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Abstract
Memory leaks remain a significant challenge for C and C++ devel-
opers. Leaky applications become slower over time as their work-
ing set grows, triggering paging, and can eventually become un-
responsive. At the same time, memory leaks remain notoriously
difficult to debug, and comprise a large number of reported bugs in
mature applications. Existing approaches like conservative garbage
collection can only remedy leaks of unreachable objects. In addi-
tion, they can impose unacceptable runtime or space overheads, or
cause legal C/C++ applications to fail or retain excessive memory.

This paper presents Plug, a runtime system for C/C++ appli-
cations that allows applications to deliver high performance in the
face of both reachable and unreachable memory leaks. It uses a
novel heap layout that isolates leaked objects from non-leaked ob-
jects, allowing them to be completely paged out to disk. Plug fur-
ther reduces the space impact of leaks by employing virtual com-
paction, an approach that leverages virtual memory primitives to
allow physical memory compaction without moving objects. We
demonstrate Plug’s low overhead and its effectiveness at tolerating
real memory leaks.

1. Introduction
Memory leaks continue to plague the developers of applications
written in C and C++. They continue to be one of the most com-
mon types of reported bugs, even for mature projects. For exam-
ple, in the first two months of 2008, over 150 memory leak bugs
were reported in the Firefox browser [27]. While memory debug-
ging tools like Purify [11] and Valgrind [28] can help programmers
detect these errors in short-lived applications, these bugs are notori-
ously difficult to detect and debug in long-running applications like
servers or web browsers.

Although memory leaks can eventually lead to memory exhaus-
tion, their primary symptom is performance degradation. Leaks
cause an application’s working set to grow as the program runs.
If the program runs long enough, this increased working set size
eventually exceeds available physical memory, triggering paging.
The resulting thrashing of pages between main memory and swap
space can make applications unresponsive.
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While conservative garbage collection [6] has been used to com-
bat memory leaks in deployed C/C++ applications, it is not a com-
plete solution. First, garbage collection can impose significant run-
time and memory overhead [14], making it unsuitable for many ap-
plications. Second, conservative garbage collection can cause legal
C/C++ programs to fail or exhibit unbounded memory consump-
tion [2, 4, 5, 15]. Critically, even when garbage collection does
not compromise performance or correctness, it can not resolve all
memory leaks. A garbage collector can only reclaim objects whose
last reference has been removed. If the objects remain reachable, a
garbage collector cannot reclaim them.

This paper makes the following contributions:

1. It presents Plug, a runtime system for C/C++ that tolerates
memory leaks. Unlike garbage collection, Plug does not impose
significant runtime or memory overhead, and allows applica-
tions to tolerate leaks regardless of whether the leaked objects
are reachable.

2. It introduces two new allocation algorithms that form the basis
of Plug: (1) context-sensitive memory allocation and (2) age-
segregated memory allocation.

3. It introduces virtual compaction, a memory management al-
gorithm that leverages standard virtual memory primitives to al-
low the compaction of objects in physical memory while retain-
ing their original locations in virtual memory, making it suitable
for C and C++.

We demonstrate Plug’s low overhead and effectiveness across
a suite of standard benchmarks and applications with real memory
leaks. For non allocation-intensive workloads, Plug imposes low
runtime (3% across the SPECint benchmark suite) and memory
overhead, while effectively eliminating the impact of memory leaks
on application working sets (reducing them by up to 55%).

2. Overview
Plug relies on a memory allocator that isolates hot objects from
leaked objects so that leaks do not increase the application’s work-
ing set size. Because C and C++ do not permit object relocation,
the only way to separate hot objects from leaked (and thus cold)
objects is at allocation time.

Plug’s allocator works by segregating objects along two differ-
ent axes. First, Plug uses a context-sensitive allocation strategy:
it uses the calling context of malloc calls to segregate objects
from different allocation sites onto different pages. Because mem-
ory leaks typically affect objects from a small number of allocation
sites, this segregation precludes most objects from ever being allo-
cated on the same page as a future leak.



Plug combines this context-sensitive allocation with an age-
segregated memory allocator. Age segregation ensures that all ob-
jects on the same page are of the same age, as measured by al-
location time. Eventually, as the program frees non-leaked objects,
leaked objects will be isolated on their own pages. Once these pages
become cold, they will get paged out to disk, and never be touched
again.

Plug further refines these algorithms to reduce the risk of exces-
sive fragmentation. First, Plug performs per-allocation site segrega-
tion only for sites that are the source of a large number of objects.
This approach prevents the worst-case of having a page allocated
to hold a single small object allocated from each call site. Notice
that this policy does not impair Plug’s leak tolerance: by definition,
sites that allocate few objects cannot be the source of significant
memory leaks.

In addition, Plug performs virtual compaction, a novel tech-
nique that allows the compaction of physical memory without the
need to move objects (which C and C++ do not permit). Virtual
compaction retains segregation within virtual address space, while
significantly reducing the physical fragmentation of the heap. Thus,
virtual compaction can reclaim a substantial amount of physical
memory when a small number of live (leaked) objects are spread
across a number of pages.

