The first leecher arrives at time t = 0 and four other leechers join the swarm at
t = 30, 40, 50, 60. After t = 120, leechers start to synchronize. We chose several points from
curves in this figure corresponding to instants of time where an event that can change peers’
download rates occurs. More precisely, we labeled points in these curves with numbers when
new leechers arrive or when two leechers synchronize.

Figure 13b shows peers’ download rates from simulations and model for the labeled points
indicated in 13a. We have simulated five runs for each scenario including the one depicted in
this figure. The confidence intervals obtained are relatively small and are omitted.

The simulation results for points 1, 2, 4, 7, 11, 16, 20, 23 and 25 show approximately the
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(a) Evolution of downloaded pieces.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  5  10  15  20  25

in
st

an
ta

ne
ou

s 
do

w
nl

oa
d 

ra
te

 (
pi

ec
es

/s
)

label of the marked point in Fig. 12(a)

simulation
model

(b) Comparison between simulation and
model results.

Figure 13: Model validation and comparison with simulation.

same download rate, what is correctly captured by the model. The download rates obtained
from the model are exactly the same due to fact that the corresponding peers already have
every piece that was previously pushed by the seed into the swarm. Thus, neighbors of such
peer can only upload to it new pieces they receive directly from the seed, i.e., their upload rate
is constrained by cs/N . Since this constraint is below the capacity that can be allocated to serve
a neighbor when cs = cl (which is, at least cs/(N − 1)), every peer in the swarm will upload to
one such peer with rate equal to cs/N . Therefore, the average download rate predicted by the
model for peers in A is cs/N + (N − 1)cs/N = cs = 0.25. In particular, the relative error is less
than 1.5% for all these points. The model is quite accurate even for other values of N .

On the other hand, simulation results for the other points exhibit a great variety of download
rates. However, those points which correspond to the same moment in time display similar
download rates (e.g. 8, 9 and 10). We observe that the download rates decrease with new
arrivals. We also note that as more leechers become synchronized, non-synchronized leechers
achieve higher download rates (see points 21, 22 and 24). This increase in the download rates
occurs because the greater is the number of synchronized peers, the greater is the remaining
capacity to serve leechers with less pieces. This is due to the fact that the rate at which
synchronized leechers can transmit to each other is very constrained as we discussed before.
The relative error of the model is less than 1% for all points, but the 5-th (7%) and the 24-th
(3%).

From these figures we conclude that when cs = cl, at a given moment in time, it is possible to
partition the set of leechers in two subsets: leechers with the same number of pieces as the oldest
leecher (subset A), and those with less pieces than the oldest one (subset B). When cs = cl,
the model predicts that all leechers in each of these subsets will have identical download rates.
Moreover, a leecher in B will have a higher download rate than one in A and this difference
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depends on the set sizes. In particular, larger swarms imply lower values of the minimum
download rate and higher values of the maximum download for leechers in B. This tendency
can be observed both in simulation and model.

Considering all the simulations performed, we conclude that the model is quite accurate,
with differences being unnoticeable in most scenarios and less than 10% in all cases. More
importantly, the model captures well the trends observed in simulation.

4.3. Model generalizations

Some of the assumptions of the model we propose are: (1) unconstrained (or large) down-
load capacities, and (2) leechers with identical upload capacities. We now relax the former
assumption by providing an upper bound for the download rate of a peer. This bound is a
function that does not grow fast on the system parameters. Clearly, if the download capacities
are greater than this function then all the previously presented results hold.

In what concerns the latter assumption, we indicate how to adapt the model to cope with
similar (but not identical) upload capacities. Furthermore, we present some simulation results
that show that the general behavior of the system under this scenario is similar to the one
presented in Section 3.

4.3.1. Finite (and small) download capacities

When the oldest peers are synchronized, they can only send to each other what they receive
directly from the seed (see Equation (7b)). This constraint leads to more capacity available to
serve those peers that are not synchronized. In particular, if there is only one non-synchronized
peer, it can benefit from this idle bandwidth alone and consequently achieve the highest possible
download rate. In what follows we compute an upper bound for this maximum download rate.

