Automatic Heap Sizing: Taking Real Memory Into Account

Ting Yang

tingy @cs.umass.edu emery@cs.umass.edu

Emery D. Berger Matthew H. Hertz Scott F. Kaplan® J. Eliot B. Moss

hertz@cs.umass.edu

sfkaplan@cs.amherst.edu moss@cs.umass.edu

Department of Computer Science 'Department of Computer Science

University of Massachusetts
Ambherst, MA 01003

ABSTRACT

Heap size has a huge impact on the performance of garbage
collected applications. A heap that barely meets the ap-
plication’s needs causes excessive GC overhead, while a

heap that exceeds physical memory induces paging. Choos-

ing the best heap size a priori is impossible in multi-
programmed environments, where physical memory al-
locations to processes change constantly. We present an
automatic heap-sizing algorithm applicable to different
garbage collectors with only modest changes. It relies
on an analytical model and on detailed information from
the virtual memory manager. The model characterizes
the relation between collection algorithm, heap size, and
footprint. The virtual memory manager tracks recent ref-
erence behavior, reporting the current footprint and allo-
cation to the collector. The collector uses those values as
inputs to its model to compute a heap size that maximizes
throughput while minimizing paging. We show that our
adaptive heap sizing algorithm can substantially reduce
running time over fixed-sized heaps.

1. INTRODUCTION

Java and C# have made garbage collection (GC) much
more widely used. GC provides many advantages, but it
also carries a potential liability: paging, a problem known
for decades. Early on, Barnett devised a simple model
of the relationship between GC and paging [9]. One of
his conclusions is that total performance depends on that
of the swap device, thus showing that paging costs can
dominate. An optimal policy is to control the size of the
heap based on the amount of free memory. Moon [18] ob-
served that when the heap accessed by GC is larger than
real memory, the GC spends most of its time thrashing.
Because disks are 5 to 6 orders of magnitude slower than
RAM, even a little paging ruins performance. Thus we
must hold in real memory essentially all of a process’s

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial qdvanta%e and that copies bear this notice
and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

Amherst College
Ambherst, MA 01002-5000

pages—its footprint—to preserve performance.

The footprint of a GCed process is determined mostly
by the heap size. A sufficiently small heap prevents pag-
ing during GC. However, an overly small heap causes
more frequent GCs. Ideally, one chooses the largest heap
size for which the entire footprint is cached. That size
GCs often enough to keep the footprint from overflowing
real memory, while minimizing time spent collecting.

Unfortunately, from a single process’s viewpoint, avail-
able real memory is not constant. In a multiprogrammed
environment, the operating system’s virtual memory man-
ager (VMM) dynamically allocates memory to each pro-
cess and to the file system cache. Thus space allocated
to one process changes over time in response to memory
pressure—the demand for memory space exhibited by the
workload. Even in systems with large main memories,
large file system caches induce memory pressure. Disk
accesses caused by paging or by misses in the file cache
both hurt system performance.

Contributions: We present an automatic adaptive heap-
sizing algorithm. Periodically, it obtains the current real
memory allocation and footprint of the process from the
VMM. It then adjusts the heap size so that the new foot-
print just fits in the allocation. It thus prevents paging
during GC while minimizing time spent doing GC. To ad-
just heap size effectively, the heap sizing algorithm uses
an analytical model of how changes to the specific collec-
tor’s heap size affects its footprint. We have models for
semi-space and Appel collectors, and we show that the
models give reliable predictions.

We also present a design of a VMM that gathers the
data necessary to calculate the footprint as needed by the
model. This VMM tracks references only to less recently
used (“cool”) pages. It dynamically adjusts the number
of recently used (“hot”) pages, whose references it does
not track, so that the total overhead falls below a thresh-
old. This VMM gathers reference distribution informa-
tion sufficient for our models while adding only 1% to
running time.

In exchange for this 1%, our algorithm selects heap
sizes on the fly, reducing GC time and nearly eliminat-
ing paging. It reduces total time by up to 90% (typically
by 10-40%). Our simulation results show, for a variety
of benchmarks, using both semi-space and Appel collec-
tors, that our algorithm selects good heap sizes for widely

varying real memory allocations. Thus far we have devel-
oped models only for non-incremental, stop-the-world,
GC, but in future work hope to extend the approach to
include incremental and concurrent collectors.

2. RELATED WORK

Heap size selection has received surprisingly little atten-
tion, despite its impact on performance. We discuss pa-
pers we know of, and then consider interfaces to VMMs.

Heap sizing: Kim and Hsu examine the paging behav-
ior of GC for the SPECjvm98 benchmarks [17]. They run
each program with various heap sizes on a system with
32MB of RAM. They find that performance suffers when
the heap does not fit in real memory, and that when the
heap is larger than real memory it is often better to grow
the heap than to collect. They conclude that there is an
optimal heap size for each program for a given real mem-
ory. We agree, but choosing optimal sizes a priori does
not work in the context of multiprogramming: available
real memory changes dynamically.

The work most similar to ours is by Alonso and Appel,
who also exploit information from the VMM to adjust
heap size [4]. Their GC periodically queries the VMM to
find the current amount of available memory, and then ad-
justs heap size in response. Our work differs from theirs
in several key respects. While their approach shrinks the
heap when memory pressure is high, they do not expand
heaps when pressure is low, which would reduce GC fre-
quency. Further, they rely on standard interfaces to the
VMM, which provide at best a coarse estimate of mem-
ory pressure. Our VMM algorithm captures detailed ref-
erence information, providing reliable estimates.

Brecht et al. adapt Alonso and Appel’s approach to con-
trol heap growth. Rather than interact with the VMM,
they offer ad hoc rules for two given memory sizes [12].
These sizes are static, so their technique works only if
the application always has that specific amount of mem-
ory. Also, they use the Boehm-Weiser mark-sweep col-
lector [11], which can grow its heap but cannot shrink it.

Cooper et al. dynamically adjust the heap size of an
Appel style collector according to a given memory us-
age target [13]. If the target matches the amount of free
memory, their approach adjusts the heap to make full use
of it. Our work automatically identifies the target given
data from the VMM. Furthermore, our model captures
the relation between footprint and heap size, making our
approach more general.

There are several existing systems that adjust heap size
depending on the current environment. MMTk [10] and
BEA JRockit [3] can, in response to the live data ratio
or pause time, change their heap size using a set of pre-
defined ratios. HotSpot [1] has the ability to adjust heap
size with respect to pause time, throughput, and foot-
print limits given as command line arguments. Novell
Netware Server 6 [2] polls the VMM every 10 seconds,
and shortens its GC invocation interval to collect more
frequently, when memory pressure is high. All of them
rely on some pre-defined parameters or command line ar-
guments to control the adjustment of heap size, which
makes adaptation slow and inaccurate. Given our com-
munication with the VMM and our analytical model, our

algorithm selects good heap sizes quickly and gives pre-
cise control of application footprint.

Virtual Memory Interfaces: Systems typically offer a
way for programs to communicate detailed information
to the VMM, but expose very little in the other direc-
tion. Many UNIX and UNIX-like systems support the
madvi se system call, by which applications may offer
information about their reference behavior to the VMM.
We know of no systems that expose more detailed infor-
mation about an application’s virtual memory behavior
beyond memory residency (which pages are “in core”
(m ncor e)). Out interface is even simpler: the VMM
gives the program two values: its footprint (how much
memory the program needs to avoid significant paging),
and its allocation (real memory available to it now). The
GC uses these values to adjust heap size accordingly.