Finally, Plug performs lightweight tracking of reference infor-
mation to ensure that Plug compacts only pages with cold objects,
ensuring that hot objects are not mixed with potential leaks.

While no system can stop leaks from eventually exhausting
available address space (especially on 32-bit systems) or available
swap space on disk, Plug can prevent leaks from degrading appli-
cation performance and thus keep applications running longer and
more efficiently.

Outline
The rest of this paper is organized as follows. Section 3 describes
Plug’s segregating allocator in detail. Section 4 describes the vir-
tual compaction mechanism Plug uses to reduce memory overhead.
Section 5 describes the limitations of leak tolerance, and of Plug in
particular. Section 6 empirically evaluates Plug’s runtime and mem-
ory overheads and leak toleration. Section 7 presents an overview
of related work, Section 8 presents directions for future work, and
Section 9 concludes.

3. Plug Heap Structure
Plug tolerates memory leaks by preventing objects that are still in
use from sharing pages with leaked objects. If leaked objects share
no pages with application data, they cannot increase an applica-
tion’s working set, and thus will not degrade application perfor-
mance.

While garbage-collected languages like Java support moving
garbage collection [16], C’s and C++’s direct access to memory ad-
dresses precludes object relocation. Thus, the only way to prevent
leaked objects from mixing with live objects is to separate them at
allocation time.

To achieve this separation, Plug uses a novel memory manager
that segregates objects a priori. Figure 1 presents an overview of
Plug’s memory manager, which segregates objects by two dimen-
sions: allocation sites (the calling context that ends in malloc or
new) and age (in allocation time).

3.1 Allocation-Site Segregation
Previous research has shown that objects allocated from the same
call site tend to exhibit similar behavior and lifetime patterns [32].
To isolate leaks, Plug segregates objects by associating a sepa-
rate heap with each allocation site. Plug identifies these sites with
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Figure 1. Plug’s context-sensitive heap structure, which segregates
allocation requests by allocation site once the number of live ob-
jects exceeds a fixed threshold (see Section 3.1).

1 void * plugmalloc (size_t size) {
2 // compute hash of calling context.
3 int context = getContextHash();
4 Metadata * m = getMetadata(context);
5 // one more object allocated.
6 m->liveCount++;
7 // use the age-segregated heap to
8 // satisfy the request, if possible.
9 if (m->getAgeSegHeap() != NULL) {

10 return m->getAgeSegHeap()->malloc (size);
11 } else if (m->getLiveCount() >= 64) {
12 // make a new heap.
13 m->initAgeSegHeap();
14 return m->getAgeSegHeap()->malloc (size);
15 } else {
16 // still below threshold:
17 // get memory from standard allocator.
18 return phkmalloc_with_header (size,
19 context);
20 }
21 }

Figure 2. Pseudo-code for Plug’s allocation-site segregated
malloc.

1 void plugfree (void * ptr) {
2 // check pointer validity.
3 if (!isFromPlugHeap(ptr)) {
4 int context = getHeader(ptr);
5 Metadata * m = getMetadata(context);
6 m->liveCount--;
7 // return to standard allocator.
8 phkfree_with_header (ptr);
9 } else {

10 void * page = ptr & ˜(PAGE_SIZE-1);
11 PageEntry * entry = pageMap(page);
12 entry->free (ptr);
13 }
14 }

Figure 3. Pseudo-code for Plug’s allocation-site segregated free.

bounded context sensitivity (the last four functions on the call
stack).

Each heap then uses a distinct set of pages to satisfy allocation
requests from that site. This segregation helps to prevent the inter-
mingling of objects from sites that produce hot objects with those
that produce cold or leaked objects.



The result is that pages tend to fall into two classes: those
that contain all cold objects, which can be swapped to disk with
little performance penalty, or mostly hot objects, which increases
the page-level spatial locality of the heap. Contrast this separation
with the behavior of conventional memory allocators, which do not
perform per-call site segregation and thus can end up with a single
hot object on a page filled with cold or leaked objects.

Limiting Memory Overhead
Most applications have a large number of dynamic allocation sites.
For example, Firefox allocates from approximately 14,000 sites
during most runs. However, most sites produce relatively few ob-
jects, especially those that correspond to Firefox’s initialization
phase. Allocating an entire page to hold a few small objects wastes
memory.

To reduce this memory overhead, Plug instantiates a new heap
only for a site when the number of live objects from that site reaches
64. Plug adds an extra header word to each object in its default heap
to track the allocation site of each object. When objects are freed,
Plug decrements the live count for the object’s initial allocation site.

At allocation time, Plug uses a hash table to map each allocation
site to a metadata entry (line 4 of Figure 2), which tracks statistics
including the total allocation count for the site. As long as the total
live count for that site remains below 64, Plug allocates object
requests directly from a conventional heap (line 18). Plug uses
PHKmalloc [18] as its default allocator. Otherwise, it instantiates
a separate heap for that site (line 13), using it for all subsequent
allocations from that site. This approach filters out sites that only
produce a small number of objects, since these sites cannot be
sources of substantial memory leaks.

