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Abstract
Researchers and software developers require effective perfor-
mance evaluation. Researchers must evaluate optimizations
or measure overhead. Software developers use automatic per-
formance regression tests to discover when changes improve
or degrade performance. The standard methodology is to
compare execution times before and after applying changes.

Unfortunately, modern architectural features make this
approach unsound. Statistically sound evaluation requires
multiple samples to test whether one can or cannot (with
high confidence) reject the null hypothesis that results are
the same before and after. However, caches and branch
predictors make performance dependent on machine-specific
parameters and the exact layout of code, stack frames, and
heap objects. Every binary constitutes one sample regardless
of the number of runs, making statistical tests inapplicable.
It is thus currently impossible to test whether a performance
change is due to a code modification or coincidental because
the memory layout changed.

This paper presents STABILIZER, a system that enables
the use of the powerful statistical techniques required for
sound performance evaluation on modern architectures. STA-
BILIZER forces executions to sample the space of memory
configurations by repeatedly re-randomizing layouts of code,
stack, and heap objects at runtime. This randomization en-
sures that execution times follow a Gaussian distribution by
virtue of the Central Limit Theorem, enabling the use of
statistical tests like ANOVA. We demonstrate STABILIZERs
efficiency (≈ 5% median overhead) and its effectiveness by
evaluating the impact of LLVM’s optimizations on the SPEC
CPU2006 benchmark suite. We find that the performance
impact of -O3 over -O2 optimizations is indistinguishable
from random noise.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
The task of performance evaluation forms a key part of
both systems research and the software development process.
Researchers working on systems ranging from compiler
optimizations and runtime systems to code transformation
frameworks and bug detectors must measure their effect,
evaluating how much they improve performance or how
much overhead they impose. Software developers need to
ensure that new or modified code either in fact yields the
desired performance improvement, or at least does not cause
a performance regression (that is, making the system run
slower). For large systems in both the open-source community
(e.g., Firefox and Chromium) and in industry, automatic
performance regression tests are now a standard part of the
build or release process [10, 22].

In both settings, performance evaluation typically pro-
ceeds by testing the performance of the actual application in
a set of scenarios, or a range of benchmarks, both before and
after applying changes or in the absence and presence of a
new optimization / runtime system / etc. A statistically sound
evaluation would test whether it is possible with a high degree
of confidence to reject (or not reject) the null hypothesis that
the new results are no different than the originals. To show
that a performance optimization is statistically significant, we
need to reject the null hypothesis with high confidence (and
show that the direction of improvement is positive). To show
that we have not caused a performance regression, we want
to show that it is not possible to reject this null hypothesis
(i.e., that new or modified code had no statistically significant
impact on performance).

Unfortunately, even when using current best practices
(large numbers of runs and a quiescent system), this approach
is unsound. The problem is due to the interaction between
software and modern architectural features, especially caches
and branch predictors. These features are sensitive to the
addresses of the objects they manage. Because of the sig-
nificant performance penalties imposed by cache misses or
branch mispredictions (e.g, due to aliasing), their reliance on
addresses makes software exquisitely sensitive to memory
layout. Small changes to code, adding or removing a stack
variable, or changing the order of heap allocations can have
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a ripple effect that alters the placement in memory of every
other function, stack frame, and heap object.

The effect of these changes is unpredictable and substan-
tial: Mytkowicz et al. show that just changing the size of
environment variables can trigger performance degradation
as high as 300% [19]; we find that simply changing the link
order of object files can cause performance to decrease by up
to 57%.

Every execution thus actually constitutes a single sample
of the (vast) space of possible memory layouts. This is a form
of measurement bias that makes statistical tests inapplicable,
since they depend on multiple samples over a space with
a known distribution. The result is that it is currently not
possible to test whether a code modification is the direct
cause of any observed performance change, or is simply
coincidence because of incidental effects like a different code,
stack, or heap layout.

Contributions
This paper presents STABILIZER, a system that enables sta-
tistically sound performance analysis of software on modern
architectures. To our knowledge, STABILIZER is the first
system of its kind.

STABILIZER forces executions to sample over the space
of all memory configurations by (efficiently) repeatedly re-
randomizing layouts of code, stack, and heap objects at
runtime. We show analytically and empirically that STA-
BILIZER’s use of randomization makes program execution
independent of the execution environment, and thus elim-
inates measurement bias. Re-randomization goes one step
further: it leads to execution times with a Gaussian (normal)
distribution, by virtue of the Central Limit Theorem.

By generating execution times with Gaussian distributions,
STABILIZER enables statistically sound performance anal-
ysis via statistical tests like ANOVA [9]. STABILIZER thus
provides a push-button solution that allows developers and
researchers to answer the question: does a given change to a
program affect its performance, or is this effect indistinguish-
able from noise?