3. GC PAGING BEHAVIOR ANALYSIS

To build robust mechanisms for controlling paging behav-
ior of GCed applications it is important first to understand
those behaviors. Hence we studied those behaviors by an-
alyzing memory reference traces for a set of benchmarks,
executed under each of several collectors, for a number
of heap sizes. The goal was to reveal, for each collector,
the regularities in the reference patterns and the relation
between heap size and footprint.

Methodology Overview: We used an instrumented ver-
sion of Dynamic SimpleScalar (DSS) [14] to generate
memory reference traces. We pre-processed these with
the SAD reference trace reduction algorithm [15, 16].
(SAD stands for Safely Allowed Drop, which we explain
below.) For a given reduction memory size of m pages,
SAD produces a substantially smaller trace that triggers
the same exact sequence of faults for a simulated mem-
ory of at least m pages, managed with least-recently-used
(LRU) replacement. SAD drops most references that hit
in memories smaller than m, keeping only the few nec-
essary to ensure that the LRU stack order is the same for
pages in stack positions m and beyond. We processed the
SAD-reduced traces with an LRU stack simulator to ob-
tain the number of faults for all memory sizes no smaller
than m pages.

SAD and LRU Extensions: Because our garbage collec-
tors make calls to mmap (to request demand-zero pages)
and munnap (to free regions evacuated by GC), we needed
to extend the SAD and LRU models to handle these prim-
itives sensibly. Details are in Appendix A.

Application platform: We used as our Java platform
Jikes RVM version 2.0.1 [6, 5] built for the PowerPC.
We optimized the system images to the highest optimiza-
tion level and included all normal run-time system com-
ponents in the images, to avoid run-time compilation of
those components. The most cost-effective mode for run-
ning Jikes RVM is with its adaptive compilation system.
Because the adaptive system uses time-driven sampling
to invoke optimization, it is non-deterministic. We de-
sired comparable non-deterministic executions to make
our experiments repeatable, so we took compilation logs
from a number of runs of each benchmark in the adap-
tive system, determined the median optimization level for
each method, and directed the system to compile each

method to that method’s median level as soon as the sys-
tem loaded the method. We call this the pseudo-adaptive
system, and it indeed achieves the goals of determinism
and high similarity to typical adaptive system runs.

Collectors: We considered three collectors: mark-sweep
(MS), semi-space copying collection (SS), and Appel-
style generational copying collection (Appel) [7]. MS is
one of the original “Watson” collectors written at IBM. It
uses segregated free lists and separate spaces and GC trig-
gers for small versus large objects (where “large” means
more than 2KB). SS and Appel come from the Garbage
Collector Toolkit (GCTK), developed at the University of
Massachusetts Amherst and contributed to the Jikes RVM
open source repository. They do not have a separate space
for large objects. SS is a straightforward copying collec-
tor that triggers collection when a semi-space (half of the
heap) fills, copying reachable objects to the other semi-
space. Appel adds a nursery, where it allocates all new
objects. Nursery collection copies survivors to the cur-
rent old-generation semi-space. If the space remaining
is too small, it then does an old-generation semi-space
collection. In any case, the new nursery size is half the
total heap size allowed, minus the space used in the old
generation. Both SS and Appel allocate linearly in their
allocation area.

Benchmarks: We use a representative selection of pro-
grams from SPECjvm98. We also use i psi xgl, an
XML database program, and pseudoj bb, which is the

SPECjbb2000 benchmark modified to perform a fixed num-

ber of iterations (thus making time and GC comparisons
more meaningful). We ran all these on their “large” (size
100) inputs.

3.1 Results and Analysis

We consider the results for j ack and j avac under the
SS collector. The results for the other benchmarks are
strongly similar. (The full set of graphs of faults and esti-

mated time for GC and mutator are available at http://www-

ali.cs.umass.edu/tingy/CRAMM /results/) Figure 1(a) and
(d) show the number of page faults for varying real mem-
ory allocations. Each curve in each graph comes from
one simulation of the benchmark in question, at a partic-
ular real memory allocation. Note that the vertical scales
are logarithmic. Note that the final drop in each curve
happens in order of increasing heap size, i.e., the smallest
heap size drops to zero page faults at the smallest alloca-
tion.

We see that each curve has three regions. At the small-
est memory sizes, we see extremely high paging. Cu-
riously, larger heap sizes perform better for these small
memory sizes! This happens because most of the paging
occurs during GC, and a larger heap size causes fewer
GCs, and thus less paging.

The second region of each curve is a broad, flat region
representing substantial paging. For a range of real mem-
ory allocations, the program repeatedly allocates in the
heap until the heap is full, and the collector then walks
over most of the heap, copying reachable objects. Both
steps are similar to looping over a large array, and re-
quire an allocation equal to a semi-space to avoid paging.
(The separate graphs for faults during GC and faults dur-

ing mutator execution support this conclusion.)

Finally, the third region of each curve is a sharp drop
in faults that occurs once the allocation is large enough
to capture the “looping” behavior. The final drop occurs
at an allocation that is near to half the heap size plus a
constant (about 30MB for j ack). This regularity sug-
gests that there is a base amount of memory needed for
the Jikes RVM system and the application code, plus ad-
ditional space for a semi-space of the heap.

We further see that, for most memory sizes, GC faults
dominate mutator (application) faults, and that mutator
faults have a component that depends on heap size. This
dependence results from the mutator’s allocation of ob-
jects in the heap between collections.

The behavior of MS strongly resembles the behavior of
SS, as shown in Figure 1(b) and (e). The final drop in
the curves tends to be at the heap size plus a constant,
which is logical in that MS allocates to its heap size, and
then collects. MS shows other plateaus, which we suspect
have to do with there being some locality in each free
list, but the paging experienced on even the lowest plateau
gives a substantial increase in program running time. It
is important to select a heap size whose final drop-off is
contained by the current real memory allocation.

The curves for Appel (Figure 1)(c) and (f) are also more
complex than those for SS, but show the same pattern of
a final drop in page faulting at 1/2 the heap size plus a
constant.

3.2 Proposed Heap Footprint Model

These results lead us to propose that the minimum real
memory R required to run an application at heap size
h without substantial paging is approximately a-h+b,
where a is a constant that depends on the GC algorithm
(1 for MS and 0.5 for SS and Appel) and b depends partly
on Jikes RVM and partly on the application itself. The in-
tuition behind the formula is this: an application repeat-
edly fills its available heap (1/2-h for Appel and SS; h
for MS), and then, during a full heap collection, copies
out of that heap the portion that is live (b).

In sum, we suggest that required real memory is a linear
function of heap size. We tested this hypothesis using re-
sults derived from those already presented. In particular,
suppose we choose a threshold value t, and we desire that
the estimated paging cost not exceed t times the appli-
cation’s running time with no paging. For a given value
of t, we can plot the minimum real memory allocation
required for each of a range of heap sizes such that the
paging overhead not exceed t.