3.2 Age-Based Segregation
While call site segregation is a heuristic that can help separate
objects with similar behavior, it does not guarantee that a call site
will only generate objects that are either mostly cold or mostly hot.

Plug departs further from conventional heap layouts by isolating
objects by age, as measured in allocation time. The key insight
is the following: leaked objects by definition are never reclaimed,
and thus become older and older as program execution continues.
Keeping old objects separate from newer objects thus prevents
leaks from intermingling with newer, potentially hot objects.

Plug separates young from old objects in what we call an age-
segregated heap. Each age-segregated heap is itself a segregated-
fits allocator [38] organized as a collection of pages. Each page
is an array of fixed-sized object slots (see Figure 4). Each heap
contains a list of pages for each size class (powers of two, ranging
from 16 to 2048 bytes), plus a special bin for larger objects.

Plug satisfies allocation requests by bumping a pointer through
the currently active page for the appropriate size class (line 26 of
Figure 5). When an active page is filled, Plug maps a fresh (empty)
page and uses it for subsequent allocations (lines 11–18). Free
operations decrement the population count for the appropriate page
(line 3 of Figure 6). Plug only reuses memory on a page when the
population count for a page drops to zero and the bump pointer
has reached the end of the page (lines 5–8). If the page less than
half live, Plug adds it to the aging queue for virtual compaction,
described in Section 4 (lines 9–12).

Plug assigns one metadata structure for each allocated page.
This structure contains three elements: (1) the bump pointer, used
for allocation from non-full pages; (2) the total number of live
objects, which lets Plug free pages when their population drops to
zero; and (3) a bitmap that tracks which slots contain live objects,
used by Plug’s virtual compaction algorithm. Plug uses a two-
level page table structure to map page addresses to metadata.
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Figure 4. Plug’s age-segregated heap (see Section 3.2).

1 void * AgeSegHeap::malloc (size_t size) {
2 if(size > PAGE_SIZE/2)
3 return allocWithMmap(size);
4

5 int c = computeSizeClass (size);
6 Heap * h = getHeapFromClass (c);
7

8 if (!h->activePage ||
9 h->activePage->bump

10 == h->activePage->endOfPage) {
11 void * page = getNewPage();
12 PageEntry * e =
13 createPageEntry (page);
14 e->bump = page;
15 e->endOfPage = page + PAGE_SIZE;
16 e->inUse = 0;
17 e->heap = h;
18 h->activePage = e;
19 }
20

21 return h->activePage->malloc();
22 }
23

24 void * PageEntry::malloc(size_t size) {
25 void * ptr = bump;
26 bump += roundUp(size);
27 inUse++;
28 bitmap.set(indexOf(ptr));
29 return ptr;
30 }

Figure 5. Pseudo-code for Plug’s age-segregated malloc.

4. Virtual Compaction
Plug recycles memory from age-segregated heaps only when pages
become completely empty. This strategy could potentially lead to
to high fragmentation. In the worst case, a single live object could
prevent the reclamation of an entire page.

To mitigate this problem, Plug uses a novel scheme we call vir-
tual compaction that leverages standard virtual memory remap-
ping primitives to permit compaction of multiple virtual pages onto
the same physical page, without moving objects in virtual address
space. While we limit our discussion here to its use in Plug, we be-
lieve that virtual compaction may enable a new class of compacting
memory managers for C and C++ applications.

Virtual compaction merges virtual pages with no overlapping
objects into a single physical page. This process is facilitated by
Plug’s age-segregated heaps, which use a segregated fits structure



1 void PageEntry::free (void * ptr) {
2 // find originating page.
3 inUse--;
4 bitmap.clear(indexOf(ptr));
5 if ((inUse == 0) && (bump == NULL)) {
6 // free the page for re-use.
7 recyclePage (page);
8 clearPageEntry (page);
9 } else if ((inUse < NUM_ENTRIES/2)

10 && (bump == NULL)) {
11 // check virtual compaction queue
12 AgingQueue.addOrUpdate(this);
13 }
14 }

Figure 6. Pseudo-code for Plug’s age-segregated free.

Virtual page Virtual page

Physical frame

Figure 7. An example pair of pages that share no common live
indices. The virtual compactor can merge these pages in physical
memory while not actually relocating objects in virtual memory
(see Section 4).

in which each page is an array of identically-sized objects. Plug
maintains a bitmap per page indicating which indices within the
page are occupied by live objects. If a pair of pages contain live
objects only at different indices (i.e., there is no index correspond-
ing to a live object on both pages), then the pages can be over-
laid on top of each other with no collisions between live objects
(see Figure 7). Our current implementation only considers merging
pages within the same size class for simplicity. Merging pages with
different-sized objects would enable more virtual compaction, but
require tracking more metadata.