We demonstrate STABILIZER’s efficiency (≈ 5% median
overhead) and its effectiveness by evaluating the impact of
LLVM’s optimizations on the SPEC CPU2006 benchmark
suite. Across the SPEC CPU2006 benchmark suite, we find
that the -O3 compiler switch (which includes argument pro-
motion, dead global elimination, global common subexpres-
sion elimination, and scalar replacement of aggregates) does
not yield statistically significant improvements over -O2. In
other words, the effect of -O3 versus -O2 is indistinguishable
from random noise.

We note in passing that STABILIZER’s low overhead
means that it could be used at deployment time to reduce
the risk of performance outliers, although we do not explore
that use case here. Intuitively, STABILIZER makes it unlikely
that object and code layouts will be especially “lucky” or “un-

lucky.” By periodically re-randomizing, STABILIZER further
reduces these odds.

Outline
The remainder of this paper is organized as follows. Section 2
provides an overview of STABILIZER’s operation and statisti-
cal guarantees. Section 3 discusses related work. Section 4
describes the implementation of STABILIZER’s compiler and
runtime components, and Section 5 gives an analysis of STA-
BILIZER’s statistical guarantees. Section 6 demonstrates STA-
BILIZER’s avoidance of measurement bias, and Section 7
demonstrates the use of STABILIZER to evaluate the effective-
ness of LLVM’s standard optimizations. Finally, Section 8
presents planned future directions and Section 9 concludes.

2. STABILIZER Overview
This section provides an overview of STABILIZER’s oper-
ation, and how it leads to statistical properties that enable
predictable and analyzable performance.

Environmental sensitivity both undermines predictability
and reliable performance evaluation because of a lack of
independence. Any change to a program’s code, compilation,
or execution environment can lead to a different memory
layout. Prior work has shown that changing the size of the
shell environment variables can degrade performance by as
much as 300% [19]. The unpredictability and magnitude of
this effect makes it impossible to evaluate changes to code or
compilation in isolation.

2.1 Comprehensive Layout Randomization
STABILIZER dynamically randomizes program layout to
ensure it is independent of changes to code, compilation,
or execution environment. STABILIZER performs extensive
randomization: it dynamically randomizes the placement of
a program’s functions, stack frames, and heap objects. Code
is randomized at a function granularity, and each function
executes on a randomly-placed stack frame. STABILIZER also
periodically re- randomizes code and stack frames during
execution.

2.2 Normally-Distributed Execution Time
STABILIZER’s re-randomization of memory layouts not only
avoids measurement bias, but also makes performance pre-
dictable and analyzable by inducing normally distributed
execution times.

At a high level, STABILIZER’s re-randomization strategy
leads to normally-executed distributions as follows: Each
random layout contributes to the total execution time. Total
execution time is the sum over all random layouts, which is
proportional to the mean over all these layouts. The central
limit theorem states that “the mean of a sufficiently large
number of independent random variables . . . will be approx-
imately normally distributed” [9]. As long as STABILIZER
re-randomizes layout a sufficient number of times (30 is typi-
cal), and each layout is chosen independently, then execution
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time will follow a Gaussian distribution. Section 5 provides a
more detailed analysis.

2.3 Sound Performance Analysis
Normally distributed execution times allow researchers to
evaluate performance using powerful parametric hypothesis
tests, which rely on the assumption of normality. These tests
are “powerful” in the sense that they more readily reject a
false null hypotheses than more general (non-parametric)
tests that make no assumptions about distribution. For our
purposes, the null hypothesis is that a change had no impact.
Failure to reject the null hypothesis suggests that more
samples (benchmarks or runs) may be required to reach
confidence, or that the change had no impact. Powerful
parametric tests can correctly reject a false null hypothesis–
that is, confirm that a change did have an impact—with fewer
samples than non-parametric tests, but only if the data follow
a Gaussian distribution.

2.4 Evaluating Code Modifications
To test the effectiveness of any change (known in statistical
parlance as a treatment), a researcher or developer runs
a program with STABILIZER, both with and without the
change. Given that execution times are normally distributed,
we can apply the Student’s t-test [9] to determine whether
performance differs between the two treatments. The t-test,
given a set of execution times, tells us the probability of
observing the given samples if both treatments result in the
same distribution. If this probability is below a threshold α
(typically 5%, for 95% confidence), we say that the null
hypothesis has been rejected—the two populations have
distinct means. Our confidence tells us that there is at most
a 5% chance we have committed a type-I error, meaning the
population means are actually indistinguishable.

It is important to note that the Student’s t-test can detect
arbitrarily small differences in the means of two populations
(given a sufficient number of samples) regardless of the value
of α. The difference in means does not need to be 5% to
reach significance with α = 0.05. Similarly, if STABILIZER
adds 4.8% overhead to a program, this does not prevent the
t-test from detecting differences in means that are smaller
than 4.8%. Execution times are samples from two Gaussian
distributions (before and after a code change). The t-test is
a probability query from the distribution of differences in
means of two populations. If the probability of observing
both positive and negative values is less than α, the null
hypothesis is rejected.