Figure 2 shows, for j ack and j avac and the three
collectors, plots of the real memory allocation necessary
at varying heap sizes such that paging remains within a
range of thresholds. What we see is that the linear model
is excellent for MS and SS, and still good for Appel,
across a large range of heap sizes and thresholds, and of-
ten not very sensitive to the threshold value. For Appel,
beyond a certain heap size there are nursery collections
but no full heap collections. At that heap size, there is
a “jump” in the curve, but on each side of this heap size
there are two distinct regimes that are both linear.

For some applications, our linear model does not hold

SemiSpace _228_jack Total faults (log)

MarkSweep _228_jack Total faults (log)

Appel _228_jack Total faults (log)

100000 | 100000 |

10000 | 10000 [

1000 £ 1000

Number of page faults

Number of page faults

16406

100000

10000

1000 |-

100

Number of page faults

2‘0 40 60 80 JQJO 2‘0 4‘0
Memory (megabytes)

(a) SStotal faultsfor j ack

SemiSpace _213_javac Total faults (log)

Meeomorya(omegail(_;%/tes)
(b) MSfaultsfor j ack

MarkSweep _213_javac Total faults (log)

120 140 160 20 40 60 80 100
Memory (megabytes)

(c) Appel mutator faultsfor j ack

Appel _213_javac Total faults (log)

100000 | 100000 |

10000 | 10000 |
1000 1000

100

Number of page faults
<
Number of page faults

100 &

1e+06 50MB
60MB

80MB ----
100000 | S 100MB

10000 |

1000 |

Number of page faults

100

20 40 6‘0 80 - 100 120 140 160 o 50
Memory (megabytes)

(d) SStotal faultsfor j avac

150 2‘00
Memory (megabytes)

(e) MSGC faultsfor j avac

L L L IR il L n n i
250 20 40 60 80 100 120 140 160
Memory (megabytes)

(f) Appel mutator faultsfor j avac

Figure 1: Paging: Faults according to memory size and heap size

as well. Figure 3 shows results for i psi xqgl under Ap-
pel. For smaller threshold values the linear relationship is
still strong, modulo the shift from some full collections to
none in Appel. While we note that larger threshold val-
ues ultimately give substantially larger departures from
linearity, users are most likely to choose small values for
t in an attempt nearly to eliminate paging. Only under
extreme memory pressure would a larger value of t be
desirable. The linear model appears to hold well enough
for smaller t to consider using it to drive an adaptive heap-
sizing mechanism.

SemiSpace _201_compress

Memory Needed (MB)
@
g
T

0P000000
ST T AF T

o

0 L L L L L
20 40 60 80 100 120 140 160

Heap Size (MB)

(a) Memory needed for i psi xqgl under Appel

Figure 3: (Real) memory required to obtain given
paging overhead

4. DESIGN AND IMPLEMENTATION

Given the footprint and allocation for a process, the model
described in Section 3.2 can be used to select a good heap
size. To implement this idea, we modified two garbage
collectors as well as the underlying virtual memory man-
ager (VMM). Specifically, we changed the VMM to col-
lect information sufficient to calculate the footprint, and
we changed the garbage collectors to adjust the heap size
online. Furthermore, we altered the VMM to commu-
nicate to the collectors the information necessary to per-
form the heap size calculation.

We implemented the modified garbage collectors within
the Jikes RVM [6, 5] Java system, which we ran on Dy-
namic SimpleScalar [14]. We used these same tools to
generate the traces discussed in Section 3.2. In this case,
we modified the portion of DSS that models an operat-
ing system’s VMM to track and communicate the process
footprint.

4.1 Emulating a Virtual Memory Manager
DSS is an instruction-level CPU simulator that emulates
the execution of a process under PPC Linux. We en-
hanced its emulation of the VMM so that it more realis-
tically modeled the operation of a real system. Since our
algorithm relies on a VMM that conveys both the current
allocation and the current footprint to the garbage collec-
tor, it is critical that the emulated VMM be sufficiently
realistic to approximate the overhead that our methods
would impose.

A low cost replacement policy: Our emulated VMM
uses a SEGQ [8] structure to organize pages; that is, main
memory is divided into two segments where the more
recently used pages are placed in the first segment—a
hot set of pages—while less recently used pages are in

MarkSweep 228 jack

Semispace _228 jack Appel _228_jack

Memory Needed (MB)
Memory Needed (MB)

Memory Needed (MB)

o
0
0
04 e
0
0
0
o:

0 20 40 60 80 100 120 0 20 40
Heap Size (MB)

(a) Memory needed for j ack under MS

MarkSweep _213_javac

SemiSpace _213_javac

80 100 120 0 20 40 60 80 100

60
Heap Size (MB) Heap Size (MB)

(b) Memory needed for j ack under SS

(c) Memory needed for j ack under Ap-
pel

Appel_213_javac

Memory Needed (MB)
Memory Needed (MB)

160

140 -

120

Memory Needed (MB)

o
0
0
04 e
20 03 --o- |
0
0
o:

0 50 100 150 200 250 0 50
Heap Size (MB)

(d) Memory needed for j avac under
MS

150 200 250 0 50 100 150 200

Heap Size (MB) Heap Size (MB)

(e) Memory needed for j avac under SS

(f) Memory needed for j avac under
Appel

Figure 2: (Real) memory required across range of heap sizes to obtain given paging overhead

the second segment—the cold set. When a new page is
faulted into main memory, it is placed in the first (hot)
segment. If that segment is full, one page is moved into
the second segment. If the second segment is full, one
page is evicted to disk, thus becoming part of the evicted
set.

We use the CLOCK algorithm—a common, low-overhead

algorithm that approximates LRU—for the hot set. This
use of hardware reference bits allows pages to be moved
into the cold set in an order that is close to true LRU or-
der. Our model maintains 8 reference bits. As the CLoCK
passes a particular page, we shift its byte of reference bits
left by one position and or the hardware referenced bit
into the low position of the byte. The rightmost one bit of
the reference bits determines the relative age of the page.
When we need to evict a hot set page to the cold set, we
choose the page of oldest age that comes first after the
current CLOCK pointer location.

We apply page protection to pages in the cold set, and
store the pages in order of their eviction from the hot set.
If the program references a page in the cold set, the VMM
restores the page’s permissions and moves it to the hot set,
potentially forcing some other page out of the hot set and
into the cold set. Thus, the cold set behaves like a normal
LRU queue.

We modified DSS to emulate both hardware reference
bits and protected pages. Our emulated VMM uses these
capabilities to implement our CLock/LRU SEGQ pol-
icy. For a given main memory size, it records the number
of minor page faults on protected pages and the number

of major page faults on non-resident pages. We can later
ascribe service times for minor and major fault handling
and thus determine the running time spent in the VMM.

Handling unmapping: As was the case for the SAD
and LRU algorithms, our VMM emulation needs to deal
with unmapping of pages. The cold and evicted sets work
essentially as one large LRU queue, so we handle un-
mapped pages for those portions as we did for the LRU
stack algorithm. As for the hot set, suppose an unmap
operation causes k pages to be unmapped in the hot set.
Our strategy is to shrink the hot set by k pages and put k
place holders at the head of the cold set. We then allow
future faults from the cold or evicted set to grow the hot
set back to its target size.

4.2 Virtual Memory Footprint Calculations

Existing real VMMs lack capabilities critical for sup-
porting our heap sizing algorithm. Specifically, they do
not gather sufficient information to calculate the footprint
of a process, and they lack a sufficient interface for inter-
acting with our modified garbage collectors. We describe
the modifications required to a VMM—modifications that
we applied to our emulated VMM—to add these capabil-
ities.