Consider an unpopular swarm with N > 1 peers, such that the N − 1 oldest peers are
synchronized. From Equation (7) we can compute the maximum instantaneous upload rate of
a synchronized leecher i to the other peers irrespective of capacity limitations:

gij =

{

∞, if j is not synchronized (9a)
cs
N
, if j is synchronized (9b)

According to Equation (8), each leecher i will upload to each of the other N−2 synchronized
peers at rate min{ cl

N−1
, cs
N
}. The remaining capacity of i that can be used to serve the younger

leecher N is cl−(N−2)min{ cl
N−1

, cs
N
}. Since there are N−1 synchronized leechers, the capacity

that can be used to serve only non-synchronized leecher is (N − 1)[cl − (N − 2)min{ cl
N−1

, cs
N
}].

In addition, the younger leecher downloads from the seed at rate cs
N
. Therefore, the maximum
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download rate is given by

dmax = (N − 1)cl − (N − 2)min{cl,
cs(N − 1)

N
}+

cs
N

Thus, we have:

dmax =







cl +
cs
N

if cl ≤ cs(N − 1)/N (10a)

(cl − cs)(N − 1) + 2cs −
cs
N

otherwise (10b)

Note that in both cases the maximum download rate is a value that does not grow fast in
any of the system parameters. In particular, for small N , which is the case of interest, dmax

has a relative small value with respect to the upload capacities or leechers and seed. Thus, if
the download capacities of leechers are larger than dmax, then results predicted by the model
are just as good. This condition replaces the requirement of unbounded (or arbitrarily large)
download capacities assumed earlier in the model.

To illustrate, consider the example in Section 4.2 where cs = cl = 64 kBps and N = 5. In
this case, the highest download rate would be dmax = 2 × 64 + 64/5 = 140.8 kBps. Thus, if
download capacities of leechers are larger than 140.8Kbps, then the results predicted by the
model would be unchanged.

4.3.2. Similar but not identical upload capacities

Although we have assumed upload capacities of peers to be identical, this is certainly not
necessary for the piece distribution process in unpopular swarms to lead to heterogeneous
download rates. Note that our modeling framework allows for peers to have different upload
capacities, as cl could depend on i in Equation 2 (equivalently, in Equation 8). Clearly, this
would have an impact on the heterogeneity of the performance and would depend on the values
of cli and the order of their arrivals to the swarm. However, if cli ∀i are close to one another,
for example, chosen uniformly at random from a small range, then we expect not to see much
differences with respect to the constant cl value.

In order to support this last claim, we repeat the simulations described in Section 3.2 but
allowing the upload capacity of leecher i to be drawn uniformly at random from the range
[c(1 − ǫ), c(1 + ǫ)], where c = 64 kBps and ǫ ∈ {0.25, 0.50}. Figures 14(a-b) show the average
download time of peers binned according to the number of leechers in the swarm at the arrival
time for ǫ = 0.25 and 0.50, respectively. We conclude that, when the upload capacities are
close to each other, the system exhibits a very similar behavior to that we observed when the
upload capacities are the same (see Figure 4). Not surprisingly, the larger the range of upload
capacities, the the greater the impact on the results, when compared to a constant upload
capacity.
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Figure 14: Average download time as a function of arrival order in a busy period, when the uplink capacity is
cli ∼ U(cl(1− ǫ), cl(1 + ǫ)), with cl = 64 kBps

.

5. Predicting bursty departures

The model presented in Section 4 can be used to estimate the number of departures that
occur in a burst. In particular, consider the arrival of a leecher that initiates a busy period
(i.e., the first arrival to a swarm with no leechers). In the following, we estimate the average
number of peers that depart the swarm in a burst together with the leecher that initiated the
busy period.