2.5 Evaluating Compiler and Runtime Optimizations
To evaluate a compiler or runtime system change, we instead
use a more general technique: analysis of variance (ANOVA).
ANOVA takes as input a set of results for each combination
of benchmark and treatment, and partitions the total variance
into components: the effect of random variations between
runs, differences between benchmarks, and the collective

impact of each treatment across all benchmarks [9]. ANOVA
is a generalized form of the t-test that is less likely to commit
type I error (rejecting a true null hypothesis) than running
many independent t-tests. Section 7 presents the use of
STABILIZER and ANOVA to evaluate the effectiveness of
compiler optimizations in LLVM.

Evaluating Layout Optimizations All of STABILIZER’s
randomizations (code, stack, and heap) can be enabled inde-
pendently. This makes it possible to evaluate optimizations
that target memory layout. To test an optimization for stack
layout, STABILIZER should be run with code and heap ran-
domization enabled. This guarantees that incidental changes,
such as code to pad the stack or allocate large objects on
the heap, will not affect the layout of code or heap memory.
The developer can be confident that any observed changed in
performance is the result of the stack optimization and not its
secondary effects on layout.

3. Related Work
Randomization for Security. Nearly all prior work in lay-
out randomization has focused on security concerns. Random-
izing the addresses of program elements makes it difficult
for attackers to reliably trigger exploits. Table 1 gives an
overview of prior work in program layout randomization.

The earliest implementations of layout randomization,
Address Space Layout Randomization (ASLR) and PaX,
relocate the heap, stack, and shared libraries in their en-
tirety [17, 23]. Building on this work, Transparent Runtime
Randomization (TRR) and Address Space Layout permuta-
tion (ASLP) have added support for randomization of code
or code elements (like the global offset table) [15, 27]. Un-
like STABILIZER, these systems relocate entire program seg-
ments.

Fine-grained randomization has been implemented in a
limited form in the Address Obfuscation and Dynamic Off-
set Randomization projects, and by Bhatkar, Sekar, and Du-
Varney [5, 6, 26]. These systems combine coarse-grained
randomization at load time with finer granularity randomiza-
tions in some sections. These systems do not re-randomize
programs during execution, and do not apply fine-grained ran-
domization to every program segment. STABILIZER random-
izes all code and data at a fine granularity, and re-randomizes
during execution.

Heap Randomization. DieHard uses heap randomization
to prevent memory errors [3]. Placing heap objects randomly
makes it unlikely that use after free and out of bounds
accesses will corrupt live heap data. DieHarder builds on this
to provide probabilistic security guarantees [20]. STABILIZER
can be configured to use DieHard as its substrate, although
this can lead to substantial overhead.

Predictable Performance. Quicksort is a classic example
of using randomization for predictable performance [13].
Random pivot selection drastically reduces the likelihood
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Base Randomization ASLR TRR ASLP Addr. Obfuscation Dyn. Offset B.S.DV [6] DieHard STABILIZER

code X X X X X
stack X X X X X X
heap X X X X X X

Full Randomization
code X X X* X X
stack X* X* X
heap X X

Implementation
recompilation X X X X
dynamic X X X X* X X X X
re-randomization X X

Table 1. Prior work in layout randomization includes varying degrees of support for the randomizations implemented in
STABILIZER. The features supported by each project are marked by a checkmark. Asterisks indicate limited support for the
corresponding randomization.

of encountering a worst-case input, and converts a O(n2)
algorithm into one that runs with O(n log n) in practice.

Randomization has also been applied to probabilistically
analyzable real-time systems. Quiñones et. al show that a
random cache replacement policy enables probabilistic worst-
case execution time analysis, while still providing good per-
formance. This probabilistic analysis is a significant improve-
ment over conventional hard real-time systems, where analy-
sis of cache behavior relies on complete information.

Performance Evaluation. Mytkowicz et al. observe that
environmental sensitivities can degrade program performance
by as much as 300% [19]. While Mytkowicz et al. show that
layout can dramatically impact performance, their proposed
solution, experimental setup randomization (the exploration
of the space of different link orders and environment variable
sizes), is substantially different.

Experimental setup randomization requires far more runs
than STABILIZER, and cannot eliminate bias as effectively.
For example, varying link orders only changes inter-module
function placement, so that a change to the size of a function
still affects the placement of all functions after it. STABI-
LIZER instead randomizes the placement of every function
independently. Similarly, varying environment size changes
the base of the process stack, but not the relative addresses
of stack slots. STABILIZER randomizes each stack frame
independently.

In addition, any unrandomized factor in experimental
setup randomization, such as a different shared library ver-
sion, could have a dramatic effect on layout. STABILIZER
does not require a priori identification of all factors. Its use of
dynamic re-randomization also leads to normally-distributed
execution times, enabling statistically sound hypothesis test-
ing.

Alameldeen and Wood find similar sensitivities in pro-
cessor simulators, which they also address with the addition

of non-determinism [1]. Tsafrir, Ouaknine, and Feitelson re-
port dramatic environmental sensitivities in job scheduling,
which they address with a technique they call “input shak-
ing” [24, 25]. Georges et al. propose rigorous techniques for
Java performance evaluation [11]. While prior techniques for
performance evaluation require many runs over a wide range
of (possibly unknown) environmental factors, STABILIZER
enables efficient and statistically sound performance evalua-
tion by breaking the dependence between experimental setup
and program layout.