We have modified our VMM to measure the current
footprint of a process, where the footprint is defined as
the smallest allocation whose page faulting will increase
the total running time by more than a fraction t over the
non-paging running time.> When t = 0, the correspond-

IFootprint has sometimes been used to mean the total number of

ing allocation may be wasting space to cache pages that
receive very little use. When t is small but non-zero, the
corresponding allocation may be substantially smaller in
comparison, and yet still yield only trivial amounts of
paging, so we think non-zero thresholds lead to a more
useful definition of footprint.

LRU histograms: To calculate this footprint, the VMM
records an LRU histogram [19, 20]. For each reference
to a page found at position i of the LRU queue for that
process, we increment a count HJi]. This histogram al-
lows the VMM to calculate the number of page faults that
would occur with each possible allocation to the process.
The VMM finds the footprint by finding the allocation
size where the number of faults is just below the number
that would cause the running time to exceed the threshold
t.

Maintaining a true LRU queue would impose too much
overhead in a real VMM. Instead, our VMM uses the
SEGQ structure described in Section 4.1 that approxi-
mates LRU at low cost. Under SEGQ, we maintain his-
togram counts only for references to pages in the cold
and evicted sets. Such references incur a minor or major
fault, respectively, and thus give the VMM an opportu-
nity to increment the appropriate histogram entry. Since
the hot set is much smaller than the footprint, the missing
histogram information on the hot set does not harm the
footprint calculation.

In order to avoid large space overheads, we group queue
positions and their histogram entries together into bins.
Specifically, we use one bin for each 64 pages (256KB
given our page size of 4KB). This granularity is fine enough
to provide a sufficiently accurate footprint measurement
while reducing the space overhead substantially.

Mutator vs. collector referencing: The mutator and
garbage collector exhibit drastically different reference
behaviors. Furthermore, when the heap size is changed,
the reference pattern of the garbage collector itself will
change, while the reference pattern of the mutator will
likely remain similar (although slightly different thanks
to objects that may have moved during collection).

Therefore, the VMM relies on notification from the garbage

collector when collection begins and when it ends. One
histogram records the mutator’s reference pattern, and an-
other histogram records the collector’s. When the heap
size changes, we clear the collector’s histogram, since the
previous histogram data no longer provides a meaningful
projection of future memory needs.

When the VMM calculates the footprint of a process, it
combines the counts from both histograms, thus incorpo-
rating the page faulting behavior of both phases.

Unmapping pages: A garbage collector may elect to
unmap a virtual page, thereby removing it from use. As
we discussed previously, we use place holders to model
unmapped pages. They are crucial not only in determin-
ing the correct number of page faults for each memory
size, but also in maintaining the histograms correctly, since

unique pages used by a process, and sometimes the memory size at
which no page faulting occurs. Our defi nition is taken from this sec-
ond meaning. We choose not to refer to it as aworking set because
that term has alarger number of poorly defi ned meanings.

the histograms indicate the number of faults one would
experience at various memory sizes.

Histogram decay: Programs exhibit phase behavior:
during a phase, the reference pattern is constant, but when
one phase ends and another begins, the reference pattern
may change dramatically. Therefore, the histograms must
reflect the referencing behavior from the current phase.
During a phase, the histogram should continue to accu-
mulate. When a phase change occurs, the old histogram
values should be decayed rapidly so that the new refer-
ence pattern will emerge.

Therefore, the VMM periodically applies an exponen-

tial decay to the histogram. Specifically, it multiplies

H __ 63
each histogram entry by a decay factor a = g7, ensur-

ing that older histogram data has diminishing influence
on the footprint calculation. Previous research has shown
that the decay factor is not a sensitive parameter when
using LRU histograms to guide adaptive caching strate-
gies [19, 20].

To ensure that the VMM applies decay more rapidly in
response to a phase change, we must identify when phase
changes occur. Phases are memory size relative: a phase
change for a hardware cache is not a phase change for a
main memory. Therefore, the VMM must respond to ref-
erencing behavior near the main memory allocation for
the process. Rapid referencing of pages that substantially
affect page replacement for the current allocation indicate
that a phase change relative to that allocation size is oc-
curring [19, 20].

The VMM therefore maintains a virtual memory clock
(this is quite distinct from, and should not be confused
with the clock of the CLock algorithm). A reference to
a page in the evicted set advances the clock by 1 unit. A
reference to a page in the cold set, whose position in the
SEGQ system is i, advances the clock by f(i). If the hot
set contains h pages, and the cold set contains ¢ pages,

thenh<i<h+cand f(i) = %.2 The contribution of
the reference to the clock’s advancement increases lin-
early from O to 1 as the position nears the end of the cold
set, thus causing references to pages that are near to evic-

tion to advance the clock more rapidly.

Once the VMM clock advances % units for an M-page
allocation, the VMM decays the histogram. The larger
the memory, the longer the decay period, since one must
reference a larger number of previously cold or evicted
pages to constitute a phase change.

Hot set size management: A typical VMM uses a
large hot set to avoid minor faults. The cold set is used as
a “last chance” for pages to be re-referenced before being
evicted to disk. In our case, though, we want to maximize
the useful information (LRU histogram) that we collect,
so we want the hot set to be as small as possible, without
causing undue overhead from minor faults. We thus set
a target minor fault overhead, stated as a fraction of ap-
plication running time, say 1% (a typical value we used).

2| the cold set is large, the high frequency of references at lower
queue positions may advance the clock too rapidly. Therefore, for a

total allocation of M pages, we defi ned = max(c, ¥), i = min(h, %),
and f(i) = M.

Periodically (described below) we consider the overhead
in the recent past. We calculate this as the (simulated)
time spent on minor faults since the last time we checked,
divided by the total time since the last time we checked.
For “time” we use the number of instructions simulated,
and assume an approximate execution rate of 10° instruc-
tions/sec. We charge 2000 instructions (equivalent to 2s)
per minor fault. If the overhead exceeds 1.5%, we in-
crease the hot set size; if it is less than 0.5%, we decrease
it (details in a moment). This simple adaptive mechanism
worked quite well to keep the overhead within bounds,
and the 1% value provided information good enough for
the rest of our mechanisms to work.

How do we add or remove pages from the hot set? Our
technique for growing the hot set by k pages is to move
into the hot set the k hottest pages of the cold set. To
shrink the hot set to a target size, we run the CLOCK algo-
rithm to evict pages from the hot set, but without updating
the reference bits used by the CLock algorithm. In this
way the oldest pages in the hot set (insofar as reference
bits can tell us age) end up at the head of cold set, with
the most recently used nearer the front (i.e., in proper age
order).

How do we trigger consideration of hot set size adjust-
ment? To determine when to grow the hot set, we count
what we call hot set ticks. We associate a weight with
each LRU queue entry from positions h+ 1 through h+-c,
such that each position has weight w = (h+c+1—i)/c.
Thus, position h+1 has weight 1 and h+c+ 1 has weight
0. For each minor fault that hits in the cold set, we incre-
ment the hot set tick count by the weight of the position of
the fault. When the tick count exceeds 1/4 the size of the
hot set (representing somewhat more than 25% turnover
of the hot set), we trigger a size adjustment test. Note
that the chosen weighting counts faults near the hot set
boundary more than ones far from it. If we have a high
overhead that we can fix with reasonable hot set growth,
we will find it more quickly; conversely, if we have many
faults from the cold end of the cold set, we may be en-
countering a phase change in the application and should
be careful not to adjust the hot set size too eagerly.

