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ABSTRACT
In this paper, we present an automatic compiler-based approach for
detecting programming errors. Our system uses a configurable and
scalable whole-program dataflow analysis engine driven by high-
level programmer-written annotations. We show that our system
can automatically detect a wide range of programmer errors in C
programs, including improper use of libraries, information leaks,
and security vulnerabilities. We show that the aggressive compiler
analysis that our system performs yields precise results. Further,
our system detects a wide range of errors with greater scalability
than previous automatic approaches. For one important class of
security vulnerabilities, our system automatically finds all known
errors in five medium to large C programs without producing any
false positives.

1. Introduction
As software has become more complex and more pervasive, the im-
pact of programming errors has grown dramatically. Approaches
to detecting and correcting these errors include code reviews [11],
testing, and formal verification [9, 15]. Code reviews and testing
are often effective at finding superficial errors but are neither reli-
able nor exhaustive. Formal verification guarantees program cor-
rectness but requires the creation of a complete specification of the
program, a difficult and often impractical undertaking.

Recent work has focused on automatic systems designed to de-
tect errors with minimal or no manual intervention. Such systems
include lexical techniques [20], enhanced type systems [19, 22],
and compiler-based approaches that use finite-state machines [10]
or model checking [1]. All of these approaches have problems that
limit their usefulness. Lexical approaches detect only superficial
errors. The type-based approach requires manual intervention and
generates numerous false positives, placing the burden on the pro-
grammer to determine which errors are real. Previous compiler-
based approaches suffer from state explosion problems that limit
their scope to single procedures or to relatively small programs.

The key contribution of this paper is an interprocedural compiler-
based approach to detecting errors that improves on previous work
by simultaneously providing both precision and scalability. Our
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Figure 1: Overview of the Broadway system.

system treats error detection as a dataflow analysis problem and
solves this problem using a configurable whole-program dataflow
analysis engine. Programmers or library writers write one set of
annotationsfor each class of error, and our system then detects
these errors in unmodified C programs with no manual intervention.

Our system detects errors that are generated at or propagate to
procedure calls. One important error in this class that our system
detects is format string vulnerabilities [3, 16]. In contrast to previ-
ous approaches, which require substantial manual program analy-
sis and which produce false positives [19], we show that our system
quickly detects all instances of format string vulnerabilities in five
C programs and produces no false positives. These C programs
range in size from one thousand lines to 45 thousand lines. Our
system can also pinpoint the source lines and calling contexts lead-
ing to the improper uses of sockets, double locking, and privacy
leaks.

We believe that the aggressive compiler analysis that our sys-
tem employs is critical for effective error detection. To find errors
that propagate through pointers, we use dependence and pointer
analysis. To avoid excessive false positives and to capture more er-
rors, we perform interprocedural, context and flow-sensitive anal-
ysis. Despite the apparent cost of this approach, we show that our
system is more scalable than previous work. We also provide a sim-
ple method for throttling context-sensitivity that allows our system
to trade precision for faster analysis.

The remainder of this paper is organized as follows. We provide
an overview of the Broadway system in Section 2. We contrast our
system with previous work in Section 3. In Section 4, we summa-
rize our language for describing errors and explain how our system
performs domain-specific analysis. In Section 5, we describe the
wide range of errors that our system is capable of detecting and
provide empirical results of our analysis. We discuss the scalabil-
ity of our approach in Section 6. We address future directions in
Section 7, and conclude in Section 8.

2. The Broadway System
The Broadway compiler takes C source files and a set of annota-



tions as input. Figure 1 shows the overall architecture of our sys-
tem. Guided by the annotations, Broadway analyzes the C code,
reports on its analysis and optionally generates a transformed C
program as output. Broadway performs a whole program analysis
on the code, referring to the annotations at relevant procedure call
sites. The annotations allow properties to be associated with the in-
puts and outputs of procedures. The annotation writer can specify
error conditions as well as code transformations.

