
Redline: First Class Support for Interactivity in Commodity Operating Systems

Ting Yang Tongping Liu Emery D. Berger Scott F. Kaplan† J. Eliot B. Moss
tingy@cs.umass.edu tonyliu@cs.umass.edu emery@cs.umass.edu sfkaplan@cs.amherst.edu moss@cs.umass.edu

Dept. of Computer Science †Dept. of Mathematics and Computer Science
University of Massachusetts Amherst Amherst College

Amherst, MA 01003-9264 Amherst, MA 01002-5000

Abstract

While modern workloads are increasingly interactive
and resource-intensive (e.g., graphical user interfaces,
browsers, and multimedia players), current operating sys-
tems have not kept up. These operating systems, which
evolved from core designs that date to the 1970s and 1980s,
provide good support for batch and command-line appli-
cations but do little to ensure responsiveness. Despite
of their best-effort priority-based scehdulers that provide
no bounds on delays, their resource managers (especially
memory managers, disk I/O schedulers) are completely
oblivious to response time requirements. Therefore, pres-
sure on any of these resources can significantly degrade ap-
plication responsiveness.

We present Redline, a system that brings first-class sup-
port for interactive applications to commodity operating
systems. Redline works with unaltered applications and
standard APIs. It uses lightweight specifications to or-
chestrate memory and disk I/O management to serve the
needs of interactive applications. Unlike real-time systems
that treat specifications as strict requirements and thus pes-
simistically limit system utilization, Redline dynamically
adapts to load to maximize responsiveness and system uti-
lization. We show that Redline delivers responsiveness to
interactive applications even in the face of extreme work-
loads including fork bombs, malloc bombs and bursty large
disk I/O requests, reducing application pauses by up to two
orders of magnitude.

1 Introduction
The enormous advances in processing power, memory size,
storage capacity, and network bandwidth of computers over
the past two decades have led to a dramatic change in
the richness of desktop environments. Users routinely run
highly-graphical user interfaces with resource-intensive ap-
plications ranging from video players and photo editors
to web browsers, complete with embedded Javascript and
Flash applets.

Unfortunately, existing general-purpose operating sys-
tems do not provide adequate support for these modern
applications. Current operating systems, like Windows,
Linux, and Solaris were not designed with interactivity
in mind. The memory manager and I/O subsystem of
these systems all work independently from the CPU sched-
uler, maximizing the overall system throughput but ig-
noring application’s response time requirements. Con-
sequently, pressure on any one subsystem can significa-
tionly degrade application responsiveness. For example, a
memory-intensive application can cause the system to evict
pages from the graphical user interface, making the system
as a whole unresponsive. Similarly, disk-intensive appli-
cations can easily saturate I/O bandwidth, making applica-
tions like video players unusable. Furthermore, while their
best-effort, priority-based schedulers are a good match for
batch-style applications, they provide limited support for
ensuring responsiveness.

Contributions

We present Redline, a system that integrates resource man-
agement (memory management and disk I/O scheduling)
with the CPU scheduler, orchestrating these resource man-
agers to maximize the responsiveness of interactive appli-
cations.

Redline relies on a lightweight specification-based ap-
proach that provides enough information to allow it to meet
the response time requirements of interactive applications.
Redline’s specifications, which extend Rialto’s CPU spec-
ifications [16], give a rough estimate of the amount of re-
sources required by an application over any period of time
in which they are active. These specifications are concise,
consisting of just a few parameters (Section 3), and are
straightforward to generate: a graduate student was able
to write specifications for a suite of about 100 applications
including Linux latency-sensitive daemons in just one day.
In an actual deployment, we expect these to be provided by
application developers.

Each resource manager then uses these specifications to

inform its decisions. Redline’s memory manager protects
the working sets of interactive applications according to
their specifications, preferentially evicts pages from non-
interactive applications, and further reduces the risk of pag-
ing through a rate-controlled memory reserve (Section 4).
Redline’s disk I/O manager avoids pauses in interactive ap-
plications by dynamically prioritizing these tasks based on
their specifications (Section 5). Finally, Redline extends a
standard time-sharing CPU scheduler with an earliest dead-
line first (EDF)-based scheduler [19] that uses these speci-
fications to schedule interactive applications (Section 6).

By contrast with real time systems that sacrifice system
utilization in exchange for strict guarantees [16, 17], Red-
line provides strong isolation for interactive applications
while ensuring high system utilization. Furthermore, Red-
line works with standard APIs and does not require any al-
terations to existing applications. This combination makes
Redline practical for use in commodity operating system
environments.

We have implemented Redline as an extension to the
Linux kernel (see Section 7 for a full discussion). We
present the results of an extensive empirical evaluation
comparing Redline with the standard Linux kernel (Sec-
tion 8). These results demonstrate Redline’s effectiveness
in ensuring the responsiveness of interactive applications
even in the face of extreme workloads, including bursty
I/O-heavy background processes, fork bombs, and malloc
bombs.

2 Redline Overview
Figure 1 presents an overview of the Redline system. The
first component is specification management. It allows the
system administrator to pick a set of important applications
and give their specifications, which are stored in a special
file. Redline loads specifications from that file whenever
an application is launched. Redline also exposes a system
call interface that allows users to change an application’s
specification during execution.

Redline divides tasks into four types based on their pro-
cessing requirements:

1. Real-time (RT): time critical tasks for which the con-
sequence of missing a deadline is catastrophic to the
system;

2. Interactive (Iact): response-time sensitive tasks that
provide services in response to external request-
s/events. These include not only typical interactive
tasks, but also tasks that serve requests from other
tasks, such as kernel threads and daemons;

3. Throughput (Tput): tasks that require a certain
amount of CPU bandwidth over the long-term, with-
out the need for short-term responsiveness; and

Load

Monitor

CPU

Scheduler

spec related

sys. calls

Memory ManagementI/O Management

revoke

reactivate

memory

usage

cpu usage

Admission Control
load

info

specs

task

information

Specification

Management

accept

interactive tasks

b
e

s
t-

e
ff
o

rt

reject

spec loader

Figure 1: The Redline system.

4. Best-effort (BE): tasks whose performance is not crit-
ical, such as virus scanners.

This paper focuses on Redline’s support for interactive
(Iact) and best-effort (BE) tasks. Redline treats any appli-
cation without a specification as a best-effort task.

Whenever a new task is launched, Redline performs ad-
missions control to see whether the system can accom-
modate it. Instead of solely relying specifications, which
would pessimistically reject most tasks, Redline uses an op-
timistic admission control mechanism in conjunction with
dynamic load control. It monitors the CPU bandwidth con-
sumed by interactive tasks, and accepts a new task as long
as its requirements (together with current load) do not ex-
ceed a certain threshold. When Redline detects an over-
load, the load monitor chooses a victim to downgrade. This
victim is the task that acts least like an interactive task (i.e.,
it is the most CPU-intensive). The CPU scheduler then
downgrades the victim’s specification, turning it into a best-
effort task. This strategy allows other interactive tasks to
continue to meet their response-time requirements. When-
ever more resources become available, Redline will reacti-
vate the specification of a previously-revoked task.

Once the admissions control mechanism accepts a task,
the CPU scheduler activates the loaded specification. It also
propagates the specification to the other resource managers,
so that they can handle each type of tasks accordingly. The
memory manager attempts to protect their working sets and
allows them to evict pages from best-effort tasks if neces-
sary. It also maintains a rate-controlled memory reserve
that provides limited isolation among interactive tasks un-
der servere memory pressure. The disk I/O management
assigns higher priorities to interactive tasks, ensuring that
I/O requests from interactive tasks finish as quickly as
possible. Finally, Redline’s extended CPU scheduler pro-
vides the required CPU resources for the interactive tasks.
Redline’s integrated resource management, combined with

2

appropriate admission and load control, effectively main-
tains interactive responsiveness under heavy resource con-
tention.