To handle the case where we should consider shrinking
the hot set, we consider the passage of (simulated) real
time. If, when we handle a fault, we find that we have
not considered an adjustment within T seconds, we trigger
consideration. We use a value of 16 x 10° instructions,
corresponding to T = 16ms.

When we want to grow the hot set, how do we com-
pute a new size? Using the current overhead, we de-
termine the number of faults by which we exceeded our
target overhead since the last time we considered adjust-
ing the hot set size. We multiply this times the average
hot-tick weight of minor faults since that time, namely
hot ticks / minor faults; we call the resulting number N:

W = hot ticks/minor faults

target faults = (At x 1%) /2000

N =W x (actual faults — target faults)
Multiplying by the factor W avoids adjusting too eagerly.

Using recent histogram counts for pages at the hot end
of the cold set, we add pages to the hot set until we have
added ones that account for N minor faults since the last
time we considered adjusting the hot set size.

When we want to shrink the hot set, how do we compute
a new size? In this case, we do not have histogram infor-
mation, so we assume that (for changes that are not too
big) the number of minor faults changes linearly with the
number of pages removed from the hot set. Specifically,
we compute a desired fractional change:

fraction = (target faults — actual faults) /target faults

Then, to be conservative, we reduce the hot set size by
only 20% of this fraction:

reduction = hot set size x fraction x .20

We found this scheme to work very well in practice.

VMM/GC interface: The GC and VMM communi-
cate with system calls. The GC initiates communication
at the beginning and ending of each collection. When the
VMM receives a system call marking the beginning of
a collection, it switches from the mutator to the collec-
tor histogram. It returns no information to the GC at that
time.

When the VMM receives a system call for the ending
of a collection, it performs a number of tasks. First, it
calculates the footprint of the process based on the his-
tograms and the threshold t for page faulting. Second,
it determines the current main memory allocation to the
process. Third, it switches from the collector to the mu-
tator histogram. Finally, it returns to the GC the footprint
and allocation values. The GC may use these values to
calculate a new heap size such that its footprint will fit
into its allocated space.

4.3 Adjusting Heap Size

In Section 3 we described the virtual memory behavior of
the MS, SS, and Appel collectors in Jikes RVM. We now
describe how we modified the SS and Appel collectors
so that they modify their heap size in response to avail-
able real memory and the application’s measured foot-
print. (Note that MS, unless augmented with compaction,
cannot readily shrink its heap, so we did not modify it and
drop it from further consideration.) We consider first the
case where Jikes RVM starts with the heap size requested
on the command line, and then adjusts the heap size after
each GC in response to the current footprint and available
memory. This gives us a scheme that at least potentially
can adapt to changes in available memory during a run.
Next, we augment this scheme with a startup adjustment,
taking into account from the beginning of a run how much
memory is available at the start. We describe this mecha-
nism for the Appel collector, and at the end describe the
(much simpler) version for SS.

Basic adjustment scheme: We adjust the heap size af-
ter each GC, so as to derive a new nursery size. First,
there are several cases in which we do not try to adjust
the heap size:

o When we just finished a nursery GC that is trigger-
ing a full GC. We wait to adjust until after the full
GC.

e On startup, i.e., before there are any GCs. (We de-
scribe later our special handling of startup.)

o If the GC was a nursery GC, and the nursery was

“small”, meaning less than 1/2 of the maximum amount

we can allocate (i.e., less than 1/4 of the current to-
tal heap size). Footprints from small nursery col-
lections tend to be misleadingly small. We call this

constant the nursery filter factor, which controls which

nursery collections heap size adjustment should ig-
nore.

Supposing none of these cases pertain, we then act a little
differently after nursery versus full GCs. After a nursery
GC, we first compute the survival rate of the just com-
pleted GC (bytes copied divided by size of from-space).
If this survival rate is greater than any survival rate we
have yet seen, we estimate the footprint of the next full
GC:

eff = current footprint+ 2 x survival rate x old space size

where the old space size is the size before this nursery
GC.2 We call this footprint the estimated future footprint,
or eff for short. If the eff is less than available memory,
we make no adjustment. The point of this calculation
is to prevent over-eager growing of the heap after nurs-
ery GCs. Nursery GC footprints tend to be smaller than
full GC footprints; hence our caution about using them to
grow the heap.

If the eff is more than available memory, or if we just
performed a full heap GC, we adjust the heap size, as
we now describe. Our first step is to estimate the slope
of the footprint versus heap size curve (corresponding to
the slope of the lines in Figure 2. In general, we use the
footprint and heap size of the two most recent GCs to de-
termine this slope. However, after the first GC we have
only one point, so in that case we assume a slope of 2
(for Aheap size/Afootprint). Further, if we are consider-
ing growing the heap, we multiply the slope by 1/2, to
be conservative. We call this constant the conservative
factor and use it to control how conservatively we should
grow the heap. In Section 5, we provide a sensitivity anal-
ysis for the conservative and nursery filter factors.

Using simple algebra, we compute the target heap size
from the slope, current and old footprint, and old heap
size. (*Old” means after the previous GC; “current” means
after the current GC.):

old size + slope x (current footprint — old footprint)

Startup heap size: We found that the heap size ad-
justment algorithm we gave above work well much of the
time, but has difficulty if the initial heap size (given by
the user on the Jikes RVM command line) is larger than
the footprint. The underlying problem is that the first GC
causes a lot of paging, yet we do not adjust the heap size
until after that GC. Hence we added a startup adjustment.
From the currently available memory (a value supplied by

3Thefactor 2 x survival rateisintended to estimate the volume of old
space data referenced and copied. It is optimistic about how densely
packed the survivorsarein from-space. A more conservative value for
the factor would be 1+ survival rate.

the VMM on request), we compute an acceptable initial
heap size:

Min(initial heap size ,2 x (available — 20MB))

Heap size adjustment for SS: SS in fact uses the same
adjustment algorithm as Appel. The critical difference is
that in SS there are no nursery GCs, only full GCs.

5. EXPERIMENTAL EVALUATION

To test our algorithm we ran each benchmark described in
Section 3 using the range of heap sizes used in Section 3.2
and a selection of fixed main memory allocation sizes.
We used each combination of these parameters with both
the standard garbage collectors (which use a static heap
size) and our dynamic heap-sizing collectors. We chose
the real memory allocations to reveal the effect of using
large heaps in small allocations as well as small heaps in
large allocations. In particular, we sought to evaluate the
ability of our algorithm to grow and to shrink the heap,
and to compare its performance to the static heap collec-
tors in both cases.