Using the Linux mremap call, Plug merges such pairs of pages
onto a single physical frame and maps that frame to the virtual
addresses of both original pages. Thus, while virtual memory re-
mains highly fragmented (because virtual memory is only recycled
at page-granularity), virtual compaction significantly increases the
occupancy of physical pages, reducing the footprint of the applica-
tion.

Plug tracks stale pages with less than 50% occupancy using a
fragmentation manager. Prior to being placed in the fragmentation
manager, Plug filters out hot pages using an aging queue. Pages on
the queue are protected, so any access causes a page fault, which
Plug uses to update staleness information. Only pages beyond a
certain threshold are considered for merging. Figure 8 shows the
life cycle of a page as it transitions between states.

Virtual compaction can be implemented in many ways. This
section describes when and how Plug identifies pairs of pages
to compact, as well as the virtual memory-based mechanism for
merging pages.

4.1 Finding Candidate Pairs
At runtime, Plug’s heap can contain many low-occupancy pages.
Pages in the heap may be modeled as a graph, where each page
is a node. Edges exist between two pages when they share a com-

High-occupancy pages
(> 50% live objects)

Inactive List
(protected pages)

Active List
(unprotected pages)

Aging Queue

Page drops below 50% occupancy

Fragmentation Manager
(stale pages)

Protection fault
Aging

Stale threshold

Merging

Figure 8. The life cycle of a page in Plug (see Section 4.2.1).

1 // called when a page is added
2 // to the frag manager or an object
3 // is freed on the page
4 void FragManager::checkMerge (PageEntry * p)
5 {
6 for each (PageEntry * q in pageList) {
7 if (!p.conflicts(q)) {
8 // virtual compact p together with q.
9 p.mergeWith(q);

10 return;
11 }
12 }
13 }

Figure 9. Pseudo-code for Plug’s first-fit virtual compaction algo-
rithm (see Section 4).

mon live object index, and thus cannot be merged via virtual com-
paction. In this model, finding an optimal compaction strategy
(fewest physical pages) is equivalent to graph coloring, and thus
NP-complete. Plug therefore makes no attempt to optimally com-
pact pages, and instead relies on heuristics that are effective in prac-
tice (see Section 6.3).

In fact, Plug faces a more difficult problem than ordinary graph
coloring, because the graph constantly changes as objects are deal-
located. The current prototype uses a simple first-fit strategy to
identify pairs of pages to compact.

Plug considers compaction only for pages which have crossed a
staleness threshold. Plug moves these pages from the aging queue
to the fragmentation manager. Figure 9 shows pseudocode of the
fragmentation manager’s compaction algorithm. When a dealloca-
tion occurs on a page managed by the fragmentation manager, it
scans its list to find another page which has no conflicts. If it finds
a compatible target, then it eagerly merges the two pages.

Pages can be tested for compatibility quickly by performing a
bitwise AND of their live object bitmaps. If any bit in the result is
set, then the pages conflict.



1 void inactiveFault (PageEntry * e) {
2 faultCount++;
3 inactiveList.remove(e);
4 activeList.push(e);
5 }
6

7 void activeAdd (PageEntry * e) {
8 activeList.push(e);
9 if(inactiveList.size() < targetSize) {

10 for(i = 1 to 8) {
11 inactiveList.push(activeList.pop());
12 }
13 }
14 if(elapsedTime > 125 ms) {
15 updateTargetSize();
16 }
17 }
18

19 void updateTargetSize() {
20 overhead = faultCount * .5 / elapsedTime;
21 if(overhead < 0.5%) {
22 targetSize +=
23 max(min(inactiveList.size,
24 activeList.size)/32,8);
25 } else if(overhead > 1.5%) {
26 targetSize -=
27 max(min(inactiveList.size,
28 activeList.size)/8,8);
29 }
30 faultCount = 0;
31 elapsedTime = 0;
32 }

Figure 10. Pseudo-code for Plug’s segregated aging queue.

4.2 Merging Pages
When merging pages, Plug first iterates through the liveness bitmap
of one page, copying the live objects onto the target page. It then
remaps the target physical page to both virtual addresses. This is
done using the mremap system call and specifying a size of 0 [36].
The virtual pages thus share a single physical frame, reducing
memory overhead.

Virtual compaction is not limited to pairs of pages. Any number
of virtual pages may be combined onto a single physical frame as
long as they have no conflicts.1 Thus, merged pages are put back
onto the candidate list for further compaction. A merged page con-
tains a bitmap representing the combined live object information
for the corresponding virtual pages, enabling fast conflict check-
ing.

4.2.1 Cold Object Filtering
If Plug were to naı̈vely merge pages, it might accidentally combine
hot objects with leaked objects, negating the benefits of segrega-
tion. To avoid this problem, Plug applies virtual compaction only
to cold pages, those that have been stale for a long time.

Figure 8 illustrates the life cycle of pages in Plug. As the
figure shows, before considering a page for virtual compaction,
Plug places it on the aging queue which is composed of two
lists. Plug keeps all pages below 50% occupancy on the queue. A
higher threshold would enable more virtual compaction, but high-

1 Kernel limitations restrict the maximum number to 128, which is not a
problem in practice.

occupancy pages are much harder to match with merge targets. A
lower threshold would reduce the overhead for tracking candidates,
but allow less compaction. The aging queue is organized in order of
staleness, measured as the time since the application last accessed
some object on the page.