4. STABILIZER Implementation
STABILIZER dynamically randomizes the layout of heap
objects, functions, and stack frames. Each randomization
consists of a compiler transformation and runtime support.
When building a program with STABILIZER, each source file
is first compiled to LLVM bytecode. C and C++ programs
use the clang front-end, Fortran programs use gfortran

along with LLVM’s GCC plugin to generate bytecode before
optimization. Each bytecode file is optimized per the user’s
request, then transformed by STABILIZER. This ensures
STABILIZER cannot affect any optimization decisions made
by the compiler, and that no optimizations can interfere with
STABILIZER’s transformations. Finally, bytecode files are
translated to machine code and linked by clang.

Compilation can be performed using STABILIZER’s szc
compiler driver, which is compatible with the common clang
and gcc command-line options. Programs can easily be built
and evaluated with STABILIZER by substituting szc for the
default compiler and enabling randomizations with additional
flags.

4.1 Heap Randomization
STABILIZER uses the TLSF (two-level segregated fits) allo-
cator as the base for its randomized heap [16]. The TLSF
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allocator is O(1) for all operations, always chooses the small-
est suitable size for allocations, and aggressively coalesces
freed memory. STABILIZER was originally implemented with
the DieHard allocator [3, 21]. DieHard is a bitmap-based
randomized allocator with power-of-two size classes. Unlike
conventional allocators, DieHard does not use recently-freed
memory for subsequent allocations. This lack of reuse and
the added TLB pressure from the large virtual address space
can lead to very high overhead.

While TLSF is more efficient than DieHard, it is not a
randomized allocator. STABILIZER randomizes the heap by
wrapping TLSF in a shuffling layer, built with HeapLayers [4].
The shuffling layer consists of a size N array of pointers for
each size class. The array for each size class is initialized
with a fill: N calls to TLSF::malloc are issued to fill
the array, then the array is shuffled using the Fisher-Yates
shuffle [8]. Every call to Shuffle::malloc allocates a new
object p from TLSF::malloc, generates a random index i

in the range [0, N), swaps p with array[i], and returns
the swapped pointer. Shuffle::free works in much the
same way: a random index i is generated, the freed pointer
is swapped with array[i], and the swapped pointer is
passed to TLSF::free. The process for malloc and free

is equivalent to one iteration of the inside-out Fisher-Yates
shuffle.

The shuffled heap parameter N must be large enough to
create sufficient randomization, but values that are too large
will increase overhead with no added benefit. It is only nec-
essary to randomize the index bits of heap object addresses.
Randomness in lower-order bits will lead to misaligned allo-
cations, and randomized higher order bits impose additional
pressure on the TLB. NIST provides a standard statistical
test suite for evaluation pseudorandom number generators [2].
We test the randomness of values returned by libc’s lrand48
function, addresses returned by the DieHard allocator, and
the shuffled TLSF heap for a range of values of N . Only the
index bits (bits 6-17 on the Core2 architecture) were used.
Bits used by branch predictors differ significantly across ar-
chitectures, but are typically low-order bits generally in the
same range as cache index bits.

The lrand48 function passes six tests for random-
ness (Frequency, BlockFrequency, CumulativeSums, Runs,
LongestRun, and FFT) with > 95% confidence, failing only
the Rank test. DieHard passes these same six tests. The shuf-
fled TLSF heap passes the same tests with the parameter
N = 256. STABILIZER uses this heap configuration to ran-
domly allocate memory for heap objects, stack frames, and
functions.

4.2 Code Randomization
STABILIZER randomizes code at the function granularity.
Every transformed function has a relocation table (see Fig-
ure 1), which is placed immediately following the code for
the function. The relocation table contains a users counter
that tracks the number of stack frames with a reference to the
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string s
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Figure 1. STABILIZER adds a relocation table to the end of
each function, making every function independently relocat-
able. White boxes contain code and shaded boxes contain
data.

relocated function. Functions are placed randomly in memory
using an instance of the shuffled TLSF heap configured to
map executable pages.

Every function call or global access in the function is
indirected through the relocation table. Relocation tables are
not present in the program binary but are created on demand
by the STABILIZER runtime.

Relocation tables are not present in a binary built with
STABILIZER. Instead, they are created at runtime immediately
following each randomly located function. The sizes of
functions are not available in the program’s symbol table,
so the address of the next function is used to determine the
function end.

Functions refer to their relocation table with PC-relative
addresses—Two randomly located copies of the same func-
tion do not share a relocation table. STABILIZER adds code
to each function to increment its users counter on entry and
decrement it on exit.

Initialization. During startup, STABILIZER overwrites the
first byte of every relocatable function with a software break-
point (the int 3 x86 opcode, or 0xCC in hex). When a func-
tion is called, STABILIZER intercepts the trap and relocates
the function. Every random function location has a corre-
sponding function location object, which is placed on the
active locations list.