We originally designed the Broadway compiler to support library-
level optimization [12, 13], building on work in partial evalua-
tion [2, 6] and abstract interpretation [7, 14] to support domain-
specific analysis and optimization. In particular, our compiler fo-
cuses on supporting two types of domain-specific optimizations.
First, it extends many of the traditional optimizations passes, such
as dead-code elimination and constant propagation, to apply to li-
brary routines. These optimizations can have a significant impact
on performance because they modify or eliminate entire library
calls. Second, it provides the tools necessary to identify and ex-
ploit special-case library routines. Libraries often contain many
routines that perform essentially the same computation, but with
different assumptions about inputs and with different performance
characteristics. The Broadway compiler can use such information
captured by annotations to specialize application programs. In this
work, we show how Broadway can use such information to stati-
cally detect errors.

3. Related Work
Compilers have always performed error checking of some sort.
However, these checks have traditionally been limited to the se-
mantics of the base programming language. Recent work extends
error checking to high-level semantics that are not built into the
programming language.

Two recent papers have focused on using type systems to ex-
press high-level programming constraints. Shankar et al. present a
system for detecting format string vulnerabilities using type infer-
ence [19]. In this approach, two new type qualifiers, “tainted” and
“untainted,” are introduced to the C language and added to the sig-
natures of the standard C library functions. These qualifiers denote
whether associated variables have possibly received input from an
untrusted source. Type inference is performed by an extensible type
qualifier framework, which derives a consistent assignment of these
type qualifiers to string variables. Security errors are reported as
type mismatches.

The inherent limitations of static typing can cause this approach
to produce large numbers of false positives. For example, the type
of a variable cannot change, even though operations on it can change
its taintedness. Similarly, a procedure can only have one type signa-
ture, even though the application may call it many times in different
contexts that have different combinations of tainted and untainted
arguments. Shankar et al. address this problem by adding a form
of polymorphism to the type system. However, this solution can re-
quire understanding and annotating the application program itself
in order to get acceptable precision. Our approach recognizes that
taintedness is a property of the state of an object, not its type. Flow
sensitivity and context sensitivity keep this information distinct at
different points and call sites in the program.

The Vault system provides programming language support for
explicitly expressing constraints on the use of domain-specific re-
sources such as files and sockets [8]. In order to use Vault, the
programmer first translates the input program into the Vault pro-
gramming language, adding resource constraints where necessary.
The language usestype guardsto control when a particular opera-
tion is valid for a resource. Vault avoids some of the problems of
type qualifiers by introducingkeysthat track flow-sensitive condi-

tions. However, the system cannot reconcile conflicting conditions
at control-flow merge points. Our approach avoids this problem by
using lattices to represent these error conditions, which allows us
to specify precisely how information should be combined at merge
points.

The MC system checks for errors in operating system code us-
ing programmer-written checkers based on state machines [10]. A
checker consists of a set of states and a set of syntax patterns that
trigger transitions on the state machine. The compiler pushes the
state machine down each path in the program and reports any er-
ror states that it encounters. While this approach has proven quite
successful in finding errors, it has limitations. First, the scope of
the analysis is limited to a single procedure at a time because the
number of paths through a program can be extremely large. Sec-
ond, since the analysis is syntax-driven, the compiler lacks deep
information about the program semantics, such as dataflow depen-
dences and pointer relationships. Our approach is more scalable
and utilizes deeper program information.

The SLAM Toolkit approach is similar to MC but is more rigor-
ous and more powerful [1]. SLAM includes a pointer analyzer and
can check programs interprocedurally. Input to the toolkit consists
of the C program to analyze, along with a separate specification that
describes the safety properties to test. The toolkit first generates an
abstraction of the program that represents its behavior only with
respect to the properties of interest. It then uses a model checker
to perform path-sensitive analysis on the abstracted program. Our
system differs from SLAM in many ways. While Broadway does
not currently describe all types of constraints that SLAM can, it
also does not require any formal specifications. Further, because it
is not path-sensitive, it is more scalable than SLAM, as we discuss
in Section 6.

Our work differs from previous work in both expressiveness and
scalability. While it is constrained to recognizing errors that propa-
gate via dataflow, we show that this class includes many important
errors, including privacy leaks and security vulnerabilities. Be-
cause we do not rely on static typing, we report few false posi-
tives. Our use of interprocedural analysis allows us to find errors
that state-machine based approaches cannot because of scalability
problems. Finally, while we cannot capture as extensive a range
of safety properties, we avoid the inherent state space explosion
problem of path-sensitive analyzers.