We compare the performance of the collectors by mea-
suring their estimated running time, derived from the num-
ber of instructions simulated. We simply charge a fixed
number of instructions for each page fault to estimate to-
tal execution time. We further assume that writing back
dirty pages can be done asynchronously so as to interfere
minimally with application execution and paging. We ig-
nore other operating system costs, such as application I/O
requests. These modeling assumptions are reasonable be-
cause we are interested primarily in order-of-magnitude
comparative performance estimates, not in precise abso-
lute time estimates. The specific values we used assume
that a processor achieves an average throughput of 1 x
10° instructions/sec and that a page fault stalls the appli-
cation for 5ms = 5 x 108 instructions. We attribute 2,000
instructions to each soft page fault, i.e 2us, as mentioned
in Section 4.2. For our adaptive semi-space collector, we
use the threshold t = 5% for computing the footprint. For
our adaptive Appel collector we use t = 10%. (Appel
completes in rather less time overall and since there are a
number of essentially unavoidable page faults at the end
of a run, 5% was unrealistic for Appel.)

5.1 Adaptive vs. Static Semi-space

Figure 4 shows the estimated running time of each bench-
mark for varying initial heap sizes under the SS collector.
We see that for nearly every combination of benchmark
and initial heap size, our adaptive collector changes to a
heap size that performs at least as well as the static col-
lector. The left-most side of each curve shows initial heap
sizes and corresponding footprints that do not consume
the entire allocation. The static collector under-utilizes
the available memory and performs frequent collections,
hurting performance. Our adaptive collector grows the
heap size to reduce the number of collections without in-
curring paging. At the smallest initial heap sizes, this
adjustment reduces the running time by as much as 70%.

At slightly larger initial heap sizes, the static collector
performs fewer collections as it better utilizes the avail-
able memory. On each plot, we see that there is an initial

heap size that is ideal for the given benchmark and allo-
cation. Here, the static collector performs well, while our
adaptive collector often matches the static collector, but
sometimes increases the running time a bit. Only pseu-
dojbb and _209_db experience this maladaptivity. We be-
lieve that fine tuning our adaptive algorithm will likely
eliminate these few cases.

When the initial heap size becomes slightly larger than
the ideal, the static collector’s performance worsens dra-
matically. This initial heap size yields a footprint that is
slightly too large for the allocation. The resultant paging
for the static allocator has a huge impact, slowing execu-
tion under the static allocator 5 to 10 fold. Meanwhile, the
adaptive collector shrinks the heap size so that the allo-
cation completely captures the footprint. By performing
slightly more frequent collections, the adaptive collector
consumes a modest amount of CPU time to avoid a sig-
nificant amount of paging, thus reducing the running time
by as much as 90%.

When the initial heap size grows even larger, the perfor-
mance of the adaptive collector remains constant. How-
ever, the running time with the static collector decreases
gradually. Since the heap size is larger, it performs fewer
collections, and it is those collections and their poor refer-
ence locality that cause the excessive paging. Curiously,
if a static collector is going to use a heap size that causes
paging, it is better off using an excessively large heap
sizel

Observe that for these larger initial heap sizes, even the
adaptive allocator cannot match the performance achieved
with the ideal heap size. This is because the adaptive col-
lector’s initial heap sizing mechanism cannot make a per-
fect prediction, and the collector does not adjust to a bet-
ter heap size until after the first full collection.

A detailed breakdown: Table 1 provides a breakdown
of the running time shown in one of the graphs from Fig-
ure 4. Specifically, it provides the results for the adaptive
and static semi-space collectors for varying initial heap
sizes with 213 _javac. It indicates, from left to right: the
number of instructions executed (billions); the number of
minor and major faults; the number of collections; the
percentage of time spent handling minor faults; the num-
ber of major faults that occur within the first two collec-
tions with the adaptive collector; the number of collec-
tions before the adaptive collector learns (“warms-up”)
sufficiently to find its final heap size; the percentage of
improvement in terms of estimated time.

We see that at small initial heap sizes, the adaptive col-
lector adjusts the heap size to reduce the number of col-
lections, and thus the number of instructions executed,
without incurring paging. At large initial heap sizes, the
adaptive mechanism dramatically reduces the major page
faults. Our algorithm found its target heap size within two
collections, and nearly all of the paging occurred during
that “warm-up” time. Finally, it controlled the minor fault
cost well, approaching but never exceeding 1%.

5.2 Adaptive vs. Static Appel

Figure 5 shows the estimated running time of each bench-
mark for varying initial heap sizes under the Appel collec-
tor. The results are qualitatively similar to those for the

adaptive and static semi-space collectors. For all of the
benchmarks, the adaptive collector yields significantly im-
proved performance for large initial heap sizes that cause
heavy paging with the static collector. It reduces running
time by as much as 90%.

For about half of the benchmarks, the adaptive collector
improves performance almost as dramatically for small
initial heap sizes. However, for the other benchmarks,
there is little or no improvement. The Appel algorithm
uses frequent nursery collections, and less frequent full
heap collections. For our shorter-lived benchmarks, the
Appel collector incurs only 1 or 2 full heap collections.
Therefore, by the time that the adaptive collector selects
a better heap size, the execution ends.

Furthermore, our algorithm is more likely to be mal-
adaptive when its only information is from nursery col-
lections. Consider _228_jack at an initial heap size of
36MB. That heap size is sufficiently small that the static
collector incurs no full heap collections. For the adap-
tive collector, the first several nursery collections create a
footprint that is larger than the allocation, so the collector
reduces the heap size. This heap size is small enough to
force the collector to perform a full heap collection that
references far more data than the nursery collections did.
Therefore, the footprint suddenly grows far beyond the al-
location and incurs heavy paging. The nursery collection
leads the adaptive mechanism to predict an unrealistically
small footprint for the select heap size.

Although the adaptive collector then chooses a much
better heap size following the full heap collection, exe-
cution terminates before the system can realize any ben-
efit. In general, processes with particularly short running
times may incur the costs of having the adaptive mecha-
nism find a good heap size, but not reap the benefits that
follow. Unfortunately, most of these benchmarks have
short running times that trigger only 1 or 2 full heap col-
lections with pseudo-adaptive builds.

Parameter sensitivity: It is important, when adapting
the heap size of an Appel collector, to filter out the mis-
leading information produced during small nursery col-
lections. Furthermore, because a maladaptive choice to
grow the heap too aggressively may yield a large footprint
and thus heavy paging, it is important to grow the heap
conservatively. The algorithm described in Section 4.3
employs two parameters: the conservative factor, which
controls how conservatively we grow the heap in response
to changes in footprint or allocation, and the nursery fil-
ter factor, which controls which nursery collections to ig-
nore.

We carried out a sensitivity test on these parameters.
We tested all combinations of conservative factor values
of {0.66, 0.50, 0.40} and nursery filter factor values of
{0.25, 0.5, 0.75}. Figure 6 shows _213_javac under the
adaptive Appel collector for all nine combinations of these
parameter values. Many of the data points in this plot
overlap. Specifically, varying the conservative factor has
no effect on the results. For the nursery filter factor, val-
ues of 0.25 and 0.5 yield identical results, while 0.75
produces slightly improved running times at middling to
large initial heap sizes. The effect of these parameters

Estimated time (billion insts)

x,

#

e

60
Heap (M8)

(a) _202_jess 40MB

AD heap insts —+—
h e

e

stimated time (billon

X,

(b) -209_db 50MB

‘SemiSpace ipsixql with 60MB

A

60
Heap (M8)

(d) -228_jack 40MB

heap insts ——
1X heap insts —x-—

,,,,,,,,,,,,,,,,,,

)
Heap (MB)

(e) ipsixgl 60MB

% I
(c) _213_javac 60MB

‘SemiSpace pseudojob with

120 140 160 180 200 220 240
Heap (MB)

(f) pseudojbb 100MB

Figure 4: The estimated running time for the static and adaptive SS collectors for all benchmarks over a range of

initial heap sizes.