3 Redline Specifications
While Redline executes applications without specifications
in best-effort mode, it can use specifications to guarantee
their responsiveness. We have defined specifications for a
wide class of services. These specifications not only ensure
the responsiveness of interactive applications like text edi-
tors, movie players, and web browsers. By specifying the
requirements of applications that support the graphical user
interface, including the X server, window/desktop manager,
etc., Redline ensures that the GUI remains responsive. Its
specifications for a range of kernel threads and daemons al-
lows Redline to ensure that the system as a whole remains
stable. Finally, we have generated specifications for a range
of administrative tools (e.g., bash, top, ls, and kill) that al-
low users to manage their applications as well as the system
even under extreme load.

A specification in Redline is an extension of CPU
reservations [16], which allow an interactive task to
reserve C milliseconds of computation time out of every T
millisecond period. A specification consists of following
fields:

〈pathname:type:C:T :flags:π:io〉

The first field is the path name to the executable, and the
second field is its type (usually Iact, for interactive). Two
important flags include I, whether the specification is inher-
ited by a child process, and R, which indicates if the speci-
fication may be revoked when the system is overloaded. A
specification can also contain two optional fields: π is the
memory protection period in seconds (see Section 4) and io
is the I/O priority (see Section 5).

For example, here is the specification for mplayer, an in-
teractive movie player:

〈/usr/bin/mplayer:Iact:5:30:IR:-:-〉
This specification indicates that mplayer is an interactive
task that reserves 5ms out of every 30ms period, its speci-
fication is inheritable and can be revoked if necessary, and
its memory protection period and I/O priority are chosen
by Redline automatically.

Setting Specifications: We derived specifications for a
range of interactive applications by following several sim-
ple rules. Most administrative tools are very short-lived,
so reserving a few percent of CPU bandwidth out of ev-
ery several hundred milliseconds is sufficient to guarantee
responsiveness. Most kernel threads and daemons are not
CPU intensive, but very response time sensitive, so their
reservation period should be in the tens of milliseconds.
The reservation period for a movie player should be around
30ms to ensure 30 frames per second, which implies that
the X server and window/desktop manager should also use

exec() fork()

copy spec

from its parent

call exec()

within 1ms?

parent has the

inheritable flag set?

parent has spec?

find a match spec

in /etc/spec.tab?

To admission test Launch as BE

Y

N

N

N

Y

Y

load spec

Y

N

Figure 2: Loading Specifications in Redline

the same reservation period (if not smaller). We found
that setting specifications was straightforward. With little
work, we were able to manually generate a set of specifi-
cations for about 100 applications in a Linux system with
the K Desktop Environment (KDE). This specification file
is portable and could easily be shipped with a Linux distri-
bution.

Loading Specifications: Redline stores its specifica-
tions in a file (/etc/spec/spec.tab). An interactive task uses
either the specification loaded during exec() or one inher-
ited from its parent. Figure 2 shows how Redline loads the
specification for a task.

In practice, most tasks either invoke exec() soon after
being forked, or never invoke it. Therefore, during fork(),
Redline copies the parent’s specification and gives the new
task 1ms of execution time. If the new task does not invoke
exec() within this 1ms window, Redline checks the speci-
fication. If the inheritable flag is set, Redline performs an
admission test on the inherited specification. Otherwise,
the new task is launched in the best-effort category.

If, however, the new task does invoke exec() within the
1ms window, Redline first checks its parent. If the parent
is a best-effort task without any specification, then the new
task is set to be best-effort. Otherwise, Redline searches
the specification table for the new task using its full path
name. If it finds a match, Redline loads the specification
and performs an admission test. If there is no match and the
parent is not marked for inheritance, the new task is set to
be best-effort. Notice that, in the absence of specifications,
Redline behaves exactly like a normal Linux system .

4 Redline Virtual Memory Management
The goal of existing virtual memory managers (VMM) in
commodity operating systems is to maximize overall sys-
tem throughput. There is no notion of fairness to tasks, let
alone any consideration of the priorities and shares used in
the CPU scheduler. Most VMM’s employ “use-it-or-lose-
it” policies, under which memory referencing speed deter-
mines allocation: the more pages referenced per second,
the large a main memory allocation the VMM provides.

3

A task that blocks on I/O—and an interactive task will
routinely block on input—is more vulnerable to losing its
allocation and then later being forced to page swap when it
awakens. Because typical VMM’s do not provide isolation
among tasks, a single memory-intensive task can “steal”
the allocations of other tasks that are not actively using their
pages. Worse, page swapping itself is the kind of block-
ing I/O operation that can cause a task to lose more of its
allocation to other processes that quickly references their
pages.

Failing to supply required memory pages on time can se-
riously hurt the responsiveness of interactive tasks, due to
the enormous overhead of loading pages from disk. There-
fore, the Redline VMM is designed to satisfy the mem-
ory requirements of interactive tasks, thus keeping them
responsive even after blocking on input. Informed with
necessary information from the specifications, the Redline
VMM uses three mechanisms to achieve these goals: pro-
tecting the working sets of interactive tasks, booking pages
used by best-effort tasks, and a rate-controlled memory re-
serve.

Protecting working sets: The Linux VMM uses a page
replacement algorithm that approximates a global least re-
cently used (LRU) policy. Pages are approximately ordered
by recency of use and with no consideration of the task
to which each page belongs. Pages used longest ago are
cleaned and selected for reclamation. The implicit goal of
this policy is to minimize the total number of page swaps
performed by the system, irrespective of how any one pro-
cess performs as a consequence.

For an in interactive task to remain responsive, a VMM
must keep its working set—those pages that are currently in
active use—resident. In the Linux VMM, there is no identi-
fication of, nor any attempt to cache, a task’s working set. If
the system-wide demand for main memory is large enough,
and if a task does not run and reference its pages rapidly
enough, then parts of its working set will be replaced. Un-
der this memory pressure, interactive tasks quickly become
non-responsive.

Under the Redline VMM, each interactive task can spec-
ify a memory protection period π. The VMM will evict
a page only if it has not been referenced for at least π
seconds. Additionally, each page has a timestamp c that
records the last time the page’s reference bit was cleared.
A page is expired if (t−c) > π, where t is the current time.
By default, π = 30×60, or 30 minutes if π is not supplied
by the specification. This default requires that a user ignore
an interactive application for a substantial period of time
before some of its working set is evicted and it becomes
temporarily unresponsive.

The Redline VMM handles the pages of interactive tasks
and best-effort tasks differently. If the faulting process is in
the best-effort category, then the VMM reclaims pages us-
ing the system’s default VMM mechanism, but with a slight

modification: only pages belonging to best-effort tasks and
expired pages belonging to interactive tasks may be re-
claimed; unexpired pages are not considered. Note also
that this mechanism only considers pages that are not re-
cently used. Pages belonging to any process that have been
recently used are not examined by this reclamation mecha-
nism. Should an insufficient number of pages be reclaimed
by this process, it is repeated as many times as necessary.

If an interactive task faults, the VMM first tries to use
the rate-controlled memory reserve (described in more de-
tail below). If this reserve is insufficient, reclamation pro-
ceeds as above for best-effort tasks, reclaiming all not re-
cently used pages except the unexpired pages from inter-
active tasks. If this attempt at reclamation is also insuffi-
cient, an additional pass aggressively reclaims more best-
effort pages regardless of how recently they have been used.
If even this aggressive approach is insufficient, then Red-
line is at risk for failing to meet its deadlines, and thus the
VMM revokes the specification of some interactive task,
thus demoting it to the best-effort class. Having done so, it
starts over, examining the rate-controlled memory reserve
and then reclaiming pages as described above.