To determine staleness, Plug protects the pages on the queue
against direct read and write access by the application using the
mprotect system call. If an object on the page is accessed, the
Plug runtime catches the protection fault and unprotects the page.
It finally moves the page to the head of the queue for further aging.

Protecting all pages on the queue would be prohibitively expen-
sive, since some pages will contain frequently-used objects. Plug
thus segregates the aging queue into active and inactive lists. Pages
on the inactive list are page-protected and managed in LRU order,
while pages on the active list are unprotected and managed using
FIFO. When the program accesses a page on the inactive list, a page
fault occurs, and Plug moves the page to the head of the active list.
Plug periodically moves pages from end of the active list onto the
inactive list to maintain the latter’s target size.

4.3 Adapting the Inactive List
The size of the inactive list is controlled adaptively to achieve both
acceptable runtime overhead and to gather useful information on
page accesses. Since each page on the inactive list is protected, a
larger inactive list gathers more useful data about page staleness,
but results in more runtime overhead due to page faults. Plug’s
heuristics for controlling the list sizes and moving objects from the
active to inactive list are based on those used in CRAMM [41].

Each time a page is added to the aging queue, Plug checks
whether it should adjust the sizes of the queues. If 1/8 of a second of
CPU time has passed (or 10 page faults), Plug reevaluates the sizes.
Plug estimates the runtime overhead caused by minor page faults to
the inactive list (using an estimate of 500 µsminor page fault cost).
If this cost is above 1.5% of total CPU time, Plug decreases the
target size of the inactive list. If it is less than 0.5%, Plug increases
its size.

Plug maintains a target inactive size, initially 0. When changing
the size of the inactive list, Plug is actually changing the target.
The actual inactive list size will gradually approach the target. This
policy prevents a sudden spike in minor page fault overhead by
immediately protecting a large number of pages.

Plug’s size adjustments are the same as in CRAMM. If the
active list currently holds PA pages and the inactive list PI , then
the new target inactive size will be:

• Increase: PI = PI + max(min(PA, PI)/32, 8)

• Decrease: PI = PI −max(min(PA, PI)/8, 8)

These adjustments reflect the need to make small adjustments
when the lists are small, and larger adjustments when the lists are
larger. They also ensure that some minimum adjustment is always
made. Plug decreases the target inactive list size more aggressively
than it increases it, as the goal of low runtime overhead takes
precedence over more accurate information.

The active list always holds all pages in the aging queue that
are not in the inactive list. Each time a new page is added to the
queue, Plug checks the current inactive list size against the target.
If the current list is too small, Plug moves up to 8 pages from the
active list to the inactive list. When the target size is smaller than the
current size, Plug lazily allows the inactive list to shrink as pages
move to the active list due to page faults. This policy ensures that
truly inactive pages never move from the inactive to the active list,
and thus are guaranteed to cross the staleness threshold and move
to the fragmentation manager.

Plug uses the aging queue to identify stale pages which should
be virtually compacted. Whenever a new page is added to the aging



queue, Plug examines the stalest pages on its inactive list. It moves
those beyond a given threshold of staleness (currently 25,000 heap
allocations) to the fragmentation manager for virtual compaction.

While it is possible that a merged page could later become
hot again, making it advantageous to resegregate the objects onto
separate pages, we have not observed this phenomenon in practice.

5. Discussion
While Plug provides significant advantages in tolerating memory
leaks, it also has limitations. As noted, Plug reduces the memory
footprint of leaky applications, but ultimately cannot reduce the
address space requirements of these applications. In a 32-bit ad-
dress space, many leaking applications will eventually run out of
address space using any existing approach to reducing the impact
of leaks, including conservative garbage collection. Fortunately,
multi-gigabyte physical memories have led computer vendors to
move aggressively to 64-bit systems, where address space limita-
tions are far less problematic. Similarly, most storage systems pro-
vide ample room for swapped out pages.

A broad concern related to systems like Plug, which reduce the
impact of errors in existing programs, is that they could lead to
sloppy programming and encourage the continued use of weakly-
typed languages like as C and C++. While type-safe languages
offer significant software engineering advantages over their unsafe
counterparts, addressing problems in C and C++ applications is
significant both because of the large body of deployed code in these
languages, and the fact that C and C++ remain the languages of
choice for many important application domains. Nevertheless, Plug
is not a panacea for mistakes in explicit deallocation, as it provides
no protection against dangling pointers. However, one benefit of
the leak tolerance that Plug provides is that it might reduce the
likelihood that programmers will over-aggressively free objects,
turning a performance error into a more serious memory corruption
error.

While Plug attempts to reduce the overhead of its mechanisms
for segregating leaking objects, problematic object behavior can
reduce its effectiveness. For example, if cold objects that have
become segregated become hot again (perhaps because the user
returns to using some functionality after a long hiatus), our current
implementation does not re-segregate them. While there are no
technical reasons this could not be done, we leave a consideration
of the policies that would be needed for future work.