Relocation. Functions are relocated in three stages: first,
STABILIZER requests a sufficiently large block of memory
from the code heap and copies the function body to this
location. Next, the function’s relocation table is constructed
next to the new function location with the users counter
set to 0. Finally, STABILIZER overwrites the beginning of
the function’s original base address with a static jump to the
relocated function.
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Figure 2. STABILIZER makes the stack non-contiguous.
Each function has a frame table, which stores a frame for
each recursion depth.

Re-randomization. STABILIZER re-randomizes functions
at regular time intervals. When a timer signal is delivered, all
running threads are interrupted. STABILIZER then processes
every function location in the active locations list. The
original base of the function is overwritten with a breakpoint
instruction, and the function location is added to the defunct
locations list. This list is scanned on every timer interrupt, and
any locations with no remaining users are freed. The users
counter will never increase for a defunct function location
because future calls to the function will execute in a new
location with its own users counter.

4.3 Stack Randomization
STABILIZER randomizes the stack by making it non-contiguous:
each function call moves the stack to a random location.
These randomly placed frames are also allocated using the
shuffled TLSF allocator, and STABILIZER reuses them for
some time before they are freed. This bounded reuse im-
proves cache utilization and reduces the number of calls to
the allocator while still enabling re-randomization.

Every function has a per-thread depth counter and frame
table that maps the depth to the corresponding stack frame.
The depth counter is incremented at the start of the function an
decremented just before returning. On every call, the function
loads its stack frame address from the frame address array
(frame table[depth]). If the frame address is NULL, the
STABILIZER runtime allocates a new frame.

External functions. Special handling is required when a
stack-randomized function calls an external function. Be-
cause external functions have not been randomized with STA-
BILIZER, they must run on the default stack to prevent over-
running the randomly located frame. STABILIZER returns the
stack pointer to the default stack location just before the call
instruction, and returns it to the random frame after the call

returns. Calls to functions processed by STABILIZER do not
require special handling because these functions will always
switch to their randomly allocated frames.

Re-randomization. At regular intervals, STABILIZER inval-
idates saved stack frames by setting a bit in each entry of the
frame table. When a function loads its frame from the frame
table, it checks this bit. If the bit is set, the old frame is freed
and a new one is allocated and stored in the table.

4.4 Architecture-Specific Implementation Details
STABILIZER runs on the x86, x86 64 and PowerPC architec-
tures. Most implementation details are identical, but STABI-
LIZER requires platform-specific support.

x86 64
Supporting the x86 64 architecture introduces two complica-
tions for STABILIZER. The first is for the jump instructions:
jumps, whether absolute or relative, can only be encoded with
a 32-bit address (or offset). STABILIZER uses mmap with the
MAP 32BIT flag to request memory for relocating functions,
but on some systems (Mac OS X), this flag is unavailable.

To handle cases where functions must be relocated more
than a 32-bit offset away from the original copy, STABILIZER
simulates a 64-bit jump by pushing the target address onto
the stack and issuing a return instruction. This form of jump
is much slower than a 32-bit relative jump, so high-address
memory is only used after low-address memory is exhausted.

PowerPC
PowerPC instructions use a fixed-width encoding of four
bytes. Jump instructions use 6 bits to encode the type of
jump to perform, so jumps can only target sign-extended 26
bit addresses (or offsets, in the case of relative jump). This
limitation results in a memory hole that cannot be reached
by a single jump instruction. To ensure that code is never
placed in this hole, STABILIZER uses the MAP FIXED flag
when initializing the code heap to ensure that all functions
are placed in reachable memory.

4.5 Optimizations
STABILIZER performs a number of optimizations that reduce
the overhead of randomization. The first addresses the cost
of software breakpoints. Frequently-called functions incur
the cost of a software breakpoint after every function relo-
cation. Functions that have been relocated in 10 different
randomization periods are marked as persistent. The STABI-
LIZER runtime preemptively relocates persistent functions
at startup time, instead of on-demand with a software break-
point. STABILIZER occasionally selects a persistent function
at random and resets it to on-demand relocation to ensure that
only actively used functions are eagerly relocated.

The second optimization addresses inadvertent instruction
cache invalidations. If relocated functions are allocated near
randomly placed frames or heap objects, this could lead to
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unnecessary instruction cache invalidations. To avoid this,
functions are relocated using a separate randomized heap.
For x86 64, this approach has the added benefit of preserving
low-address memory, which is more efficient to reach by
jumps. Function relocation tables pose a similar problem:
every call updates the users counter, which could invalidate
the cached copy of the relocated function. To prevent this, the
relocation table is located at least one cache line away from
the end of the function body.

5. STABILIZER Statistical Analysis
This section presents an analysis that explains how STABI-
LIZER’s randomization results in normally-distributed execu-
tion times for most programs. Section 6 empirically verifies
this analysis across our benchmark suite.

The analysis proceeds by first considering programs with
a reasonably trivial structure (running in a single loop), and
successively weakens this constraint to handle increasingly
complex programs.