Booking best-effort pages: Sometimes a best-effort
task may dirty (modify) pages faster than the VMM can
clean them, thus preventing the VMM from evicting its
pages. Such best-effort tasks can hold large amount of
memory, preventing interactive tasks from building up their
working sets, but contribute no real benefits to improving
user experience and system responsiveness. In order to re-
claim memory from such tasks, the VMM can book pages
used by best-effort tasks during the aggressive reclamation
phase described above. That is, when the VMM finds a
page belonging to a best-effort task, it unmaps that page
and then marks it. If the best-effort task then references that
page, the VMM notices the mark and, before re-mapping
the page, it suspends the task briefly (e.g., 100 ms). The
VMM therefore slows the task’s memory reference rate,
giving the VMM enough time to reclaim more of its pages.

Rate-controlled reserve: The Linux VMM uses water-
marks to trigger page reclamation. If the pool of free mem-
ory falls below the watermark, page reclamation is trig-
gered. This approach is not desirable for interactive tasks
because, should such a task fault, it would block during
the potentially lengthy reclamation process, even if it needs
only a small number of pages. The Redline VMM thus
maintains a small memory reserve (about 8MB in our im-
plementation) for interactive tasks, and controls their speed
of consuming pages in this reserve. Although an interactive
task still may block during reclamation, the reserve makes
that situation significantly less likely.

The Redline VMM offers each interactive task a reserve
budget b (the default is 256 pages) and records the time t f
when the first page in its budget is consumed. For each
reserved page consumed, the Redline VMM reduces the

4

budget of the consuming task and then triggers a kernel
thread to reclaim pages in background if necessary. We do
not want a memory demanding task to quickly exhaust the
reserve and affect other tasks, so the speed of a task con-
suming reserved pages should not be faster than the system
can reclaim them. Therefore, the Redline VMM charges
each reserved page a cost c that is roughly the overhead
of one disk access operation (5 ms in Redline). When a
task expends its budget, the VMM evaluates the inequality
t f + b× c < t, where t is the current time. If the inequality
is true, then the VMM adds b to the task’s budget. If the in-
equality is false, the task is consuming reserved pages too
quickly. Thus, the VMM prevents the task from using the
reserve until b pages are reclaimed or the reserve resumes
its full capacity. This limited isolation among interactive
tasks is very important for system responsiveness as shown
in Section 8.

5 Redline Disk I/O Management
Like the VMM, the I/O manager of a general purpose

OS’s does not distinguish between interactive and best-
effort tasks. The policies that determine when and in what
order pages are read from and written to disk are designed
to optimize system throughput and are oblivious to CPU
scheduler goals. This obliviousness can lead the I/O man-
ager to schedule the requests for best-effort tasks before
those of interactive tasks in a way that substantially harms
response times. We describe the Redline I/O manager,
which manages I/O events in a way that allows responsive
tasks to meet their deadlines.

Journaling: For Linux, ext3 is a journaling file system
and the default for most distributions. Like any journaling
file system, its updates are commited in atomic transac-
tions, each of which writes a group of cached, dirty pages
along with their new metadata. Its implementation is de-
signed to maximize system-wide throughput, sometimes to
the detriment CPU scheduling goals. We describe here a
particular problem with this file system’s implementation
that Redline fixes. Although this particular problem is spe-
cific to Linux’s ext3, it is representative of the way in which
any OS component that manages system resources can un-
dermine interactivity.

Consider two tasks: interactive task Pi and best-effort
task Pbe. Now consider that both tasks use the write()
system call to save data to some file on the same ext3 file
system. These system calls will not immediately initiate
disk activity. Instead, the data written with this mechanism
will be buffered as a set of dirty pages in the file system
cache. Critically, these pages will also be added to a single,
global, compound transaction by ext3. This transaction will
contain dirty pages from any file written by any task, and
thus will contain the pages written by both Pi and Pbe, even
though they were written by different tasks and to different
files.

In this example, Pbe writes a large amount of data
through write(), while Pi writes some small amount.
Assume that after both tasks have performed these
write() operations, and that Pi performs an fsync()
system call to ensure that its updates are committed to disk.
Because of the compound transactions used by ext3, Pi
blocks until both its own dirty pages and those of Pbe are
written to disk.

If the OS caches too many of the pages written by Pbe,
then the fsync() operation will force Pi to be noticeably
unresponsive. This poor interaction between compound
transactions and fsync() occurs not only for ext3, but
also for ResierFS[26]. Under Linux, the dirty threshold d
is a system-wide parameter that determines what percent-
age of main memory may hold dirty pages—pages that may
belong to any task—before a disk transfer is initiated to
“clean” those pages. By default, d = 10%, making it pos-
sible on a typical system for 100 MB to 200 MB of dirty
pages to be cached and then written synchronously when
fsync() is called.

Best-effort and interactive tasks should not have the
same dirty threshold. Redline assigns different dirty thresh-
olds for each type of task (RT:10%, Iact:5%, Tput:2%).
Addtionally, Redline further restricts this threshold for
best-effort tasks to a constant limit of 2 MB, ensuring that,
no matter the size of main memory, best-effort tasks can-
not fill the compound transactions of some journaling file
systems with large numbers of dirty pages. Finally, Red-
line places the kernel task assigned to manage write opera-
tions for each file system (in Linux, kjournald) an interac-
tive task, ensuring that time-critical transaction operations
are not delayed by other demands on the system.

Block device layer: Much like the journaling file sys-
tems described above, a block device layer may have uni-
fied data structures, thresholds, or policies that are applied
irrespective of the tasks involved. These components are
typically designed to maximize system-wide throughput.
However, the unification performed by these components
may harm the responsiveness of interactive tasks. Redline
addresses these problems by handling these components of
the block device layer on a per-task-type basis.

The Linux block device manager, Complete Fairness
Queuing (CFQ), contains a single request queue of I/O re-
quests from which actual disk operations are drawn. Al-
though this request queue internally organizes I/O requests
into classes (real-time, best-effort, the “idle”), it has a fixed,
maximum capacity. When a task submits a request for a
new I/O operation, the congestion control mechanism ex-
amines only whether the request queue is full—there is no
consideration of the requesting task’s class. If the queue
is full, the submitting task blocks and is placed in a FIFO-
ordered wait-queue. Thus, a best-effort task might rapidly
submit a large number of requests, thus congesting the
block device and arbitrarily delaying some interactive task

5

that requests an I/O operation.
To address this problem, Redline uses multiple request

queues, one per task class. If one of the queues fills, the
congestion control mechanism will only block processes in
the class associated with that queue. Therefore, no mat-
ter how many requests have been generated by best-effort
tasks, those requests alone cannot cause an interactive task
requesting I/O to block.

The default request queue for CFQ is well structured for
differentiating between various request types, but it still
does not provide sufficient isolation for interactive tasks.
Specifically, once a request has been accepted into the re-
quest queue, it awaits selection by the I/O scheduler to
be placed in the dispatch queue, from which it is sched-
uled by a typical elevator algorithm on the disk itself.
This I/O scheduler not only gives preference to requests
based on their class, but also respects the priorities that
tasks assign requests within each class. However, each
buffered write request—the most typical kind—is placed
into the best-effort class, no matter which task submits the
request. Therefore, best-effort tasks may still interfere with
the buffered write requests of interactive tasks by submit-
ting large numbers of buffered write requests.

Redline adds both an Iact and a Tput class to the re-
quest queue management, thus matching its CPU sched-
uler’s classes. All write requests are placed into the appro-
priate request queue class based on the type of the submit-
ting task. The I/O scheduler prefers requests from the Iact
class over those in the Tput class, thus ensuring isolation of
the requests of Iact tasks from Tput tasks.

Additionally, the specification for a task, as described
in Section 3, includes the ability to specify the priority of
the task’s I/O requests; if the specification does not explic-
itly provide this information, then Redline automatically
assigns a higher priority to tasks with shorter deadlines.
Finally, Redline creates a per-task queue within the given
class, allowing the I/O scheduler provide some isolation be-
tween Iact tasks.