In practice, bursty departures do not occur exactly at the same time due to variations
inherent to the network and to the inexistence of mechanisms that enforce synchronization
between peers implemented in the protocol (e.g.: they do not request pieces at exactly the
same time). Nonetheless, our model does not take these factors into account and, thus, we
focus on leechers that leave the swarm at exactly the same time as the first leecher.

Let f denote the first leecher of a busy period and assume that the leecher arrival follows a
Poisson distribution with rate λ. Also, as assumed by the model, a seed is always present and
has uplink capacity of cs, while leechers have identical uplink capacities equal to cl. Finally, let
S denote the number of pieces of the content.

We know that each leecher downloads pieces from the seed at rate cs/N , where N is the
number of peers in the swarm. These pieces are interesting to all the other N −1 peers and can
be sent to them. Thus, if cl < cs ×

N−1
N

, leechers will start to accumulate pieces received from
the seed which cannot be uploaded to the other peers. Therefore, every leecher will own pieces
interesting to all of its neighbors. Consequently, the upload rate between any two leechers i
and j will be equal to uij = cl/(N − 1), since gij = ∞ (see Equation (8)). We conclude that
when cl < cs ×

N−1
N

, all leechers have the same download rate which prevents other leechers
from departing in a burst with f .
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Conversely, when cl ≥ cs×
N−1
N

, the neighbors of f can upload to it the pieces they download
from the seed. Since leecher f downloads from the seed at rate cs/N and each of its N − 1
neighbors receives pieces from the seed and uploads them to f at the same rate, f will download
the content at a constant rate equal to cs, independently on the number of peers in the swarm.
Note that cs is also the upper bound on the average download rate, as the seed cannot uploads
pieces into the swarm at a faster rate. Hence, leecher f will take T = S/cs seconds to finish
the download.

We now show how to calculate the lower and upper bounds to the number of bursty de-
partures when cl ≥ cs ×

N−1
N

. Consider arrivals that occur while peer f is in the swarm. The
number of such arrivals, say n = N − 1, is a random variable and follows the Poisson distribu-
tion with parameters λ and T . The download rates of these leechers are a function of n and
also of their instants of arrival. Moreover, as discussed in Section 4.2, larger values of n imply a
larger spread in the download rates. To obtain a conservative lower and upper bound on these
download rates, we will consider a sufficiently large value for n. In particular, we use the 99-th
percentile of n, namely n99, and thus, P [n ≤ n99] ≤ 0.99.

Given that exactly n99 leechers will join the swarm before the departure of f , we can use the
model to obtain the minimum and maximum download rates of these peers, independently of
their inter-arrival timing. Let dmin and dmax be, respectively, the minimum and the maximum
download rates obtained from the model given that the swarm has n99 + 1 leechers.

Consider again the subsets presented in the previous section, namely A (leechers with the
same number of pieces than f) and B (leechers with less pieces than f). The minimum download
rate is obtained by a leecher m in B when the only leecher in A is f . In this case, the download
rate dmin is given by

dmin =
cs

n99 + 1
+ uf,m +

∑

i∈B

ui,m, (11)

where
∑

i∈B ui,m corresponds to the sum of the rates at which m downloads from peers in B.

On the other hand, a leecher m in B obtains the maximum download rate dmax when it is
the only peer in B, i.e, |A| = n99. In this case, the download rate is given by

dmax =
cs

n99 + 1
+
∑

i∈A

ui,m. (12)

The minimum and maximum time for the leechers to download the content is, respectively,
S/dmax and S/dmin. Therefore, at least all leechers that arrive before T −S/dmin will leave the
swarm together in a burst with f . The expected number of peers that will arrive within this
time period, Bmin is simply given by

Bmin = λ

(

T −
S

dmin

)

. (13)

Similarly, at most all leechers that arrive before T −S/dmax will leave the swarm in a burst
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Table 2: Bounds for the expected number of leechers that depart in a burst with f , for λ = 1/1000.

cs E[N ] Bmin Bmax
Bmin
E[N ]

Bmax
E[N ](kBps)

48 5.333 1.667 4.378 0.312 0.821
64 4.000 0.400 1.895 0.100 0.474

with f . The expected number of peers that will arrive within this time period, Bmax is simply
given by

Bmax = λ

(

T −
S

dmax

)

. (14)

Finally, Bmin and Bmax provide a lower and upper bound for the average number of leechers
that will depart the swarm in a burst with f .