Finally, in the worst case, it is possible for a leaky application to
defeat Plug’s strategy of segregating by allocation site and age. For
example, an application that repeatedly allocates hot objects with
leaks at roughly the same time and the same size and allocation site
will render Plug’s segregation ineffective. However, this scenario
will only arise when the application is exhibiting catastrophic leak
behavior, which is generally easy to debug before deployment.

6. Experimental Results
We first evaluate Plug’s performance overhead on a suite of bench-
mark applications. We then evaluate its efficacy at tolerating leaks
by reducing working set size.

6.1 Runtime Overhead
We evaluate Plug’s performance on the SPECint2000 bench-
marks [35] on their reference workloads2, as well as with a suite
of allocation-intensive benchmarks. The latter benchmarks stress
the memory allocator due to high allocation rates and have been
widely used in memory management studies.

2 252.eon fails to run under both Plug and GNU libc, and 253.perlbmk
fails to run with our current implementation of Plug.
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Figure 11. Runtime overhead for Plug across a suite of bench-
marks, normalized to the performance of the GNU libc (Linux) al-
locator (see Section 6.1). Plug’s overhead is substantial for highly
allocation-intensive benchmarks, but modest (3.0%) for SPECint.

Our experimental machine is a single-core, hyperthreaded Pen-
tium 4 with 1GB of physical memory. For each benchmark, we
report the average result of five runs; the observed variance was
under 1%.

We compare runtime overhead against to the baseline GNU libc
allocator, which is based on the Lea allocator [20] and is among the
fastest general-purpose allocators [3].

Figure 11 shows that Plug degrades performance by 0% to
102% (cfrac), with a geometric mean of 17.7% across both
benchmark suites. Plug’s overhead is greater on the allocation-
intensive benchmarks because its individual cost per allocation
is higher than GNU libc. On SPECint, which is less allocation-
intensive, Plug’s runtime overhead averages only 3.0%.

6.2 Leak Tolerance
We quantify Plug’s ability to tolerate memory leaks by measuring
the increase in paging observed by the leaking application. Untol-
erated leaks increase the application’s footprint until thrashing par-
alyzes the system and the application becomes unusable or crashes.
Tolerated leaks can be written to swap and do not add to the foot-
print.

To measure paging performance, we use Pin [22] to track all
memory references during execution. We feed the resulting trace
into a simulator that generates histograms based on LRU position.
Using these histograms, we generate miss curves that show the
number of incurred page faults for any possible physical memory
size.

We evaluate leak tolerance using real-world leaks in a long-
running server application taken from BugBench [21].

6.2.1 Squid
Squid is a web cache application which functions as an HTTP
proxy. Client web browsers request pages from Squid, which it
fetches from its in-memory cache or its local disk cache if available.
On every request, Squid must consult the indices of these caches to
see whether it can satisfy the request locally, or whether it must
fetch the data from the hosting server.
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Figure 12. Squid leak tolerance (see Section 6.2.1). Under moder-
ate memory pressure, Plug allows Squid to run with far fewer page
faults (up to 55% fewer).

Squid 2.3STABLE3 and earlier suffer a memory leak when
handling SNMP requests. We test Plug’s resilience against this leak
by sending a sequence of 20,000 requests with varying mixtures of
SNMP requests (leaks) and standard HTTP requests.

Figure 12 shows the number of page faults incurred by Squid
under both the GNU libc allocator and Plug. We show results for
request mixtures with 50% and 10% SNMP requests, where each
such request leaks some memory. Under extreme memory pressure,
Plug suffers more faults than GNU libc. We attribute this increase
to the marginal increase in footprint caused by Plug’s metadata.
However, at these memory sizes, the fault rate would be so high
that performance would be unacceptable under both allocators. At
larger memory sizes, where no paging is occurring, libc is also
competitive with Plug.

However, with moderate amounts of memory pressure, Plug’s
page fault rate is significantly lower than that of GNU libc (up
to 55% fewer faults). This decrease is due to Plug’s allocation
site segregation: the leaked data never resides on pages containing
cache index information. Once a page in the leaky site’s heap is
filled, it is never accessed again. Index data is kept dense in the

default heap, keeping the working set size low despite the memory
leak.

6.3 Virtual Compaction
Plug’s mechanism for reducing physical memory consumption due
to fragmentation is virtual compaction. One caveat of measuring
the effectiveness of compaction is that the resident memory size re-
ported by the kernel and shown in utilities such as top is incorrect
when pages are mapped multiple times into virtual address space.
The current kernel charges the process for each virtual mapping,
rather than once per frame. However, the global count of physical
memory reported is correct.

We verified this effect with a test program which repeatedly
allocates objects and leaves pages with a single live object. This test
case is the best case for virtual compaction. While the kernel reports
the process as using gigabytes of physical memory, the reported
global count (for all processes) is only a few hundred megabytes.