4. Errors as Dataflow Problems
In this section, we describe how to use the Broadway compiler to
detect errors. We cast error detection as a dataflow analysis prob-
lem, which our compiler solves using a configurable dataflow anal-
ysis engine. Analysis problems are specified by defining flow val-
ues and transfer functions that track error-related properties through
the target program. Our system avoids much of the difficulty of
defining new dataflow analysis problems by providing a simple an-
notation language that can express a wide range of useful prob-
lems [13]. Other approaches for detecting errors support much
more complex specifications, but our system is effective at finding
errors because of its aggressive analysis framework.

4.1 Annotation Language

We have described our annotation language in detail elsewhere [13].
Here, we summarize its main features. Our annotation language fo-
cuses on describing the behavior of library routines and the domain-
specific abstractions that they represent. This focus comes from the
Broadway compiler’s original goal of optimizing the use of soft-
ware libraries. This focus is important for error checking because
many interesting and difficult-to-detect programming errors arise
from the unsafe or incorrect use of software libraries. Indeed, most



libraries encapsulate some sort of domain-specific semantics, such
as files, sockets, and locks, and since these abstractions exist be-
yond the semantics of the base language, they typically receive no
semantic checking support from conventional compilers.

Defining Analysis Problems

Our annotation language contains both basic dependence annota-
tions and more advanced analysis annotations. Thebasicannota-
tions provide a summary of each library routine’s behavior with
respect to pointer analysis and dependence information. To de-
scribe pointer relationships at the beginning and end of the proce-
dure, Broadway provideson entry and on exit annotations.
Both annotations use the--> operator to indicate that one object
points to another object. Theaccess andmodify annotations
simply list the uses and defs of the procedure. Figure 2 shows the
basic annotations for thestrcpy() string copying function. The
annotations indicate that both parameters tostrcpy() point to
other objects, that these other objects are namedsrc string and
dest string , and that the routine reads thesrc string ob-
ject and modifies thedest string object.

procedure strcpy(dest, src)
{

on_entry { src --> src_string
dest --> dest_string }

access { src_string }
modify { dest_string }

}

Figure 2: Basic annotations describe pointer and dependence
behavior.

The advancedannotations describe the dataflow analysis prob-
lems to be solved by the framework. To define a new dataflow
analysis, the library annotator specifies a simple lattice using the
property annotation, along with a set of transfer functions, one
for each library routine. The transfer functions are specified using
theanalyze annotation, which summarizes the effects of each li-
brary routine on the lattice values. Currently, we limit the structure
of the lattices to a simple hierarchy of named categories (much like
an enumerated type), from which the compiler automatically infers
the meet function. In the annotations, We can compare lattice val-
ues using two operators:is-exactly tests for an exact match,
andis-atleast tests the lattice greater-or-equal function.

The annotation shown in Figure 3 defines a minimal error de-
tection lattice calledState that has only two elements,OKand
Error . We can then augment the annotations forstrcpy()
with ananalyze annotation that tells the compiler that the func-
tion passes the error state from the source string to the destination
string. This example also highlights an important benefit of includ-
ing pointer information in the annotations: We can associate the
error state with the actual string contents, not just with the surface
variables. With this capability, we can follow the states of these ob-
jects as they are passed throughout the program, regardless of the
pointers that refer to them.

Using Analysis Results

The annotations identify error conditions by testing the analysis
result for flow values that represent incorrect states. Thereport an-
notation consists of a conditional expression and a message string.
At each library routine callsite, the compiler emits the message for
all the calling contexts in which the condition is true. The message
string can contain special tokens that the compiler replaces with
callsite-specific information. The special tokens include the com-

OK Error

property State : { OK, Error }

procedure strcpy(dest, src)
{

on_entry { src --> src_string
dest --> dest_string }

access { src_string }
modify { dest_string }

analyze State {
if (src_string is-exactly OK)

dest_string <- OK
if (src_string is-exactly Error)

dest_string <- Error
}

}

Figure 3: The strcpy() function passes error states from the
source to the destination.

plete call stack, the line number and source file, the names of the
actual arguments, and the flow values of the objects.