Finally, CFQ, by default, does not guard against starva-
tion. A task that submits a low-priority I/O request into
one of the lesser classes may never have that request ser-
viced. Redline modifies the I/O scheduler to ensure that all
requests are eventually served, preventing this starvation.

6 Redline CPU Scheduling
Existing commodity operating systems handle interactive
and best-effort tasks using the same time-sharing sched-
uler. They usually have no admission control to avoid
overloading, and do not provide necessary isolation among
tasks to prevent them from interfering with each other. To
address overloading and interference, Redline extends the
Linux kernel with admission control to prevent accepting
too many interactive tasks, and with load control for quick
recovery from overloads, with a new Earliest Deadline First

(EDF) scheduling class to serve interactive tasks.

6.1 Admission and Load Control

An admission control, ensuring necessary resource is avail-
able to the requesting task, is required by any system that
needs to provide response time guarantees. While general
operating systems have no admission control at all, Real-
time systems perform their admission tests based solely on
specifications. For example, the total reserved bandwidth
must be less then 1.0 when using EDF, and less than 0.69
for RM [19], so that none of the accepted tasks will miss
any of their deadlines. This provides overly strong isolation
for general purpose systems and prohibits many aperiodic
interactive tasks from co-existing in the system and sharing
CPUs effectively. In Redline admission and load control is
based on a different observation: As long as the CPU band-
width consumed by reservations (i.e., by the EDF schedul-
ing class) is not too high, the system will be responsive.
Most of the time users may not even notice the difference.

Therefore, Redline incorporates the actual CPU con-
sumption into its admission control. It attempts to keep
the CPU load consumed by reservations within a controlled
range. It does so using three policy controls: 1) admission
of new EDF-class tasks; 2) revocation of EDF tasks when
there is excessively high load; and 3) reactivating tasks for
EDF service when the load is low. Each control has an
associated load threshold: Rhi for admission, Rmax for re-
vocation, and Rlo for reactivation, where Rmax>Rhi>Rlo.
Roughly speaking, if the load exceeds Rmax, Redline re-
vokes EDF tasks; if the load exceeds Rhi, it stops admit-
ting new EDF tasks; and if the load falls below Rlo, it tries
to reactivate tasks. In addition to using the exponentially
smoothed load average, Rload, Redline also keeps a his-
tory of recent Rload values, to provide information about
variation of the load. In particular, it samples Rload once a
second and keeps the four most recent samples. We chose
a four second observation window as being long enough to
smooth out short bursts, while limiting the period of time
during which Redline’s responsiveness will degrade with-
out the system’s taking aggressive action. We now consider
the details of the three policy controls.

Admission Test: While Rload is a good measure of the
actual load presented by previously admitted tasks, when
admitting a new task, Redline starts with that task’s band-
width specification Bi = Ci/Ti. It maintains a best estimate
of anticipated load, which we call Sload. When it admits
task i, it increments Sload by Bi. However, as newly admit-
ted tasks run, we wish to use their actual load in making
future decisions. Therefore, Redline decays Sload towards
Rload (by a factor of 0.75 each second). Before it admits
task i it compares max(Rload,Sload)+Bi against Rhi, and
admits the task only if that new estimated load is less than
Rhi. Redline also decrements Sload appropriately when
tasks exit. Sload is helpful in preventing Redline from ad-

6

mitting too many new tasks before it sees the actual load
they present (reducing true overcommitment), while Rload
allows Redline to overcommit (compared to the Bi specifi-
cations) effectively.

Once Redline accepts a task, the scheduler activates its
specification, and also selects the memory protection pe-
riod and I/O priority for it (these are discussed in their
respective sections of the paper). It propagates necessary
information to other resource managers, so that they can
handle interactive tasks in a proper manner.

Revocation: Due to Redline’s semi-optimistic admis-
sion control, a CPU may become overloaded when some
interactive tasks running on it suddenly change their be-
havior. Therefore, Redline dynamically revokes tasks if
necessary to keep the CPU bandwidth consumed by reser-
vations under control. In revoking, Redline uses the thresh-
old Rmax>Rhi. Specifically, if the sampled load exceeds
Rmax for every sample in the observation window for a
CPU, Redline revokes tasks on that CPU until Rload falls
below Rhi. In choosing tasks to revoke, Redline prefers
to revoke a task that exhausted its reservation during the
observation window (indicating that the task has become
more CPU-bound and less interactive). However, if there
are no such tasks, Redline revokes the task with the highest
reserved bandwidth. Certain tasks are set to be invulner-
able to revocation to preserve overall system responsive-
ness, namely kernel threads, daemons, Xorg, and the win-
dow/desktop manager.

Reactivation: If all slots in the observation window fall
below Rlo on a CPU, Redline begins reactivating tasks for
EDF scheduling. A task is eligble for reactivation if both
(a) it passes the usual admission test, and (b) its virtual
memory size minus its resident size is less than free mem-
ory currently available (i.e., it will not immediately induce
excessive swapping). We further constrained Redline to re-
activate only one task every period of an observation win-
dow to avoid reactivating tasks too aggressively.

6.2 The EDF Scheduling Algorithm

Recently, Linux adopted a new fair queueing proportional
share scheduler called CFS [21], which Redline extends.
The new EDF scheduler component has its own set of per-
CPU run queues just as the CFS scheduler does. Redline
inserts interactive tasks into the run queues of both the CFS
and EDF schedulers, so that inteactive tasks can receive
extra CPU allocations after using up their entitled reserva-
tion. The EDF scheduling class has precedence over the
CFS scheduling class. During a context switch, Redline
first invokes the EDF scheduler to pick a task from its run
queue. If the EDF scheduler does not select a task, then
Redline invokes the CFS scheduler to pick a task to run.

Redline maintains the following information for each in-
teractive task: the starttime and deadline of the current
reservation period, and entitled computation time left (bud-

get). As a task executes, the EDF scheduler keeps track of
its CPU usage and deducts the amount consumed from bud-
get (at every timer interrupt or context switch). The EDF
scheduler checks whether to assign a new reservation pe-
riod to a task at the following places: when a new task is
initialized, after a task’s budget is updated, and when a task
wakes up from sleep. If the task has consumed its budget or
passes its deadline, the EDF scheduler assigns a new reser-
vation period to the task using the algorithm in Listing 1.

Listing 1 Assign a new reservation period to task p
1: /* has budget, deadline not reached */
2: if (budget > 0) && (now < deadline) then
3: return
4: end if
5: /* has budget, deadline is reached */
6: if (budget > 0) && (now ≥ deadline) then
7: if has no interruptible sleep then
8: return
9: end if

10: end if
11:

12: /* no budget left: assign a new period */
13: dequeue(p)
14: starttime ← max(now,deadline)
15: deadline ← starttime + T
16: budget ← max(budget + C, C)
17: enqueue(p)

A task may reach its deadline before expending the bud-
get (see line 6) for the following reasons: it did not actually
have enough computation work to exhaust the budget in the
past period; it ran into a CPU overload; or it experienced
non-discretionary delays, such as page faults or disk I/O.
The EDF scheduler differentiates these cases by checking
whether the task voluntarily gave up the CPU during the
past period (i.e., had at least one interruptible sleep, see
line 7). If so, the EDF scheduler assigns a new period to the
task. Otherwise, it considers that the task missed a deadline
and pushes its work through as soon as possible.

If a task consumes its budget before reaching the dead-
line, it will receive a new reservation period. But the start
time of this new period is later than the current time (see
line 14). The EDF scheduler considers a task eligible for
using reserved CPU time only if starttime ≤ now. There-
fore, it will not pick this task for execution until its new
reservation period starts. This mechanism prevents a inter-
active task from consuming more than its entitlement and
thereby interfering with other interactive tasks.