Heap | Inst’s (x10°) Minor faults Major faults GCs Minor fault cost | MF | W | Ratio
(MB) [AD FIX AD FIX AD FIX |AD[FIX| AD FIX] 2GC AD/FIX
30 | 15.068 | 42.660 | 210,611 | 591,028 | 207 0] I5] 62]0.95% | 0.95% 0 2] 62.28%
40 | 15.251 | 22.554 | 212,058 | 306,989 | 106 0 I5] 28]0.95% | 0.93% 0] 1] 30.0d%
50 | 14.965 | 16.860 | 208,477 | 231,658 | 110 8] 15| 18]0.95% | 0.94% 0] 1] 822%
60 | 14.716 | 13.811 | 198,337 | 191,458 | 350 689 | 14| 1310.92% | 0.94% 111 1] 449%
80 | 14.894 | 12.153 | 210,641 | 173,742 | 2,343 | 27,007 | 14 910.96% | 0.97% | 2236 | 1| 81.80%
100 | 13.901 | 10.931 | 191,547 | 145,901 | 1,720 | 35,676 | 13 710.94% | 0.90% [1612 | 2 | 88.92%
120 | 13.901 | 9.733 | 191,547 | 128,118 | 1,720 | 37,941 | 13 510.94% | 0.89% [1612 | 2 | 88.63%
160 | 13.901 | 8.540 | 191,547 | 111,633 | 1,720 | 28,573 | 13 310.94% | 0.88% [1612 | 2 | 85.02%
200 | 13.901 | 8.525| 191,547 | 115,086 | 1,720 | 31,387 | 13 31094% | 0.91% [1612 | 2 | 86.29%
240 | 13901 | 7.651] 191,547 98,952 [1,720 | 15,041 | 13 21094% | 0.87% [1612 | 2 | 72.64%

Table 1: A detailed breakdown of the events and timings for 213 _javac under the static and adaptive SS collector
over a range of initial heap sizes. Warm-up is the time, measured in the number of garbage collections, that the
adaptivity mechanism required to select its final heap size.

is dominated by the performance improvement that the
adaptivity provides over the static collector.

Dynamically changing allocations: The results pre-
sented so far show the performance of each collector for
an unchanging allocation of real memory. Although the
adaptive mechanism finds a good, final heap size within
two full heap collections, it is important that the adaptive
mechanism also quickly adjust to dynamic changes in al-
location that occur mid-execution.

Figure 7 shows the result of running _213_javac with
the static and adaptive Appel collectors using varying ini-
tial heap sizes. Each plot shows results both from a static
60MB allocation and a dynamically changing allocation
that begins at 60MB. The left-hand plot shows the results

of increasing that allocation to 75MB after 2 billion in-
structions (2 sec), and the right-hand plot shows the re-
sults of shrinking to 45MB after the same length of time.

When the allocation grows, the static collector benefits
from the reduced page faulting that occurs at sufficient
large initial heap sizes. However, the adaptive collec-
tor matches or improves on that performance. Further-
more, the adaptive collector is able to increase its heap
size in response to the increased allocation, and reduce
the garbage collection overhead suffered when the allo-
cation does not increase.

The qualitative results for a shrinking allocation are
similar. The static collector’s performance suffers due to
the paging caused by the reduced allocation. The adaptive

Appel _209_db with SOMB Appel _213_javac with 60MB.

ts)
1s)

Estimated time (billion insts)
Estimated time (bllon inst

P

,,,,,,,,,,,,,,,,,,,,,,,,

insts)

Estimated time (billion

0 2))) 100 120 20) E)
Heap (MB)

(a) _202_jess 40MB

Appel _228_jack with 40MB

160

(b) -209_db 50MB

Appel ipsixgl with 60MB

100 120 140 160 o E) 100 150 200 250
Heap (MB)

(c) _213_javac 60MB

Appel pseudojbb with 100M8

120

100 [

fon insts)

ion insts)

Estimated time (bill
Estimated time (bl

insts)

Estimated time (billion

Heap (MB)

(d) -228_jack 40MB

100 120 140 160 40 60 80 100 120 140 160 180 200 220 240

Heap (MB) Heap (MB)

(e) ipsixgl 60MB

(f) pseudojbb 100MB

Figure 5: The estimated running time for the static and adaptive Appel collectors for all benchmarks over a range

of initial heap sizes.

Appel _213_javac with 60MB Sensitivity Analysis
180

T T T
FIX heap insts —+—
0.66x0.25

L 0.66x0.50 ~--x---
160 0.66X0.75 ——+--
0.50%0.25 ---x---
0.50%0.50 ---x---
140 |- 0.50%0.75 —
0.40x0.2! -
0.40x0.50 ---x---
120 | 0.40%0.75 —-+-- 4

Estimated time (billion insts)

60 - 1

40

20

. . .
0 50 100 150 200 250
Heap (MB)

Figure 6: _213_javac under the Appel collectors given
a 60MB initial heap size. We tested the adaptive col-
lector with 9 different combinations of parameter set-
tings, where the first number of each combination is
the conservative factor and the second number is the
nursery filter factor. The adaptive collector is not sen-
sitive to the conservative factor, and is minimally sen-
sitive to the nursery filter factor.

collector’s performance suffers much less from the re-
duced allocation. When the allocation shrinks, the adap-
tive collector will experience page faulting during the next
collection, after which it selects a new, smaller heap size
at which it will collect more often.

Notice that when the allocation changes dynamically,
the adaptive allocator dominates the static collector—there
is no initial heap size at which the static collector matches
the performance of the adaptive allocator. Under chang-
ing allocations, adaptivity is necessary to avoid excessive
collection or paging.

We also observe that there are no results for the adap-
tive collector for initial heap sizes smaller than 50MB.
When the allocation shrinks to 45MB, paging always oc-
curs. The adaptive mechanism responds by shrinking its
heap. Unfortunately, it selects a heap size that is smaller
than the minimum required to execute the process, and
the process ends up aborting. This problem results from
the failure of our linear model, described in Section 3.2,
to correlate heap sizes and footprints reliably at such small
heap sizes. We believe we can readily address this prob-
lem in future work (possibly in the final version of this pa-
per). Since our collectors can already change heap size,
we believe that a simple mechanism can grow the heap
rather than allowing the process to abort. Such a mecha-
nism will make our collectors even more robust.