Figure 4 shows a report annotation for theputs() system call.
It prints an error message whenever the input string is in theError
state. It also provides the location of the call in the source and the
name of the argument.

procedure puts(s)
{

on_entry { s --> the_string }
access { the_string }

report
if (State : the_string is-exactly Error)

"Error at " ++ @callsite
++ ": Argument " ++ [ s ]
++ " is in error state.\n";

}

Figure 4: The strcpy() function passes error states from the
source to the destination.

4.2 Analysis Framework

For each property specified in the annotations, the dataflow analy-
sis framework associates values from the lattice with objects in the
application code. Objects in our representation are fine grained, in-
cluding local and global variables, structures and structure fields,
and heap allocated memory. Heap objects are distinguished by
the full context path to their allocation site. At a library call, the
compiler tests the current lattice values associated with the actual
arguments, and then updates those states according to the transfer
functions. The annotations can also direct the framework to ana-
lyze a property forwards or backwards in the target program. In
Section 5 we give examples of forward and backward analyses and
compare the kinds of problems they solve.

Our framework uses a flow-sensitive, context-sensitive, interpro-
cedural dataflow analysis. The compiler first builds factored use-
def chains for all objects in the target program. This pass relies
on the basic annotations to precisely describe the dependence and



pointer behavior of each library routine. The compiler then per-
forms all of the library-specific analyses in a single pass, using the
use-def chains to efficiently propagate flow values. By analyzing
all of the properties together, the transfer functions for one property
can test the current state of other properties. Finally, the compiler
visits each library routine call site and invokes any reports that are
applicable.

5. Detecting Errors with Broadway
In this section, we describe a number of errors that Broadway can
detect. These include the invalid uses of libraries and double lock-
ing of mutexes, as well as more complicated errors, including pri-
vacy leaks and security vulnerabilities. We provide examples of
erroneous code and we describe the dataflow analyses that enable
Broadway to detect such errors. We analyze a number of actual
and synthetic applications and present results including the number
of actual errors that our system detects, the number of false pos-
itives that it reports, and the accuracy of its error reporting. We
ran our system under Linux on a 2GHz Pentium 4 system with 512
megabytes of RAM. The Broadway system was compiled with gcc
version 2.95.2, at optimization level-O4 .

5.1 Invalid Library Usage

Library interfaces often contain implicit constraints on the order in
which their routines may be called. File access rules are one ex-
ample of this kind of usage constraint. A program can only access
a file in between the proper open and close calls, and the kind of
access (reading or writing) must match the mode in the open call.
A more sophisticated analysis is required to model the semantics
of UNIX sockets. The proper sequence of UNIX calls to create a
server socket issocket() , bind() , andlisten() , followed
by accept() to accept a connection. Figure 5 shows how we can
model this constraint by marking each socket variable according to
its progress through this sequence.

Bound

Error

ListeningCreated

property SocketState :
{ Error { Created , Bound , Listening }}

Figure 5: Lattice for the steps in creating a socket.

In this model, if a socket has conflicting states on different paths,
then it goes to the error state. Figure 6 shows the full annotations
for the listen() function. When the input socket is bound to a
name, the annotations transition it to the listening state. Any other
call to listen() is invalid and our system will print an error
message at the offending line.

5.2 Simple Deadlock Detection

While deadlock detection is an NP-hard problem, we can use Broad-
way to detect a number of situations that lead to deadlocks, includ-
ing double locking. Because the Broadway compiler performs in-
terprocedural analysis, we can find instances of double locking that
are widely separated in the program source. Note that we make no
attempt to model the concurrent semantics of threads.

In the pthreads library, locking is controlled by a mutex vari-
able of typepthread mutex t . We use the annotations to track

procedure listen(socket, backlog)
{

analyze SocketState {
if (socket is-exactly Bound)

{ socket <- Listening }
default

{ socket <- Error }
}
report

if ( ! SocketState : socket
is-exactly Bound)

"Error at " ++ @context ++ "socket "
++ [ socket ] ++ " not bound.\n";

}

Figure 6: Annotations for listen() that ensure thatbind()
has been called.

whether a particular mutex is locked or unlocked. Figure 7 shows
the lattice for this analysis.