Table 2 shows the expected number of arrivals to the swarm before f departs, E[N ], which
is simply λT , and both the lower and upper bounds Bmin and Bmax, respectively. The table
shows numerical results for different cs values but with cl = 64 kBps and λ = 1/1000. The
results indicate that average number of peers that depart the swarm in a burst with f can be
significant: between 31% and 82% of all arrivals when the seed is slower than the leechers and
between 10% and 47% when they have the same upload capacity. We also observe that these
ratios reduce as cs increases, indicating that bursty departures are less likely to occur with
faster seeds. Recall that, as indicated above, there is a minimum value of cs for which bursty
departures do not occur.

6. General discussions

We now discuss other aspects related to the described phenomenon such as different arrival
processes, what happens if the seed is not available all the time, what happens when leechers
stay as seeds for some time and the missing piece syndrome.

6.1. General arrival processes

It is interesting to consider the occurrence of the observed phenomenon in more general
scenarios. Although we have shown its prevalence under a crafted peer arrival process and
under Poisson arrivals, we claim that homogeneous peers can have heterogeneous download
rates under very general arrival patterns. In particular, given any arrival pattern of peers into
a swarm, it is possible to choose system parameters (i.e., seed upload capacity, leechers upload
capacity, and file size) such that the effects described in this paper will be very prevalent.
Intuitively, by choosing a fast enough seed, peers will not be able to disseminate old pieces
before new ones are pushed into the swarm, and thus will have significantly different number of
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Figure 15: Experimental results under a popular swarm (λ = 1/12, cs = 50 kBps, cl = 50 kBps)

blocks. In a sense, the behavior observed and described in this paper is quite general, although
the requirement of the swarm being unpopular is important, as we next describe.

What happens if we consider very popular swarms, where the peer arrival rate is very large,
yielding very large swarm sizes? Figure 15a shows experimental results of the dynamics of
leecher arrivals and departures for this scenario (Poisson arrivals with rate λ = 1/12, uplink
capacities of cs = 50 kBps and cl = 50 kBps) and file size S = 80 pieces (i.e., 20 MB). The
empirical CCDF of the download time is depicted in Figure 15b. Interestingly, we can still
observe the consequences of having heterogeneous download rates, such as bursty departures,
content synchronization and high variability of download times (peers that leave in a large
burst have different download times, as arrival is well-behaved), for example, at times 600 s
and 1200 s. In a sense, the phenomenon is quite prevalent even during the busy period, but not
strong enough to end the busy period. The characterization and modeling of the phenomenon
in this scenario is much more entailed, given the complicated dynamics of piece exchange of
BT and consequently the interest relationship among peers. We leave the investigation of these
scenarios (popular swarms) as future work.

6.2. When the seed is not available all the time

We have considered so far swarms that have a single seed which is always connected. How-
ever, what happens if the seed alternately joins and leaves the swarm? Intuitively, leechers start
to synchronize their contents right after the seed leaves because no new pieces are being placed
into the swarm. After they become fully synchronized, they will stall until the seed comes back.
Then, since they are synchronized, they will have relatively low download rates and will leave
almost at the same time. Therefore, the intermitent seed makes the average download rates
even more heterogeneous.

In order to support this claim, we modify the simulation model such that the state of
the seed (connected/disconnected) is given by an ON-OFF source. We assume that the time
until the seed leaves the ON state (leaves the swarm) is exponentially distributed with rate
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1/λ (arbitrarily set to be equal to the leecher arrival rate). Furthermore, we choose the rate
at which the seed goes from the OFF back to the ON state (rejoins the swarm) so that the
availability of the seed is 0.75, 0.50 and 0.25.