We assume that STABILIZER is only used on programs that
consist of more than a single function. Because STABILIZER
performs code layout randomization on a per-function basis,
the location of code in a program consisting of just a single
function will not be re-randomized. Since most programs
consist of a large number of functions, we do not expect this
to be a problem in practice.

Base case: a single loop. Consider a small program that
runs repeatedly in a loop, executing at least one function.
The space of all possible layouts l for this program is the
population L. For each layout, an iteration of the loop will
have an execution time e. The population of all iteration
execution times is E. Clearly, running the program with
layout l for 1000 iterations will take time:

Trandom = 1000 ∗ e

For simplicity, assume that when this same program is
run with STABILIZER, every iteration is run with a different
layout li with execution time ei (we refine the notion of
“iteration” below).

Running this program with STABILIZER for 1000 itera-
tions will thus have total execution time:

Tstabilized =

1000∑
i=1

ei

The values of ei comprise a sample set x from the popula-
tion E with mean:

x̄ =

∑1000
i=1 ei
1000

The central limit theorem tells us that x̄ must be normally
distributed (30 samples is sufficient for normality). Interest-
ingly, the value of x̄ is only different from Tstabilized by a

constant factor. Multiplying a normally distributed random
variable by a constant factor simply shifts and scales the
distribution. The result remains normally distributed. There-
fore, for this simple program, STABILIZER leads to normally
distributed execution times. Note that the distribution of E
was never mentioned—the central limit theorem guarantees
normality regardless of the sampled population’s distribution.

The above argument relies on two conditions. The first
is that STABILIZER runs each iteration with a different
layout. STABILIZER actually uses wall clock time to trigger
re-randomization, but the analysis still holds. As long as
STABILIZER re-randomizes roughly every n iterations, we
can simply redefine an “iteration” to be n passes over the
same code. The second condition is that the program is simply
a loop repeating the same code over and over again.

Programs with phase behavior. In reality, programs have
more complex control flow and may even exhibit phase-like
behavior. The net effect is that for one randomization period,
where STABILIZER maintains the same random layout, one
of any number of different portions of the application code
could be running. However, the argument still holds.

A complex program can be recursively decomposed into
subprograms, eventually consisting of subprograms equiva-
lent to the trivial looping program described earlier. These
subprograms will each comprise some fraction of the pro-
gram’s total execution, and will all have normally distributed
execution times. The total execution time of the program is
thus a weighted sum of all the subprograms. A similar ap-
proach is used by SimPoint, which accelerates architecture
simulation by drawing representative samples from all of a
program’s phases [12].

Because the sum of two normally distributed random vari-
ables is also normally distributed, the program will still have a
normally distributed execution time. This decomposition also
covers the case where STABILIZER’s re-randomizations are
out of phase with the iterations of the trivial looping program.

Heap accesses. Every allocation with STABILIZER returns
a randomly selected heap address, but live objects are not
relocated because C/C++ do not allow it. STABILIZER thus
enforces normality of heap access times as long as the pro-
gram contains a sufficiently large number of short-lived heap
objects (allowing them to be effectively re-randomized). This
behavior is common for most applications and corresponds
to the generational hypothesis for garbage collection, which
has been shown to hold in unmanaged environments [7, 18].

STABILIZER cannot break apart large heap allocations, and
cannot add randomization to custom allocators. Programs that
use custom allocators or allocate small objects from a single
large array may not have normally distributed execution
times because STABILIZER cannot sufficiently randomize
their layout.
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Figure 3. Overhead of STABILIZER relative to runs with randomized link order. With all randomizations enabled, STABILIZER
adds a median overhead of 5.5%, below 20% overhead for 16 of 20 benchmarks, and in five cases slightly improves performance.

6. STABILIZER Evaluation
We evaluate STABILIZER in two dimensions. First, we test
the claim that STABILIZER causes execution times to follow
a Gaussian distribution. Next, we look at the overhead added
by STABILIZER with different randomizations enabled.

All evaluations were performed on a quad-socket 16-core
AMD Opteron 6272 equipped with 64GB of RAM. Each
core has a 16KB 4-way set associative L1 data cache, a
64KB 2-way set associative instruction cache, a 2MB 16-way
set associative L2 cache, and a 6MB 64-way set-associative
L3 cache shared by eight cores. The system runs version
2.6.32-5 of Linux kernel (unmodified) built for x86 64. All
programs (with and without STABILIZER) were built using
LLVM version 3.1. C and C++ benchmarks were built with
the Clang frontend (also version 3.1). Fortran benchmarks
were built with gfortran 4.6.3 using LLVM’s GCC plugin to
emit bytecode prior to optimization.

Benchmarks. We evaluate STABILIZER across all C bench-
marks in the SPEC CPU2006 benchmark suite. The C++
benchmarks omnetpp, xalancbmk, dealII, soplex, and
povray are not run because they use exceptions, which are
not yet supported by STABILIZER. We plan add support for
exceptions by rewriting LLVM’s exception handling intrin-
sics to invoke STABILIZER-specific runtime support for ex-
ceptions. As an interim step, we plan to build these programs
with exceptions disabled to gather preliminary results. STABI-
LIZER is also evaluated on all Fortran benchmarks, except for
gamess, cactusADM, GemsFDTD, and tonto. These bench-
marks fail to build on our system when using gfortran with
the LLVM plugin.