Locked Unlocked

Error

property Mutex : { Error { Locked,
Unlocked }}

Figure 7: Lattice for lock states.

The library functions pthread mutex lock() and
pthread mutex unlock() lock and unlock the given
mutex object. Figure 8 shows how the locking function can be
annotated to test for double locking.

procedure pthread_mutex_lock(mutex_ptr)
{

on_entry { mutex_ptr --> mutex }
analyze Mutex {

if (mutex is-exactly Unlocked)
{ mutex <- Locked }

}
report if (Mutex : mutex is-exactly Locked)

"Error at " ++ @context ++ ": Mutex " ++
[ mutex_ptr ] ++ " is already locked.\n";

}

Figure 8: Annotations that check for double locking.

We applied the analysis we describe in Section 5.2 to a synthetic
program that teststimer getoverrun() , a POSIX threads
function supported by the linuxthreads package for the GNU C li-
brary. The implementation of this function in the GNU C library
version 2.1.2 contains a double locking error which, though sim-
ple, nonetheless escaped manual detection and testing. Our system
finds this bug in .05 seconds, reporting no false positives, and issues
the following error report:

Error at pthread_mutex_lock (timertest.c:16)
in timer_getoverrun (timertest.c:24 ):
Mutex timer_getoverrun::__TE2 is already locked.



5.3 Information Leaks

Our dataflow analysis engine allows us to track the state of objects
throughout the program. For example, we can use such analysis
to verify that a program does not reveal private information to the
world. We consider information originating on a local disk to be
private, and information coming from the network to be public.
Using our system, we can ensure that a program does not transmit
private information over the network1.

Socket

Unknown

Local Internet File

property FDKind :
{ Unknown { Socket { Internet,

Local },
File } }

Figure 9: The property keyword introduces a new lattice.

In Figure 9, we define a lattice that identifies the kind of de-
vice associated with a file descriptor. TheFDKind property takes
advantage of the lattice structure to minimize information loss at
control-flow merge points. For example, if we have an if-else state-
ment that creates an Internet socket on one branch and a Local
socket on the other, the compiler can at least infer that the resulting
file descriptor is some kind of socket.

We augment this model by marking the data aspublicor private
depending on its source. We can then use the compiler to test in-
formation flow constraints. Figure 10 shows the annotations for the
write() function that report this condition. Notice that we also
report a warning when the type of socket cannot be determined.

procedure write(fd, buffer_ptr, size)
{

on_entry { buffer_ptr --> buffer }

report
if ((FDKind : fd is-exactly Internet) &&

(FDKind : buffer is-exactly File))
"Error at " ++ @context ++
": File data is sent to the Internet.\n";

report
if ((FDKind : fd is-atleast Socket) &&

(FDKind : buffer is-exactly File))
"Warning at " ++ @context ++
": File data may be sent to the Internet.\n";

}

Figure 10: Annotation for write() to report when data from
the file system is sent out on the network.

5.4 Security Vulnerabilities

We can expand on the information flow analysis described above
to detect an entire class of errors that arise when data from an un-
1Note that our notion of “information flow” is weaker than others
that have been described in the literature [22], as we only track the
flow of data in the program.

trusted source (such as the network or user) reaches a vulnerable
part of the program. Following the terminology introduced for the
Perl programming language [21] and used by Wagner [19], we con-
sider data to betaintedwhen it comes from an untrusted source.
We then mark vulnerable functions as requiring their input to be
untainted.

Using taintedness analysis, we can detect format string vulner-
ability errors [3, 16, 19], which arise when untrusted data is used
as a format string argument for functions likeprintf() . Certain
C functions take strings as arguments that define how to format
output. For instance,"(%s)" is a format string thatprintf()
can use to print a string argument surrounded by parentheses. A
program contains a format string vulnerability when it reads string
data from an untrusted source, such as the network, and that data
ends up as a format string argument. By carefully manipulating
input strings, a hacker can access the stack and execute arbitrary
code. The format string vulnerability has been identified in several
widely used software packages and has been the subject of numer-
ous CERT advisories [4, 5].