At any context switch, the EDF scheduler always picks
for execution the eligible task that has the earliest dead-
line. We implemented its run queue using a tagged red-
black tree similar to the binary tree structure proposed in
EEVDF [29]. The red-black tree is sorted by the start time

7

of each task. Each node in the tree has a tag recording
the earliest deadline in its subtree. The complexity of its
enqueue, dequeue, and select operations are all O(logn),
where n is the number of runnable tasks.

6.3 SMP Load Balancing
Load balancing in Redline is quite simple, because the ba-
sic CPU bandwidth need of a interactive task will be sat-
isfied once it is accepted on a CPU. It is not necessary to
move an accepted task unless that CPU is overloaded. The
only thing Redline has to do is select a suitable CPU for
each new interactive task during calls to exec(). Redline al-
ways puts a new task on the CPU that has the lowest Rload
at the time. Once the task passes the admission test, it stays
on the same CPU as long as it remains accepted. If the CPU
becomes overloaded, Redline will revoke at least one inter-
active task tied to that CPU. Once turned into best-effort
tasks, revoked tasks can be moved to other CPUs by the
load balancer. When a revoked task wakes up on a new
CPU, Redline will attempt to reactivate its specification if
there are adequate resources there.

7 Discussion
In this section, we discuss several design choices for Red-
line, and we address alternatives that may merit further in-
vestigation.

Specification: We believe that using CPU reservations
is a good choice because it does not require precise, a pri-
ori application information. Because Redline’s admission
control takes the current CPU load into account, a user
or system administrator can modestly over-specify a task’s
resource needs. Specifically, a the only danger of over-
specification is that a newly launched task may be rejected
by the admission control if the system is sufficiently loaded
with interactive tasks. Once admitted, an interactive task is
managed according to its real usage.

Because over-specification is reasonably safe, and be-
cause the specifications are simple and lightweight, speci-
fication management should not be an obstacle. A simple
tool could allow a user to experimentally adjust the reser-
vations (both C and T), finding the minimal requirements
for acceptable performance. Redline could also be made
to track and report actual CPU bandwidth usage over time,
allowing fine-tuning of the reservations.

Memory Management: For any task to be responsive,
the operating system must cache its working set in main
memory. Many real-time systems conservatively pin all
pages of a task, preventing their removal from main mem-
ory, to ensure that the working set must be cached. In
contrast, Redline achieves this goal by protecting any page
used by an interactive task within the last π seconds. The
choice of π is important. If it is too small, then pages still
in active use may be evicted, leaving an interactive task un-
able to meet its deadlines. If π is too large, then the VMM

caches some pages after they have fallen into disuse, thus
overestimating the working set size, reducing the number
of interactive tasks that Redline will admit, and underuti-
lizing the system. It is safer to overestimate π, but doing so
makes Redline behave somewhat more like a conservative
real-time system.

This method of identifying the working set works well
under many circumstances with reasonable choices of π.
However, there are other mechanisms that estimate the
working set more accurately. By using such a mechanism,
Redline could avoid both dangers outlined above caused by
setting π poorly.

One such alternative is the working set measurement
used in CRAMM [33]. This system maintains reference
distribution histograms to track each task’s working set on-
line with low overhead and high accuracy. While we be-
lieve that this approach is likely to work well, it does not
guarantee that the working set is always properly identi-
fied. Specifically, when a task performs a phase change,
altering its reference behavior suddenly and significantly,
this mechanism will require a modest period of time to rec-
ognize the change. During this period, both of the prob-
lems described above caused by under- or over-estimating
the working set size would be possible. However, we be-
lieve such behavior is likely to be tolerably transitory in the
vast majority of cases. We intend to integrate the CRAMM
VMM into Redline and evaluate its performance.

8 Experimental Evaluation
In this section, we evaluate the performance of Redline im-
plementation by examining its ability to handle various ex-
treme workloads.

Platform: We perform all measurements on a sys-
tem with a 3.00 GHz Pentium 4 CPU, 1 GB of RAM,
a 40GB FUJITSU 5400RPM ATA notebook disk, and an
Intel 82865G integrated graphic card. The processor em-
ploys symmetric multithreading (SMT) (i.e., Intel’s Hyper-
Threading), thus appearing to the system as two processors.
For L1 caches, the processor has a 12 KB instruction cache
and an 8 KB data cache. The L2 cache is unified and 512
KB. We use a Linux kernel (version 2.6.22.5) patched with
the CFS scheduler (version 20.3) as our control. Redline is
implemented as a patch to this same Linux version. For all
experiments, the screen resolution was set to 1600 x 1200
pixels.

All experiments used all both of the SMT-based virtual
CPU except when measuring the context switch overhead.
Furthermore, we ran each experiment 30 times, taking both
the arithmetic mean and the standard deviation for all tim-
ing measurements.

Application Settings and Inputs: Table 1 shows a sub-
set of the specifications used in Redline. It includes the
init process, kjournald, the X11 server Xorg, KDE’s desk-
top/window manager, the bash shell, and several typical in-

8

teractive applications. We left the memory protection pe-
riod (π) and I/O priority empty in all the specifications, let-
ting Redline choose them automatically.

The movie player, mplayer, plays a 924.3 Kb/s AVI for-
mat video at 25 frames per second (f/s) with a resolution
of 520 x 274. To give the standard Linux system the great-
est opportunity to support these interactive tasks, we set
mplayer, firefox, and vim to have a CPU scheduler prior-
ity of -20—the highest priority possible. Note that a pes-
simistic admission test would not accept all of the applica-
tions in Table 1 because they would overcommit the sys-
tem. Redline, however, accepts these and many other of
interactive tasks for these experiments.

C:T (ms) C:T (ms)
init 2:50 kjournald 10:100

Xorg 15:30 kdeinit 2:30
kwin 3:30 kdesktop 3:30
bash 5:100 vim 5:100

mplayer 5:30 firefox 6:30

Table 1: A subset of the specifications used in the Redline
experiments.

8.1 CPU Scheduling
Scheduler Overhead: We compare the performance of

the Redline EDF scheduler with the Linux CFS scheduler.
Figure 3(a) presents the context switch overhead for each
scheduler as reported by lmbench. From 2 to 96 processes,
the context switch time for both schedulers is exceedingly
comparable.

However, when lmbench measures context switching
time, it creates a workload in which exactly one task is un-
block and ready to run at any given moment. This charac-
teristic of lmbench may be unrepresentative of some work-
loads, so we further compare these schedulers by running
multiple busy-looping tasks, all of which would be ready
to run at any moment. We tested workloads of 1, 20, 200,
and 2,000 tasks. We perform this test twice for Redline,
launching best-effort tasks to test its CFS scheduler, and
launching interactive tasks to testi its EDF scheduler. In
the latter case, we assigned specification values for C:T as
1:3, 1:30, 1:300 and 1:3000 respectively, thus forcing the
Redline EDF scheduler to perform a context switch almost
every millisecond. Note that with these specification val-
ues, the Redline EDF scheduler is invoked more frequently
than a CFS scheduler would be, running roughly once per
millisecond (whereas the usual Linux CFS quanta is 3 ms).

The number of loops are chosen so that each run takes
approximately 1,400 seconds. Figure 3(b) shows the mean
total execution time of running these groups of tasks with
Linux CFS, Redline CFS, and Redline EDF. In the worst
case, the Redline EDF scheduler adds 0.54% to the running
time, even when context switching far more frequently than

the CFS schedulers. Note that the total execution time of
these experiments was bimodal and, as shown by the error
bars, thus making the variance in running times is larger
than the difference between the results.