Table 3 summarizes the results for λ = 1/1000 s, cs = cl = 64 kBps, S = 1000 pieces. Each
scenario was simulated during 800, 000 s. We observe that the mean, variance and maximum
download time monotonically increase, what is expected as there are less resources on average.
Interestingly, the minimum download time becomes smaller. This is due to the fact that a a
new leecher may arrive when some peers are stalling in the absence of the seed, just before
finishing the download. The new leecher then benefits from the spare bandwidth capacity and
might complete the download right after the seed comes back. Finally, it is clear the download
time (equivalently, download rate) becomes more heterogeneous.

P (S = ON) Mean Variance Minimum Maximum
1.00 3.360× 103 9.319× 104 2.295× 103 4.247× 103

0.75 3.865× 103 1.003× 106 1.276× 103 8.431× 103

0.50 5.307× 103 1.062× 107 5.640× 103 2.518× 104

0.25 1.045× 104 7.671× 107 3.640× 103 3.321× 104

Table 3: Statistics of the empirical distribution of the download time, when the seed leaves and joins the swarm.

Note that, in fact, the proposed analytical model can cope with this scenario as long as
peers do not accumulate pieces interesting to each other, i.e. cl ≥ cs ×

N−1
N

(see Section 5).
In particular, if the seed departs, then this will only affect the upload rate among peers, given
by Equation (1) (or Equation (7)). More precisely, the term corresponding to the download
rate from the seed (cs/N) should be set to zero in the equations that describe time periods
where the seed is not present. Thus, given the state of the swarm with respect to the seed’s
presence and number of leechers, we can still apply our modeling framework and determine the
download rates of leechers (under the condition above).

6.3. When leechers stay as seeds for some time

Another aspect that can be taken into account is that leechers may stay as seeds for a
period of time after they finish the download and before leaving the swarm. Intuitively, since
the capacity available to disseminate the file increases as leechers stay as seeds, peers concur-
rently downloading a file tend to receive pieces at similar download rates, possibly reducing the
consequences of heterogeneous download rates. We performed simulations for scenarios where
λ = 1/1000 s, cs = cl = 64 kBps, S = 1000 pieces and the time which leechers stay seeding
is deterministic and equal to 1/γ. Each scenario was simulated 10 times during 400,000 s, but
the first 100,000 s were discarded to avoid transient effects. Figures 16(a)-(c) depict the results
for many values of 1/γ.

As indicated in Figure 16a, bursty departures are less likely to occur when leechers stay in
the swarm after downloading the entire content. However, for small values of 1/γ (with respect
to 1/λ), the difference is barely noticeable and the departure process is still very bursty.
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Figure 16: System performance when leechers stay seeding.

Table 4: Statistics of the empirical distribution of the download time, when leechers stay as seeds for some time.

1/γ Mean Variance Minimum Maximum
0 3.360× 103 9.319× 104 2.295× 103 4.247× 103

100 3.262× 103 1.093× 105 2.120× 103 4.181× 103

500 2.926× 103 2.446× 105 1.174× 103 4.183× 103

1000 2.612× 103 4.394× 105 6.028× 102 4.181× 103

2000 2.067× 103 6.278× 105 3.197× 102 4.170× 103

5000 1.190× 103 4.306× 105 2.600× 102 4.209× 103

10000 5.508× 102 7.614× 104 2.100× 102 2.028× 103

Figure 16b shows the CCDF of leechers’ download times for different values of 1/γ while
Table 4 contains statistics of these distributions, namely the sample mean and variance, min-
imum and maximum values. Intuitively, leechers that find two or more seeds at arrival time
have significant better performance and hence the minimum download time decreases as the
seeding time increase. On the other hand, the maximum download time is the approximately
same for the majority of the curves. This is because there is a non-zero probability that a
leecher downloads the content entirely from a single seed. However, this probability becomes
smaller with the seeding time. Initially the variance increases with 1/γ, but when leechers stay
as seeds for a long period of time, it is unlikely that a leecher will have a download time much
larger than the average and thus, the sample variance diminishes (see 1/γ = 5,000 and 1/γ =
10,000 in Table 4).