We now describe in detail how we define annotations that pro-
vide taintedness analysis for detecting these vulnerabilities. Our
formulation of the taintedness analysis starts with a definition of
the lattice, shown in Figure 11.

Tainted Untainted

PossiblyTainted

property Taint :
{ PossiblyTainted { Tainted,

Untainted }}

Figure 11: The lattice for taintedness.

We include thePossiblyTainted value to capture conflict-
ing states on different control-flow paths. For instance, it is pos-
sible to untaint data by setting all data in a string to zero with
memset() .

Next, we annotate the standard C library functions that produce
tainted data. These include such obvious sources of untrusted
data asscanf() and read() , and less obvious ones such as
readdir() and getenv() . Figure 12 shows the annotations
for the read() system call. Notice that the annotations assign
theTainted property to the contents of the buffer rather than to
the buffer pointer. This helps prevent false positives when a sin-
gle pointer can point to both tainted and untainted data in the same
program.

procedure read(fd, buffer_ptr, size)
{

on_entry { buffer_ptr --> buffer }
access { Disk }
modify { buffer }
analyze Taint { buffer <- Tainted }

}

Figure 12: The read() system call taints data in the buffer.

Taintedness is a property that can propagate across functions that
manipulate the data. For example, if the program concatenates two



tainted strings, the result is also tainted. Therefore, we also anno-
tate various string operations to indicate how they affect the taint-
edness of their arguments. Figure 13 shows the annotations for the
sprintf() system call. Since this function takes a variable num-
ber of arguments, the compiler binds the third argument,args , to
the rest of the actual arguments.

procedure sprintf(buffer_ptr, format_ptr, args)
{

on_entry { buffer_ptr --> buffer
format_ptr --> format
args --> arg_contents }

access { format, arg_contents }
modify { buffer }
analyze Taint { buffer <- arg_contents }

}

Figure 13: Thesprintf() call can pass tainted data from the
arguments to the buffer.

The annotations dereference theargs argument and pass the
taintedness state from those arguments to the buffer contents. Since
args could represent multiple objects, the compiler meets together
all of their lattice values. Thus, if any of them is tainted, the buffer
contents become tainted.

Finally, we annotate all the standard C library functions that ac-
cept format strings (includingsprintf() ) to report when the
format string is tainted. Figure 14 shows the annotations for the
syslog() function, which is frequently the offender in format
string vulnerabilities.

procedure syslog(priority, format_ptr, args)
{

on_entry { format_ptr --> format
args --> arg_contents }

access { format, arg_contents }
modify { Disk }

report if (Taint : format is-exactly Tainted)
"Error at " ++ @context
++ ": Argument " ++ [ format_ptr ]
++ " is tainted.\n";

}

Figure 14: The syslog() function reports a tainted format
string.

The report annotation tests the contents of the format string for
taintedness. If true, it generates an error message by replacing the
various special tokens in the report with information about the ac-
tual call site. The compiler replaces the@context token with
the full context path where the error occurred. It replaces the[
format ptr ] with the name of the corresponding actual argu-
ment at the call site.

We applied taintedness analysis to five programs, using versions
that are known to contain format string vulnerabilities. We found
these programs, which are all daemons or systems applications, by
combing through actual security advisories online. Table 1 summa-
rizes the results of the experiments. For these results, we disabled
all context-sensitivity except for the annotated library routines,
which are always treated by our compiler in a context-sensitive
manner. In all cases, the compiler properly identified the locations
of the format string errors. In fact, for all cases where patches
exist, the locations reported by our compiler exactly match the rec-
ommended patches. We found that the analysis time is roughly

proportional to the square of the number of lines of code, except
for lpd, which has an exceptionally bushy call graph.

Significantly, our system reported no false positives. By con-
trast, previous solutions based on type theory report false positives,
even after significant manual program analysis and intervention;
Shankar et al. applied their system to three of the same programs
that we did, yielding 5 false positives for cfengine, 12 for muh, and
2 for bftpd [19].