Fork Bombs: We now evaluate the ability of Redline
to maintain the responsiveness of interactive tasks. First,
we launch mplayer as an interactive task, letting it run for a
few seconds. Then, we simulataneously launch many CPU-
intensive tasks, thus performing a fork bomb. Specifically,
a task forks a fixed number of child tasks, each of which ex-
ecutes an infinite loop, and then kills them after 30 seconds.
We performed two tests for Redline: the first runs the fork
bomb tasks as best-effort, and the second runs them as in-
teractive. In the latter case, the fork bomb tasks were given
CPU bandwidth specifications of 10:100. For the Linux
test, the interactive task had the highest possible priority (-
20), while the fork bomb tasks were assigned the default
priority (0).

Figure 4 shows the number of frames rate of achieved
by mplayer during the test. In Figure 4(a), the fork bomb
comprises 50 tasks, while Figure 4(b) shows a 2,000 task
fork bomb. In Redline, a fork bomb can be best-effort or in-
teractive. Under Linux with 50 tasks, mplayer begins nor-
mally. After approximately 10 seconds, the fork bomb be-
gins and mplayer receives so little CPU bandwidth that its
frame rate drops nearly to zero. Amusingly, after the fork
bomb terminates at the 40 second mark, mplayer “catches
up” by playing frames at more than triple the normal rate.
For Linux, the 2,000-task fork bomb has the identical ef-
fect on mplayer. The load is so high that even the fork
bomb’s parent task is unable to kill all of the children after
30 seconds. In fact, the whole Linux system becomes unre-
sponsive, with simple like moving the mouse and switching
between windows becoming so slow that human interven-
tion is impossible.

In Redline, these fork bombs, whether run as best-effort
or interactive tasks, have a negligible impact on mplayer.
Only the 2,000 task interactive fork bomb briefly degrades
the frame rate to 20 f/s, which is a barely perceptable ef-
fect. This brief degradation is caused by the 1 ms period
that Redline gives to each newly forked task before per-
forming an admission test, leaving the system temporarily
overloaded.

Competing Interactive Tasks: In order to see how in-
teractive tasks may affect each other, we launch mplayer,
and then we have a user to drag a window in a circle for 20
seconds. Figure 5 shows that under Linux, moving a win-
dow has substantial impact on mplayer. Because we use a
high screen resolution and a weakly powered graphics card,
Xorg requires a good deal of CPU bandwidth to update the
screen. However, the CFS scheduler gives the same CPU
share to all runnable tasks, allowing the window manager
to submit screen update requests faster than Xorg can pro-
cess them. When mplayer is awakened, it has to wait until

9

Figure 3: An evaluation of CPU scheduling overhead. Figure (a) shows the context switching times as evaluated by
lmbench. Figure (b) shows the total running time of varying numbers of CPU intensive tasks.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60

F
ra

m
es

 p
er

 S
ec

on
d

(f
ps

)

Elapsed Time (Seconds)

(a) Impact of a 50 process fork bomb on mplayer

Linux CFS: BE bomb
Redline: BE bomb
Redline: Iact bomb

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200

F
ra

m
es

 p
er

 S
ec

on
d

(f
ps

)

Elapsed Time (Seconds)

(b) Impact of a 2000 process fork bomb on mplayer

Linux CFS: BE bomb
Redline: BE bomb
Redline: Iact bomb

Figure 4: Playing a video and launching fork bombs of (a) 50 or (b) 2,000 (b) tasks.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35 40 45

F
ra

m
es

 p
er

 S
ec

on
d

(f
ps

)

Elapsed Time (Seconds)

Impact of moving a window on mplayer

Linux CFS
Redline

Figure 5: Playing video while dragging around a window.

all other runnable tasks to make enough progress before it
is scheduled for execution. Moreover, its requests are in-
serted at the end of Xorg’s backlogged service queue. Con-
sequently, the frame rate of mplayer becomes quite erratic
as it falls behind and then tries to catch up by submitting a
group of frame updates in rapid succession.

In Redline, mplayer plays the movie smoothly no matter
how quickly we move the window, even though Xorg and
all of the tasks comprising the GUI are themselves inter-
active tasks. We believe that because Xorg effectively gets
more bandwidth (50% reserved plus proportional sharing
with other tasks), and the EDF scheduler makes mplayer
add its requests into Xorg’s service queue earlier.

8.2 Memory Management

Memory Bomb: We simulate a workload that has a
high memory demand (memory pressure) by using a mem-
ory bomb. This experiment forks four child tasks, each of
which allocates 300 MB of heap space and then repeatedly
writes to each page in an infinite loop. For Redline, we per-
form two experiments where the first launches the memory
bomb as best-effort tasks, and the second launches them as
interactive ones. In the latter case, we use a specification of
10:100 for the memory bomb tasks.

The upper part of Figure 6(a) shows, for Linux, the frame
rate for mplayer over time with the memory bomb tasks
running. The frame rate is so erratic that movie is unwatch-
able. Both video and audio to pause periodically. The
memory bomb forces the VMM to swap out many pages

10

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160

F
ra

m
es

 p
er

 S
ec

on
d

Elapsed Time (Seconds)

Redline: BE bomb
Redline: Iact bomb

 0

 10

 20

 30

 40

 50

 60
F

ra
m

es
 p

er
 S

ec
on

d

Impact of a 4x300MB memory bomb on mplayer

Linux: BE bomb

 118 118.5 119 119.5 120

Elapsed Time (Seconds)

When each frame is played during (118, 120)

Linux: BE bomb
Redline: BE bomb
Redline: Iact bomb

Figure 6: Playing video with 4 x 300 MB memory bomb tasks. The frame rate is severely erratic under Linux, but is steady
under Redline.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120

F
ra

m
es

 p
er

 S
ec

on
d

Elapsed Time (Seconds)

Redline: Iact bomb: run2

 0

 10

 20

 30

 40

 50

 60

F
ra

m
es

 p
er

 S
ec

on
d

Uncontrolled reserve: 4x300MB interactive memory bomb

Redline: Iact bomb: run1

Figure 7: Playing a movie with 4 x 300 MB interactive
memory bomb tasks on a Redline system without the rate
controlled memory reserve.

used by GUI applications, making the system as a whole
unresponsive. Although it appears that the erratic frame
rate settles somewhat at around the 80 second mark, Fig-
ure 6(b) shows the time at which each frame is played dur-
ing the period from second 118 to second 120. We see that
although the overall frame rate during this period is within
a normal range, frames are displayed in bursts, still leaving
the user with an undesirable experience.

As shown by the lower part of Figure 6(a), under Red-
line, mplayer successfully survives both the best-effort and
interactive memory bomb. Each of them only leads to one
brief distruption of the frame rate (less than 3 seconds),
which the user will notice but is likely to tolerate. The sys-
tem remains responsive, allowing the user to carry out GUI
operations and interact as usual.

The Rate Controlled Reserve: In order to demonstrate
the importance of the rate controlled reserve, we remove
it from Redline and repeat the interactive memory bomb

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120

rs
s

(M
B

)

Elapsed Time (Seconds)

Redline background: BE
foreground: Iact (10:100)

 0

 100

 200

 300

 400

 500

 600

rs
s

(M
B

)

Running two 500MB working set processes

Redline

Linux background: BE
foreground: BE (-20)

Figure 8: Competing memory bomb tasks. Under Linux,
the lower-priority background task prevents the higher-
priority foreground task from caching its working set.

experiment. Figure 7 shows how mplayer behaves in two
different runs. In the first, memory demanding interac-
tive tasks quickly exhaust the free memory, forcing others
tasks to reclaim pages when allocating memory. Therefore,
mplayer is unable to maintain its frame rate. At approxi-
mately the 90 second mark, the Redline VMM finally de-
motes an interactive task to the best-effort class, and then
the frame rate of mplayer stabilizes. Depending on when
and which tasks the Redline VMM chooses to revoke, the
interactive memory bomb can prevent the system from be-
ing responsive for a long period of time. Here, more than
one minute passes before responsiveness is restored. Thus,
the limited isolation among interactive tasks provided by
this small rate controlled reserve is crucial to the system’s
responsiveness.