Finally, Figure 16c shows that while early arrivals are detrimented for small values of 1/γ,
they are benefited when 1/γ is high. The presence of multiple seeds has the same effect as a
single seed with higher capacity. This can be observed by comparing the curves for 1/γ equal
to 5,000 and 10,000 and the curve corresponding to cs = 96 kBps in Figure 4.
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6.4. Missing piece syndrome

Last, we now comment on the relationship of our findings and the phenomenon known as
missing piece syndrome. This phenomenon states that in swarms where the arrival rate is large
enough, the system can become unstable (i.e., number of leechers grows unboundedly) if the
upload capacity of the seed is not large enough [8, 9, 10]. The key aspect of this syndrome is
content synchronization, where a large fraction of peers have all but one and the same piece.
This situation is particularly bad to the performance of the swarm, as the departure rate of the
swarm will be equal to the seed upload capacity (assuming peers depart as soon as they acquire
the last block). Our work has shown that peers can synchronize their content in such a way
that several identical pieces are missing which eventually leads to the missing piece syndrome.
In some sense, this generalizes the syndrome to a piece synchronization syndrome, which is
inherent to BT dynamics due to the heterogeneous download rates as discussed in this work.
Once peers have synchronized their content, they can only acquire new pieces from the seed,
at the upload capacity of the seed. In this scenario, the missing piece syndrome is bound to
occur.

7. Related prior works

Modeling P2P file sharing systems and in particular BT has been an active area of research in
the past few years, driven mainly by the high complexity, robustness and user-level performance
of such systems. One of the first BT models to predict the download times of peers was
presented in [5]. This simple fluid model based on differential equations assumes homogeneous
peer population (with respect to download and upload capacities) and Poisson arrivals, but
yields analytical steady state solution for performance metrics. Several subsequent BT models
have been proposed in the literature to capture various system characteristics, among them
heterogeneous peer population (with respect to upload and download capacities) [17, 6, 18, 7].
However, to the best of our knowledge, all models predict that identical peers (with respect
to their upload capacities) simultaneously downloading a file will have similar performance
(with respect to download rates), contrary to the findings in this paper. Moreover, BT models
generally assume either a rather large peer arrival rate (e.g., Poisson) or a large flash crowd (all
peers join the swarm at the same time). This is somewhat surprising, given that most real BT
swarms are rather small in size and quite unpopular [11]. Finally, one perverse effect of this
lack of popularity, known as content unavailability, is shown to be a severe problem found in
most of BT swarms [19].

Another interesting aspect of BT has been the discovery and characterization of some non-
trivial phenomena induced by its complex dynamics. For example, peers in BT swarm tend
to form clusters based on their upload link capacities, exhibiting a strong homophily effect.
In particular, peers with identical upload capacities tend to exchange relatively more data
between them [20, 21, 22]. Yet another peculiar behavior is the fact that arriving leechers
can continue to download the entire content despite the presence of any seed in the swarm,
a property known as self-sustainability [23]. More recently, the missing piece syndrome has
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been characterized mathematically [9, 10]. In [24] is presented an evaluation for the impact of
different peer selection strategies on the stability of the system. Such strategies may reduce
the effect of content synchronization among peers. However, to the best of our knowledge, we
are not aware of any prior work that has alluded the phenomenon we describe in this paper,
namely, that homogeneous peers can have heterogeneous download rates.

8. Conclusion

This paper identifies, characterizes and models an interesting phenomenon in BT: homoge-
neous peers (with respect to their upload capacity) experience heterogeneous download rates.
The behavior is pronounced in unpopular swarms (few leechers) and has important consequences
that directly impact peer and system performance. The mathematical model proposed captures
well these heterogeneous download rates of peers and provides fundamental insights into the
root cause of the phenomenon. Namely, the allocation of system capacity (aggregate uplink
capacity of all peers) among leechers depends on the piece interest relationship among peers,
which for unpopular swarms is directly related to arrival order of peers and can be significantly
different among them.
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