5.5 Backwards Taintable Analysis

Using our approach, we can also define a backwards analogue to
the taintedness analysis, which we call “taintable”. In this analy-
sis, we mark format strings as “Untaintable” and then track them
backward to their sources. We report an error if data from an un-
trusted source can eventually be used as a format string. Figure 15
shows the output from the taintable analyses for themuhprogram.
This analysis is useful in conjunction with the taintedness analysis
to narrow down the exact cause of the vulnerability.

Argument muh_commands::s at fgets (muh.c:842)
in muh_commands (muh.c:933)
in read_client (muh.c:1057)
in run (muh.c:1244)

may end up as a format string.

Figure 15: Backwards analysis tells us the sources of tainted
data.

Manual inspection of the programs yielded several interesting
observations. First, taintedness is a property of the string contents,
not the surface variables in the program. Without pointer analysis,
we could not properly model this fact. Furthermore, taintedness can
change during execution: at some points a buffer contains tainted
data, at other times not. For example, if we have to associate taint-
edness with the surface variables, then the code in Figure 16 will
result in a false positive on the second call tosyslog() .

char * p;
p = malloc(100);
read(fd, p, 100); // *p is tainted
syslog(5, p); // Format string error
p = "Internal Message"; // *p not tainted
syslog(5, p); // Okay

Figure 16: Flow-sensitivity is needed to avoid false positives.

Second, programmers often pass data throughout the program,
including storing and retrieving it from data structures. For exam-
ple, thenamed program in the BIND package reads host names
and stores them in an array of request structures. Later, it traverses
this data structure and extracts the names to service the requests.
At this point, it can pass the hostname tosyslog() , resulting
in a format string vulnerability. Precise interprocedural pointer in-
formation properly tracks individual strings though such computa-
tions, preventing taintedness from spreading unnecessarily.

Finally, programs often define “wrapper” functions around stan-
dard system calls. These wrappers may have the same signature
as the system call, but they perform some additional processing.
Wrappers often serve as error handlers, and therefore they are fre-
quently the culprits in format string vulnerabilities. Unfortunately,
the application may call the wrapper in hundred or thousands of
different places, making it difficult to discover the source of the
problem. Using full context-sensitivity, we can often identify the
exact call stack in which the error occurs.



Program Package Lines Procedures Time (mm:ss) Known errors Errors found False positives
Format string vulnerabilities
bftpd bftpd 1.0.11 1,017 180 0:01 1 1 0
muh muh 2.05c 5,002 228 0:06 1 1 0
named BIND 4.9.4 25,820 444 1:11 1 1 0
lpd LPRng 3.6.23 38,174 726 23:57 1 1 0
cfengine cfengine 1.5.4 45,102 700 6:38 6 6 0

Table 1: A summary of our analysis results for format string vulnerabilities. Unlike previous approaches, our system finds all known
errors with no false positives.

6. Scalability
Program analysis systems have to make a tradeoff between the scal-
ability of their analysis and the quality of their results. For exam-
ple, path-sensitive analysis provides extremely detailed results, but
because the number of paths grows so fast, these techniques are
limited to small programs or small parts of programs. The cost of
context-sensitive interprocedural analysis also grows rapidly with
size of the program, but provides a much larger scope of informa-
tion. Our system attempts to strike a good balance between pre-
cision and scalability. We do this in several ways. First, we take
a path-insensitive approach. Second, we provide a simple mecha-
nism for controlling the degree of context-sensitivity in an analy-
sis. Finally, because the annotations summarize information about
library routines, we always treat library calls as context-sensitive
without incurring the cost of analyzing the library source.

We control context-sensitivity with a threshold on the depth
of the procedures in the program’s call graph. The compiler
treats procedures deeper in the call graph as context-sensitive,
and it treats procedures shallower in the call graph as context-
insensitive. We have explored more complex schemes, but this ap-
proach seems to capture the essential benefit of context-sensitivity.
Calls to small, frequently reused procedures are treated indepen-
dently, while large, high-level procedures are analyzed only once.