6.1 Performance Isolation
We evaluate the claim that STABILIZER results in normally
distributed execution times across the entire benchmark suite.
Using the Shapiro-Wilk test for normality, we can check if the
execution times of each benchmark are normally distributed

with and without STABILIZER. Every benchmark was run 20
times, with a different random link order for every run.

Without STABILIZER, 7 benchmarks exhibit execution
times that are not normally distributed with 95% confidence:
astar, calculix, gromacs, leslie3d, milc, wrf, and
zeusmp. For all these benchmarks, except wrf, execution
times with STABILIZER follow a Gaussian distribution.

The namd benchmark has normally distributed execution
time, but not with STABILIZER. namd uses floating point
operations, which require 16-byte alignment for good per-
formance. Unfortunately, we learned too late that the TLSF
allocator guarantees only 8-byte alignment. STABILIZER is
unable to impose a Gaussian distribution on execution times
for wrf. This is because wrf has large stack frames which,
like large heap objects, STABILIZER cannot break into smaller
pieces to fully randomize.

Figure 4 shows the distributions of the eight benchmarks
with non-Gaussian execution times using quantile-quantile
(QQ) plots. QQ plots are useful for visualizing how close a
set of samples is to a distribution (or another set of samples).
These plots compare the observed quantiles for execution
times to the Gaussian distribution. Each data point is placed
at the intersection of the sample and reference distributions’
quantiles. If the samples come from the same distribution
family, the points will fall along the solid diagonal line shown
on each plot. The figures for astar, gromacs, and leslie3d
show distributions that differ significantly from Gaussian.
Large jumps and changing slope in the QQ plot indicate the
execution times have a bi-modal distribution.

Result: These figures demonstrate that STABILIZER nearly
always imposes a Gaussian distribution on execution time.
This holds even for programs with execution times that did
not exhibit a Gaussian distribution without STABILIZER.

6.2 Efficiency
Figure 3 shows the overhead of STABILIZER relative to unran-
domized execution. Each benchmark is run 20 times in each
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Figure 4. Gaussian distribution of execution time: Quantile-quantile plots comparing the distributions of execution times
to the Gaussian distribution. The solid diagonal line shows where samples from a Gaussian distribution should fall. astar,
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See Section 6.1 for a discussion of these results.
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Figure 5. Speedup of -O3 over the -O2 optimization level in LLVM. Error bars indicate the p-values for the T-test comparing
-O2 and -O3 (smaller is better). Benchmarks with dark bars showed a statistically significant change with -O3 relative to -O2.
While 12 of 18 benchmarks showed a statistically significant change, four of these cases were a performance degradation.
Despite per-benchmark significance results, the data do not show significance across the entire suite of benchmarks (Section 7.1).

configuration. With all randomizations enabled, STABILIZER
adds a median overhead of 5.5%.

Most of STABILIZER’s overhead can be attributed to
reduced locality. Code and stack randomization both add
additional logic to function invocation, but this has limited
impact on execution time. Programs run with STABILIZER
use a larger portion of the virtual address space, putting
additional pressure on the TLB.

WIth all randomizations enabled, STABILIZER adds signif-
icant overhead for four benchmarks: sjeng, gcc, gobmk, and
perlbench. The high overhead for perlbench with heap
randomization is actually due to TLSF’s 8-byte alignment.
Even without shuffling, perlbench runs substantially slower
with TLSF than a heap that provides 16-byte aligned objects.

gcc is a particularly short-lived benchmark, running for
just over 3 seconds on the train input. STABILIZER re-
randomizes more frequently, backing off as execution contin-
ues. Because gcc spends its whole execution time during the
frequent re-randomization period, it will never fully warm its
caches or branch predictor tables.

STABILIZER’s overhead does not affect its validity as a
system for measuring the impact of performance optimiza-
tions. If an optimization has a statistically-significant impact,
it will shift the mean execution time over all possible layouts.
The overhead added by STABILIZER also shifts this mean, but
applies equally to both versions of the program. STABILIZER
imposes a Gaussian distribution on execution times, which
enables the detection of smaller effects than an evaluation of
execution times with unknown distribution.

Performance Improvements
In some cases, STABILIZER improves the performance of
benchmarks. Benchmarks are unlikely to exhibit cache con-
flicts and branch aliasing for repeated random layouts. Two
programs (mcf and hmmer) show improved performance only
when global and heap randomization are enabled. Stack ran-

domization improves the performance of two more bench-
marks (lbm and libquantum). Code randomization slightly
improves the performance of lbm and libquantum; we at-
tribute this to the elimination of branch aliasing [14].