Booking: To examine the effectiveness of Redline’s
page booking mechanism, we first start one 500 MB mem-
ory bomb task. After a few seconds, we launch a second

11

500 MB memory bomb. Under Linux, we set this sec-
ond task’s priority to be -20. Under Redline, we launch it
as an interactive task whose specification is set to 10:100.
Figure 8 presents the resident set sizes (RSS)—the actual
number of cached pages—for each task over time. Under
Linux, the second task, in spite of its high priority, is never
allocated its complete working set of 500 MB. Here, the
first task dirties pages too fast, preventing the Linux VMM
from ever reallocating page frames to the higher priority
task. In contrast, under Redline, the second task is quickly
allocated space for its full working set, stealing pages from
the first, best-effort task.

8.3 Disk I/O Management

Finally, we examine the effectiveness of Redline’s disk I/O
management by running disk I/O intensive tasks.

Writing: For disk writing experiments, we launch two
background tasks meant to interfere with responsiveness.
Specifically, each repeatedly writes to an existing, 200 MB
file using buffered writes. Additionally, we use vim to per-
form small, sporadic write requests and iowrite to perform
large write requests. It is the responsiveness of these two
applications in the presence of the two background tasks
that we measure.

We modified vim to report the elapsed time for invok-
ing its write command, and we use it to save a 30 KB file.
Additionally, iowrite reports the time needed to write 100
MB to a file in buffered write mode. Each of these task is
set to the highest priority (-20) under Linux, while each is
launched as an interactive task with a specification of 5:100
under Redline.

For Linux, when vim writes using BW, each transac-
tion in the journaling file system is heavily loaded with
dirty pages from the background tasks. Thus, the call to
fsync() performed by vim causes it to block a mean of
28 seconds. Under Redline, the reduced dirty threshold for
best-effort tasks forces the system to flush the dirtied pages
of the background task more frequently. When vim calls
fsync(), the transaction commited by the journaling file sys-
tem takes much less time because it is much smaller, requir-
ing a mean of only 2.5 seconds.

Reading: We play a movie using mplayer in the fore-
ground while nine background tasks consume all of the disk
bandwidth. Each background task reads 100 MB from disk
in 20 MB chunks using direct I/O (bypassing the file system
cache). Figure 9 shows the number frame rate of mplayer
over time for both Linux and Redline. Under Linux, the
heavy contention for I/O bandwidth the frame rate to be
severely degraded and erratic. Here, mplayer blocks fre-
quently for data being transferred from disk. Redline solves
this problem by automatically assigning higher I/O priori-
ties to interactive tasks. Under Redline, the frame rate is
not at all degraded.

 0

 10

 20

 30

 40

 50

 60

 20 40 60 80 100 120 140 160

F
ra

m
es

 p
er

 S
ec

on
d

(f
ps

)

Elapsed Time (Seconds)

Impact of large disk reads on mplayer

Linux CFQ
Redline

Figure 9: The impact of massive reads on mplayer.

9 Related Work

We now briefly discuss the previous efforts in areas that are
related with Redline. Table 2 summaries the characteris-
tics of several representive CPU schedulers and operating
systems, and compares them with Redline.

CPU Scheduling: Neither time-sharing schedulers (e.g.
used by Linux, FreeBSD, Solaris, Windows) or propor-
tional share schedulers [11, 32, 28, 29, 23] that simulate
the ideal GPS model [25] have adequate support for ad-
dressing response time reqirements. Heuristics are often
applied to handle interactive tasks better, which makes the
approaches ad-hoc. For instance, Window Vista boosts the
priorities of tasks in its newly introduced MM CLASS into
real time region (16–30). Furthermore, the CPU bandwidth
received by each task is relative, and thus there is no per-
formance isolation among taks. Hierarchical SFQ [11] par-
tially solves this problem by dividing tasks into classes. A-
SFQ [27] dynamically adjusts the weights to retain stable
CPU bandwidth for the class serving soft real-time tasks.
BVT [9] and BERT [3] achieve the similar goal by adjust-
ing virtual time or deadline. BEST [1] and SMART [22]
incorporate EDF algorithm into proportional share sched-
ulers.

Real time systems often use pessimistic admission con-
trol and enforcement mechanism to ensure strict perfor-
mance guarantees. Deng et al. [7] and PSheED [18] pro-
vide a uniformly slower processor abstraction using EDF
based schedulers. Each real time task is executed as if it is
on a slower processor. The schedulers restrict each task to
use no more than its assigned bandwidth, and thus are not
work conserving. The CPU reservations mechanism used
by Redline can be implemented in various ways. Neme-
sis [17] and CPU service class [6] use EDF, Linux/RK [24]
uses RM, the scheduler by Lin et al. [12] is table driven, and
Rialto [16] assigns CPU time intervals using a tree-based
data structure. Intended to provide strict guarantees, these
schedulers perform admission test based on task specifica-

12

Admission Performance isolation Intg. Mgmt. Without
control interclass intraclass mem I/O app. mod.

Stride [32],EEVDF [29], VTRR [23],PD [28] × × × √
SFQ [11], A-SFQ [27] × strong × √

CPU BVT [9], BERT [3] × strong weak ×
Scheduler BEST [1] × weak weak

√
SMART [22] × strong strong ×
PSheED [18], Deng et al. [7] pessimistic strict strict ×
Linux, FreeBSD, Solaris, Windows × × × × × √
Solaris Container [20], Eclipse [4], SPU [31] × strong × √ √ √

Operating QLinux [30] × strong × × √ √
Systems Linux-SRT [5] pessimistic strong × × √ ×

Rialto [16] pessimistic strict strict × √ ×
Nemesis [17] pessimistic strict strict × √ ×
Redline load based strong dynamic

√ √ √

Table 2: A comparison of CPU schedulers and operating sytems to Redline

tions, which seriously limits the number of response time
tasks they can simultaneously support. While Redline uses
a semi-optimistic admission test combined with a dynamic
load control to accommodate as many periodic and aperi-
odic tasks as possible.

Memory Management: Windows virtual memory man-
ager adopts a per-process working set model. It uses a ker-
nel thread to take pages away from a process’s working set
either periodically or in the face of memory pressure. In
Zhou et al. [34], virutal memory manager maintains a miss
ratio curve for each process and evicts pages from the pro-
cess that incurs the least penalty. Token-ordered LRU [15]
allows one task in the system to hold the token for a pe-
riod of time and build up its working set. CRAMM [33]
and Bookmark GC [13] use operating system support for
garbage collected applications to avoid page swapping.
However, None of them offer enough protection for the
working sets of interactive applications.

Disk I/O Management: Traditional disk I/O subsys-
tems are designed to maximize the overall throughput, not
response time. The widely used SCAN (Elevator) algo-
rithm sorts I/O requests by sector number to avoid unnec-
essary seeks. Anticipatory I/O [14] improves throughput
even further by delaying I/O service so it can batch a num-
ber of I/O requests. I/O schedulers developed for soft real
time systems, such as R-SCAN in Nemesis [17], Cello in
QLinux [30] and DS-SCAN in IRS [10], have more precise
control over I/O bandwidth, and could be incorporated with
Redline for better guarantees. But ensuring better respon-
sive time involves more than the I/O scheduler.

Integrated Resource Management: Similar to Red-
line, Nemesis [17], Rialto [16] and Linux-SRT [5] uses
CPU reservations to provide response time guarantees and
have specialized I/O schedulers. But their pessimistic ad-
mission tests makes them less capable of handling a large
amount of aperiodic tasks with unpredictable workloads.
Nemesis allocates a certain amount of physical memory to

each task according to its contract and let task manage them
(Self-Paging). Rialto simply locks pages for real time tasks.
QLinux [30] divides tasks into classes and uses a hierarchi-
cal SFQ scheduler to manage CPU and network bandwidth
and Cello as its I/O scheduler. None of them has truly inte-
grated memory management.