Since the kernel numbers are not accurate, Plug computes the
memory savings of virtual compaction itself by tracking the differ-
ence between the number of virtual pages and actual physical pages
allocated for its heap. The resident set size we report is the RSS re-
ported by the kernel minus the amount of savings Plug calculates.

Firefox Memory Overhead
To measure the effectiveness of virtual compaction on large pro-
grams, we compare the resident memory size of Firefox running
under the GNU libc allocator to Plug, configured both with and
without virtual compaction enabled.

For each experiment, we loaded the same series of 25 pages
into several tabs in a single browsing session. We then measured
the memory consumption reported by top.

Virtual Address Space Physical Memory
GNU libc 218M 86M
Plug 233M 107M

Figure 13. Firefox Memory Consumption

Figure 13 shows the result of the experiment. Plug requires
24% more physical memory than GNU libc. Virtual compaction
saves over 2100 pages (8.5 MB), about 7% of the total physical
memory requirement. However, only 49M of memory is used for
age-segregated heaps, so virtual compaction achieves an almost
20% reduction in the amount of physical memory consumed by
these heaps.

Virtual Compaction in Small Programs
The bulk of the allocation-intensive benchmarks primarily allo-
cate short-lived objects, so few age-segregated heaps are created,
and the lifetimes of these objects tend to be short. However, vir-
tual compaction has a significant effect on the memory usage of
cfrac. While cfrac is short-running (around 5 seconds), vir-
tual compaction reduces the total number of physical pages by 47%
(from 2726 pages to 1425 pages).

7. Related Work
We describe related work first by drawing the distinction between
two key types of memory leaks, and then discuss previous work
and how it addresses these leaks.

Categories of leaks
Memory leaks fall into two classes: reachability leaks and staleness
leaks. A reachability leak is the classic leak scenario in C/C++ ap-
plications: the program loses the last pointer to an object without



calling free on it. Staleness leaks occur when the program inad-
vertently holds a pointer to an object that it will never again access.
These leaks can be problematic even in language with garbage col-
lection, since they are still reachable from live data in the heap.

Leak tolerance
To the best of our knowledge, the only previous work on toler-
ating leaks in unmanaged languages is Cyclic Memory Alloca-
tion (CMA) [29]. CMA avoids leaks by replacing dynamically-
allocated memory with fixed-size buffers based on profiling runs.
CMA can only eliminate leaks from sites which it identifies as
bounded and can erroneously overwrite live data when profiling
is incorrect.

Melt tolerates staleness leaks in Java [8]. Melt’s approach is
similar in flavor to Plug, in that it segregates live data from leaked
objects, compacts leaked objects onto the same page, and allows
those pages to be swapped to disk. However, Melt targets Java
applications, and so can use a moving collector to perform object
segregation on demand. Because C and C++ do not allow object
relocation, Plug instead segregates objects at allocation time and
introduces virtual compaction to allow objects to be compacted
without being moved.

Garbage collection (GC) tolerates reachability leaks, which
it automatically reclaims, but does not address staleness leaks.
Though garbage-collected languages like Java and C# have seen
widespread use, the adoption of garbage collection for C and C++
applications has been limited. Despite its benefits, practical collec-
tors for these languages have both real and perceived drawbacks,
both for performance and correctness. Pointer misidentification can
cause conservative garbage collectors to fail to reclaim memory, es-
pecially on 32-bit platforms [5]. Worse, because C/C++ programs
can obscure pointers (e.g., via XOR-encoding of linked lists [37]), a
conservative collector can inadvertently reclaim live objects, caus-
ing these programs to crash.

Static analysis can also eliminate memory leaks by program
transformation. Shaham et al. present two analyses which can elim-
inate memory leaks in Java: the first detects dead entries in arrays
that will never be read in the future [33], while the second uses
shape analysis to detect dead references [34]. Lattner and Adve pro-
pose pool allocation, a transformation that can statically eliminate
some leaks in C/C++ applications via points-to set liveness [19].

Dynamic leak detection
Most research on memory leaks has focused on the problem of de-
tection rather than tolerance. Previous work on detection for C and
C++ applications falls into two categories. First are tools that find
reachability leaks, which are objects that the application no longer
holds a pointer to, but are unfreed. Conservative garbage collec-
tion techniques can be used to find unreachable objects. Several
tools use this approach, including Purify [11], Valgrind [28], and
RADAR [25]. While these tools are useful for diagnosing a large
class of leaks, they cannot find leaked objects that are still reach-
able.

The second category of leak diagnosis tools are based on mea-
suring object staleness. These tools find both reachability and stal-
eness leaks, as they detect actual use of object by the program. One
drawback of these tools is incompleteness, that is, they may pro-
duce false positives. This drawback is a byproduct of the approach:
in the general case, no tool can determine with certainty whether or
not the program will use a given object in the future. However, find-
ing stale objects has proven to be a useful approach for diagnosing
leaks.