7. Sound Performance Analysis
The goal of STABILIZER is to enable statistically sound per-
formance evaluation. We demonstrate STABILIZER’s use here
by evaluating the effectiveness of LLVM’s -O3 optimization
level. Two benchmarks, gromacs and wrf, failed to build
at the -O3 optimization level. The impact of optimizations
was evaluated on the remaining 18 benchmarks. Figure 5
shows the speedup of -O3 over -O2 for all benchmarks. Run-
ning benchmarks with STABILIZER guarantees normally dis-
tributed execution times, so we can apply statistical methods
to determine the effect of -O3 versus -O2.

LLVM’s -O2 optimizations include basic-block level
common subexpression elimination, while -O3 adds argu-
ment promotion, global dead code elimination, increases
the amount of inlining, and adds global (procedure-wide)
common subexpression elimination.

We first apply the two-sample t-test to determine whether
-O3 provides a statistically significant performance improve-
ment over -O2 for each benchmark. With a 95% confidence
level, we find that there is a statistically significant differ-
ence between -O2 and -O3 for 12 of 18 benchmarks. While
this result may suggest that -O3 does have an impact, this
result comes with a caveat: bzip2, gcc, libquantum, and
mcf show a statistically significant increase in execution time
with the added optimizations.

7.1 Analysis of Variance
Evaluating optimizations with pairwise t-tests is error prone.
This methodology runs a high risk of erroneously rejecting
the null hypothesis. In this case, the null hypothesis is that
-O2 and -O3 optimization levels produce execution times with
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the same distributions. Using analysis of variance, we can
determine if -O3 has a significant effect over all the samples.

We run ANOVA with the same 16 benchmarks, at both
-O2 and -O3 optimization levels. For this configuration, the
optimization level and benchmarks are the independent fac-
tors (specified by the experimenter), and the execution time
is the dependent factor.

ANOVA takes the total variance in execution times and
breaks it down by source: the fraction due to differences be-
tween benchmarks, the impact of optimizations, interactions
between the independent factors, and random variation be-
tween runs. Differences between benchmarks should not be
included in the final result. We perform a one-way analysis
of variance within subjects to ensure execution times are only
compared between runs of the same benchmark.

The results show an F-value of 1.185 for one degree of
freedom (the choice between -O2 and -O3). The F-value is
drawn from the F distribution [9]. The cumulative probability
of observing any value from F (1) > 1.185 is called the
p-value. For this experiment, we find a p-value of 0.291.
Because this p-value is not less than our significance level
α = 0.05, we fail to reject the null hypothesis and must
conclude that compared to -O2, -O3 optimizations are not
statistically significant at a 95% confidence level.

8. Future Work
We plan to extend STABILIZER to randomize code at finer
granularity. Instead of relocating whole functions, STABI-
LIZER can relocate individual basic blocks at runtime. This
finer granularity would allow for branch-sense randomization.
Randomly-relocated basic blocks can appear in any order,
and STABILIZER can randomly swap the fall-through and tar-
get blocks during execution. This approach would effectively
randomize the history portion of the branch predictor table,
eliminating another potential source of bias.

STABILIZER is useful for performance evaluation, but its
ability to dynamically change layout could also be used to
improve program performance. Searching for optimal layouts
is intractable: the possible permutations of all functions grows
at the rate of O(N !), without accounting for space between
functions. However, sampling with performance counters
could be used to detect layout-related performance problems
like cache misses and branch mispredictions. Upon detecting
these problems, STABILIZER could trigger a complete or
partial re-randomization of layout in an attempt to eliminate
the source of the performance issue.

9. Conclusion
Researchers and software developers require effective per-
formance evaluation to guide work in compiler optimiza-
tions, runtime libraries, and large applications. Automatic
performance regression tests are now commonplace. Stan-
dard practice measures execution times before and after ap-
plying changes, but modern processor architectures make

this approach unsound. Small changes to a program or its
execution environment can perturb its layout, which affects
caches and branch predictors. Two versions of a program,
regardless of the number of runs, are only two samples from
the distribution over possible layouts. Statistical techniques
for comparing distributions require more samples, but ran-
domizing layout over many runs may be prohibitively slow.

This paper presents STABILIZER, a system that enables
the use of the powerful statistical techniques required for
sound performance evaluation on modern architectures. STA-
BILIZER forces executions to sample the space of memory
configurations by (efficiently) repeatedly re-randomizing lay-
outs of code, stack, and heap objects at runtime. Every run
with STABILIZER consists of many independent and identi-
cally distributed (i.i.d.) intervals of random layout. Total exe-
cution time (the sum over these intervals) follows a Gaussian
distribution by virtue of the Central Limit Theorem. STABI-
LIZER thus enables the use of statistical tests like ANOVA.
We demonstrate STABILIZER’s efficiency (< 5% median
overhead) and its effectiveness by evaluating the impact of
LLVM’s optimizations on the SPEC CPU2006 benchmark
suite. We find that the performance impact of -O3 over -O2
optimizations is indistinguishable from random noise.

We encourage researchers to download STABILIZER to use
it as a basis for sound performance evaluation: it is available
at http://www.stabilizer-tool.org.
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