Solaris Container [20] is the combination of system re-
source control and the boundary seperation provided by
zones. Each zone is configured to have dedicated amount
of resources and act as a completey isolated virtual server.
Eclipse [4] and SPU [31] follow the similar approach. They
are desgined for providing high level isolation (e.g., users,
application groups) by partitioning resources, not for re-
sponsiveness.

Aiming for providing real time service to multiple
clients, IRS [10] and Resource Container [2] also provide
integrated management of multiple resources (memory is
not included in IRS). However, they require all activities
in the system to be completely self resource aware, which
makes them too restrictive for general purpose operating
systems. Furthermore, most of these systems require mod-
ifications to existing applications while Redline does not.

10 Conclusion

We present Redline, a system designed to support highly
interactive applications in a commodity operating system
environment. Redline combines lightweight specifications
with an integrated management of memory, disk I/O, and
CPU resources that delivers responsiveness to interactive
applications even in the face of extreme workloads.

The Redline system (built on Linux) is open-
source software and may be downloaded at
http://www.cs.umass.edu/˜tingy/
Projects/Redline/Redline.htm.

13

11 Acknowledgements
This material is based upon work supported by the Na-
tional Science Foundation under CAREER Award CNS-
0347339 and CNS-0615211. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

References
[1] S. A. Banachowski and S. A. Brandt. Better real-time response for

time-share scheduling. In Proc. of the 11th WPDRTS, page 124.2,
2003.

[2] G. Banga, P. Druschel, and J. C. Mogul. Resource containers: A
new facility for resource management in server systems. In Proc. of
the 3rd OSDI, pages 45–58, 1999.

[3] A. Bavier, L. Peterson, and D. Mosberger. BERT: A scheduler for
best effort and realtime tasks. Technical Report TR-587-98, Prince-
ton University, 1999.

[4] J. Bruno, E. Gabber, B. Özden, and A. Silberschatz. The Eclipse
operating system: Providing quality of service via reservation do-
mains. In Proc. of the 1998 USENIX, pages 235–246, 1998.

[5] S. Childs and D. Ingram. The Linux-SRT integrated multimedia
operating system: Bringing QoS to the desktop. In Proc. of the 7th

RTAS, pages 135–140, 2001.

[6] H.-H. Chu and K. Nahrstedt. CPU service classes for multimedia
applications. In Proc. of the 6th ICMCS, Vol. 1, pages 296–301,
1999.

[7] Z. Deng, J. Liu, L. Y. Zhang, M. Seri, and A. Frei. An open environ-
ment for real-time applications. Real-Time Systems, 16(2-3):155–
185, 1999.

[8] P. J. Denning. The working set model for program behavior. In Proc.
of the 1st SOSP, pages 15.1–15.12, 1967.

[9] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (BVT)
scheduling: Supporting latency-sensitive threads in a general-
purpose schedular. In Proc. of the 17th SOSP, pages 261–276, 1999.

[10] K. Gopalan and T. Chiueh. Multi-resource allocation and scheduing
for periodic soft real-time applications. In Proc. of the 9th MMCN,
pages 34–45, Berkeley, CA, 2002.

[11] P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU scheduler
for multimedia operating systems. In Proc. of the 2nd OSDI, pages
107–121, Seattle, WA, 1996.

[12] C. han Lin, H. hua Chu, and K. Nahrstedt. A soft real-time schedul-
ing server on the Windows NT. In Proc. of the 2nd USENIX Windows
NT Symposium, pages 149–156, 1998.

[13] M. Hertz, Y. Feng, and E. D. Berger. Garbage collection without
paging. In Proc. of the 2005 PLDI, pages 143–153, 2005.

[14] S. Iyer and P. Druschel. Anticipatory scheduling: A disk scheduling
framework to overcome deceptive idleness in synchronous I/O. In
Proc. of the 18th SOSP, pages 117–130, 2001.

[15] S. Jiang and X. Zhang. Token-ordered LRU: an effective page re-
placement policy and its implementation in Linux systems. Perform.
Eval., 60(1-4):5–29, 2005.

[16] M. B. Jones, D. L. McCulley, A. Forin, P. J. Leach, D. Rosu, and
D. L. Roberts. An overview of the Rialto real-time architecture. In
Proc. of the 7th ACM SIGOPS European Workshop, pages 249–256,
1996.

[17] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden. The design and implementation of
an operating system to support distributed multimedia applications.
IEEE Journal on Selected Areas in Communications, 14(7):1280–
1297, 1996.

[18] G. Lipari, J. Carpenter, and S. K. Baruah. A framework for achiev-
ing inter-application isolation in multiprogrammed hard real-time
environments. In Proc. of the 21st RTSS, pages 217–226, 2000.

[19] C. L. Liu and J. W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of ACM,
20(1):46–61, 1973.

[20] J. Mauro and R. McDougall. Solaris Internal: Core Kernel Compo-
nents. Sum Microsystems Press, A Prentice Hall Title, 2000.

[21] I. Molnar. http://people.redhat.com/mingo/cfs-scheduler/.

[22] J. Nieh and M. S. Lam. SMART: A processor scheduler for multi-
media applications. In Proc. of the 15th SOSP, page 233, 1995.

[23] J. Nieh, C. Vaill, and H. Zhong. Virtual-Time Round-Robin: An
O(1) proportional share scheduler. In Proc. of the 2001 USENIX,
pages 245–259, 2001.

[24] S. Oikawa and R. Rajkumar. Portable RK: A portable resource ker-
nel for guaranteed and enforced timing behavior. In Proc. of the 5th

RTAS, pages 111–120, 1999.

[25] A. K. Parekh and R. G. Gallager. A generalized processor sharing
approach to flow control in integrated services networks: the single
node case. In Proc. of IEEE INFOCOM, 1992.

[26] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Analysis and Evolution of Journaling File Systems. In Proc. of the
2005USENIX, pages 105–120, 2005.

[27] M. A. Rau and E. Smirni. Adaptive CPU scheduling policies for
mixed multimedia and best-effort workloads. In Proc. of the 7th

MASCOTS, page 252, Washington, DC, 1999.

[28] A. Srinivasan and J. H. Anderson. Fair scheduling of dynamic task
systems on multiprocessors. Journal of System Software, 77(1):67–
80, 2005.

[29] I. Stoica and H. Abdel-Wahab. Earliest eligible virtual deadline first
: A flexible and accurate mechanism for proportional share resource
allocation. Technical Report TR-95-22, Old Dominion University,
1995.

[30] V. Sundaram, A. Chandra, P. Goyal, P. J. Shenoy, J. Sahni, and H. M.
Vin. Application performance in the QLinux multimedia operating
system. In Proc. of the 8th ACM Multimedia, pages 127–136, 2000.

[31] B. Verghese, A. Gupta, and M. Rosenblum. Performance isolation:
Sharing and isolation in shared-memory multiprocessors. In Proc.
of the 8th ASPLOS, pages 181–192, 1998.

[32] C. A. Waldspurger and W. E. Weihl. Stride scheduling: Determinis-
tic proportional-share resource management. Technical Report TR-
528, MIT Laboratory of CS, 1995.

[33] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. CRAMM:
Virtual memory support for garbage-collected applications. In Proc.
of the 7th OSDI, pages 103–116, 2006.

[34] P. Zhou, V. Pandy, J. Sundaresan, A. Raghuraman, Y. Zhou, and
S. Kumar. Dynamic tracking of page miss ratio curves for memory
management. In Proc. of the 11th ASPLOS, pages 177–188, Boston,
MA, Oct. 2004.

14