Hauswirth and Chilimbi’s SWAT leak detector estimates object
staleness using program instrumentation [12]. Precisely determin-
ing staleness requires tracking every read and write to the heap,

which causes unacceptable overhead. To reduce overhead to ac-
ceptable levels, SWAT uses code sampling. Instrumentation is en-
abled randomly, biased towards infrequently executed code. Bond
and McKinley propose Sleigh [7], a leak detector for Java roughly
similar to SWAT. Qin et al. propose SafeMem, another leak detector
based on object staleness [31]. Rather than code instrumentation,
SafeMem uses ECC memory in a novel way to detect memory ac-
cesses.

Several papers focus on providing more detailed information
about the causes of leaks in an effort to reduce the burden of fix-
ing them. Mitchell and Sevitsky’s LeakBot automatically identi-
fies Java data structures that are likely to be the cause of leaks by
evaluating the evolving structure of the heap graph [26]. Jump and
McKinley describe a low-overhead approach to inferring sources
of leaks by examining dynamic characteristics of the points-from
graph in Java programs [17]. Maebe et al. describe a high-overhead
leak detector that identifies the specific program statement respon-
sible for removing the last reference for reachability leaks [24].

Static leak detection
Static analysis can detect certain types of memory leaks, but suf-
fer from false positives due to analysis imprecision. Clouseau in-
fers ownership constraints and finds violations which may indicate
leaks [13]. Xie and Aiken use boolean constraints to find leaks
based on escape analysis [39]. Cherem et al. propose an analy-
sis that considers flows through the program graph from allocation
points to deallocation points to identify possible leaks [9]. Orlovich
and Rugina’s analysis proves the absence of leaks, but can be used
to detect leaks when the proof fails [30].

VM-techniques for memory management
Dhurjati and Adve introduced a technique for detecting dangling
pointer errors that also uses virtual memory remapping primi-
tives [10]. In their system, every object is allocated on a new vir-
tual page, with multiple virtual pages mapped to the same physical
page to conserve space. By protecting the virtual pages holding
individual objects whenever they are freed, their system can de-
tect all dangling references. By contrast, virtual compaction starts
with many objects mapped to individual virtual pages, and later
combines the virtual pages (holding multiple objects) onto a single
physical page.

Recent cooperative systems exploit communication between the
OS virtual memory manager (VMM) and the garbage collector to
reduce paging due to garbage collection. Yang et al. modify the
Linux virtual memory manager to provide detailed reference infor-
mation, allowing it to dynamically adapt the GC heap size in order
to maximize performance [40]. Plug uses a derivative of CRAMM’s
mechanism to control the size of its aging queues. Hertz et al.
present the bookmarking collector, a cooperative system where the
OS informs the runtime system of impending page eviction, and
the garbage collector summarizes information on the pages (“book-
marks”) that allow it to avoid traversing paged-out memory during
garbage collection. Archipelago [23] uses an object-per-page allo-
cator to improve resilience against buffer overflow errors and uses
virtual memory protection to compact cold pages and reduce phys-
ical memory overhead.

Appel and Li describe a number of primitives and algorithms
for exploiting virtual memory in user-mode [1]. Plug follows in the
spirit of those algorithms, and makes use of many of the described
primitives.

8. Future Work
While Plug tolerates memory leaks by preventing performance
degradation, it does not prevent against exhaustion of virtual ad-
dress space, which causes the program to crash. Currently, Plug



is sound, in that its toleration mechanisms will never cause a cor-
rect program to fail. Unsound techniques such as cyclic memory
allocation [29] prevent virtual address space exhaustion at the ex-
pense of correctness. We plan to extend Plug with an unsound op-
tion to unsoundly free memory when a leak causes the program to
exhaust its virtual address space. Plug already has a page-protection
mechanism used to estimate page staleness which we can exploit to
choose the best data to unsoundly free.

Plug has a simple mechanism to prevent virtual compaction
from merging hot and cold data. However, if program behavior
changes (such as entering a new program phase), cold data may
become hot again. We plan to make Plug’s heuristics for merging
more robust to this phenomenon as well as enable Plug to split apart
pages which become mixed, thus re-segregating hot and cold data.

Our current prototype relies on the operating system to evict
leaked data to swap, freeing physical memory. Plug could use com-
pression to reduce swap consumption. Many leaked pages will con-
tain few objects or substantially similar objects that may compress
well.

9. Conclusion
This paper presents Plug, a memory allocator and runtime system
that tolerates memory leaks by reducing performance degradation
due to paging by up to 55%. Plug’s key contribution is its hybrid
memory management scheme, which both segregates objects at al-
location time with a context-sensitive allocator and separates leaks
from non-leaked objects with an age-segregated allocator. A novel
virtual compaction mechanism allows Plug to compact memory
without the need to move objects, reducing the fragmentation due
by segregation without degrading Plug’s ability to tolerate leaks.

Plug operates on unaltered binaries, making deployment sim-
ple. Unlike garbage collection, Plug tolerates both reachable and
unreachable leaks. For a range of applications, including servers
and applications with low allocation-intensity, Plug incurs minimal
runtime and memory overhead, making it practical for use even for
large deployed applications where performance is a key concern.
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