To detect errors in large programs, we start with a minimal level
of context-sensitivity. Even in this mode, the compiler still finds
all errors, but it does not report the exact call stack in which the
errors occur, and it may report false positives, although these are
rare. Once we know a program has bugs, we can rerun the analysis
with a higher context-sensitivity threshold.

As precise as our analysis is, it is not as detailed as path-sensitive
techniques, particularly the interprocedural path-sensitive analysis
used by the SLAM Toolkit [1]. However, path-sensitive approaches
suffer from a severe state explosion problem caused by the ex-
tremely large number of paths through a program. By comparison,
context-sensitive analysis is relatively cheap. Consider the simple
call graph depicted in Figure 17. The procedureC has two call-
ing contexts, one throughA and one throughB. However, for each
calling context, the number ofpathsto procedureC is the product
of the number of paths through each intervening procedure. To see
how these numbers compare in a real program, the format string
bug in muh occurs six levels deep in the call graph, and has 19
calling contexts. However, there are nearly 140,000 possible paths
through the program to that location. We believe that avoiding this
state space explosion is vital in order to preserve scalability.

7. Future Work
We are currently exploring several ways to help the library writer
develop annotations. Exposing more information to Broadway
about program objects (e.g., the size of array objects) would allow
us to detect a broader class of errors without significantly compli-
cating the job of the annotation writer. The compiler could assist
in the generation and checking of the basic dependence annota-

A() B()

main()

C()

Figure 17: A commonly used procedure may have many calling
contexts, but a huge number of paths.

tions using the library source code. Other research has demon-
strated techniques to automatically check a library routine sum-
mary against the implementation of the routine [17, 18]. The com-
piler could also help by checking the transfer function annotations.
In our current implementation, it is possible to define analyses that
do not converge if the transfer function is non-monotonic. Since
our lattices are finite, and tend to be relatively small, the com-
piler could perform an offline check that exhaustively tests for non-
monotonic behavior. In practice, however, none of our experiments
have exhibited this problem because all of our lattices and analyses
have been simple.

We also have not yet applied any performance tuning to Broad-
way. We plan to implement a number of optimizations to further
improve Broadway’s space and runtime performance.

8. Conclusions
In this paper, we have described Broadway, a compiler-based ap-
proach for performing automatic error detection. We show how
Broadway can find a wide range of programming errors, and we
apply it to find format string vulnerabilities in several C programs.
In our solution, a user provides simple annotations that describe li-
brary routines, and then invokes our compiler to iteratively analyze
an application with ever-increasing amounts of context-sensitivity.

Our results show that our aggressive analysis capabilities are
necessary for precise error detection, but that they are scalable
enough to be practical. Approaches that are more superficial cannot
find errors as well, while more detailed approaches cannot handle
large programs. We believe aggressive analysis is necessary for
the following reasons. First, dependence and pointer analysis is re-
quired in order to find errors in the usage of libraries, which often
use pointers and pointer-based data structures. Flow-sensitivity and
context-sensitivity are important in order to avoid excessive false
positives, because objects and error conditions change state during
program execution, and library routines are called in many con-
texts with different implications for the existence of errors. Finally,
interprocedural analysis is necessary because objects are typically
passed throughout the program, often through multiple layers of
the library or through library wrappers.

The cost of such analysis can be significant for large programs,
but our procedure-oriented approach is more scalable than path-
sensitive approaches. Our approach also provides a simple method



of throttling context-sensitivity that effectively trades precision for
faster analysis. While our analysis remains expensive compared to
traditional compiler analysis, taking tens of minutes for programs
of up to 45,000 lines of code, we believe that the precision of our
approach justifies its cost. This analysis time pales in comparison
to the cost and effort of finding such errors manually, which can
take days or weeks. Because it is so important to find errors and
security violations, an automated approach is desirable, even if it
needs to be run overnight.

In previous work, we have shown how to use Broadway to per-
form domain-specific optimizations. This paper shows that Broad-
way is also extremely effective at error detection. Together, this
work illustrates the power of incorporating domain-specific infor-
mation into the compilation process. We believe that this idea has
broader implications for applying compiler technology to further
improve software quality and programmer productivity.
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