6. FUTURE WORK

Our adaptive collectors demonstrate the substantial per-
formance benefits possible with dynamic heap resizing.
However, this work only begins exploration in this direc-
tion. We are bringing our adaptive mechanism to other
garbage collection algorithms such as mark-sweep. We
seek to improve the algorithm to avoid the few cases in
which it is maladaptive. Finally, we are modifying the
Linux kernel to provide the VMM support described in
Section 4.2 so that we may test the adaptive collectors on

Appel _213_javac with 60MB dynamic memory increase

180 T
AD heap AD memory -
FIX heap AD memory - -~ prommmmm T
160 F AD heap FIX memory ---%--- /
FIX heap FIX memory ---a---
140 - A
o
® 120
£
c
S
3 100 [
@
£
Z s
51
]
£
@ 60 -
w +
1
‘A
40 \
\
| A
20 - I\ P
R
1

1 1 1
[¢] 50 100 150 200 250
Heap (MB)

(a) _213_javac 60MB— >75MB

Appel _213_javac with 60MB dynamic memory decrease
250

T T T
AD heap AD memory - o
FIX heap AD memory —-+— / -
AD heap FIX memory ---x---

FIX heap FIX memory ---4---

150 | / N

Estimated time (billion insts)

50 | DA e A 4

1 1 1
0 50 100 150 200 250
Heap (MB)

(b) -213_javac 60MB— >45MB

Figure 7: Results of running _213_javac under the adaptive Appel collector over a range of initial heap sizes and
dynamically varying real memory allocations. During execution, we increase (left-hand plot) or decrease (right-
hand plot) the allocation by 15MB after 2 billion instructions.

a real system.

Other research is exploring a more fine-grained approach
to controlling the paging behavior of garbage collectors.
Specifically, the collector assists the VMM with page re-
placement decisions, and the collector explicitly avoids
performing collection on pages that have been evicted to
disk. We consider this approach to be orthogonal and
complementary to adaptive heap sizing. We are explor-
ing the synthesis of these two approaches to controlling
GC paging.

Finally, we are developing new strategies for the VMM
to select allocations for each process. A process that uses
adaptive heap sizing presents the VMM with greater flex-
ibility in trading CPU cycles for space consumption. By
developing a model of the CPU time required for garbage
collection at each possible allocation (and thus heap size),
the VMM can choose allocations intelligently for pro-
cesses that can flexibly change their footprint in response.
When main memory is in great demand, most workloads
suffer from such heavy paging that the system becomes
useless. We believe that garbage collected processes whose
heap sizes can adapt will allow the system to handle heavy
memory pressure more gracefully.

7. CONCLUSION

Garbage collectors are sensitive to heap size and main
memory allocation. We present a dynamic adaptive heap
sizing algorithm. We apply it to two collectors, semi-
space and Appel, requiring only minimal changes to the
underlying collection algorithm to support heap size ad-
justments. For static allocations, our adaptive collectors
match or improve upon the performance provided by the
standard, static collectors in the vast majority of cases.
The reductions in running time are often tens of percent,
and as much as 90%. For initial heap sizes that are too
large, we drastically reduce paging, and for initial heap
sizes that are too small, we avoid excessive garbage col-
lection.

In the presence of dynamically changing allocations,
our adaptive collectors strictly dominate the static collec-
tors. Since no one heap size will provide ideal perfor-
mance when allocations change, adaptivity is necessary,
and our adaptive algorithm finds good heap sizes within
1 or 2 full heap collections.

8. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under grant number CCR-0085792.

Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF. We are also
grateful to IBM Research for making the Jikes RVM sys-
tem available under open source terms, and likewise to
all those who developed SimpleScalar and Dynamic Sim-
pleScalar and made them similarly available.

9. REFERENCES

[1] J2SE 1.5.0 Documentation - Garbage Collector
Ergonomics. Available at
http://java.sun.com/j2se/1.5.0/docs/guide/vm/gc-
ergonomics.html.

[2] Novell Documentation: NetWare 6 - Optimizing
Garbage Collection. Available at
http://www.novell.com/documentation/index.html.

[3] Technical white paper - BEA weblogic jrockit: Java
for the enterprise.
http://www.bea.com/content/news_events
Iwhite_papers/BEA_JRockit_wp.pdf.

[4] R. Alonso and A. W. Appel. An advisor for flexible
working sets. In Proceedings of the 1990
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 153-162,
Boulder, CO, May 1990.

[5] B. Alpern, C. R. Attanasio, J. J. Barton, M. G.
Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink,
D. Grove, M. Hind, S. F. Hummel, D. Lieber,

V. Litvinov, M. F. Mergen, T. Ngo, V. Sarkar, M. J.
Serrano, J. C. Shepherd, S. E. Smith, V. C.
Sreedhar, H. Srinivasan, and J. Whaley. The
Jalepefio virtual machine. IBM Systems Journal,
39(1), Feb. 2000.

[6] B. Alpern, C. R. Attanasio, J. J. Barton, A. Cocchi,
S. F. Hummel, D. Lieber, T. Ngo, M. Mergen, J. C.
Shepherd, and S. Smith. Implementing Jalepefio in
Java. In Proceedings of SIGPLAN 1999 Conference
on Object-Oriented Programming, Languages, &
Applications, volume 34(10) of ACM SIGPLAN
Notices, pages 314-324, Denver, CO, Oct. 1999.
ACM Press.

[7] A. Appel. Simple generational garbage collection
and fast allocation. Software: Practice and
Experience, 19(2):171-183, Feb. 1989.

[8] O. Babaoglu and D. Ferrari. Two-level replacement
decisions in paging stores. IEEE Transactions on
Computers, C-32(12):1151-1159, Dec. 1983.

[9] J. A. Barnett. Garbage collection versus swapping.
Operating Systems Review, 13(3), 1979.

[10] S. M. Blackburn, P. Cheng, and K. S. McKinley.
Oil and Water? High Performance Garbage
Collection in Java with MMTKk. In ICSE 2004, 26th
International Conference on Software Engineering,
page to appear, May 2004.

[11] H.-J. Boehm and M. Weiser. Garbage collection in
an uncooperative environment. Software: Practice
and Experience, 18(9):807-820, Sept. 1988.

[12] T. Brecht, E. Arjomandi, C. Li, and H. Pham.
Controlling garbage collection and heap growth to
reduce the execution time of Java applications. In
Proceedings of the 2001 ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages & Applications, pages
353-366, Tampa, FL, June 2001.

[13] E. Cooper, S. Nettles, and I. Subramanian.
Improving the performance of SML garbage
collection using application-specific virtual
memory management. In Conference Record of the
1992 ACM Symposium on Lisp and Functional
Programming, pages 43-52, San Francisco, CA,
June 1992.

[14] X. Huang, J. E. B. Moss, K. S. Mckinley,

S. Blackburn, and D. Burger. Dynamic
SimpleScalar: Simulating Java Virtual Machines.
Technical Report TR-03-03, University of Texas at
Austin, Feb. 2003.

[15] S. F. Kaplan, Y. Smaragdakis, and P. R. Wilson.
Trace reduction for virtual memory simulations. In
Proceedings of the ACM SIGMETRICS 1999
International Conference on Measurement and
Modeling of Computer Systems, pages 47-58, 1999.

[16] S. F. Kaplan, Y. Smaragdakis, and P. R. Wilson.
Flexible reference trace reduction for VM
simulations. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 13(1):1-38, Jan.
2003.

[17] K.-S. Kim and Y. Hsu. Memory system behavior of

Java programs: Methodology and analysis. In
Proceedings of the ACM SIGMETRICS 2002
International Conference on Measurement and
Modeling of Computer Systems, volume 28(1),
pages 264-274, Santa Clara, CA, June 2000.

[18] D. A. Moon. Garbage collection in a large LISP
system. In Conference Record of the 1984 ACM
Symposium on Lisp and Functional Programming,
pages 235-245, 1984.

[19] Y. Smaragdakis, S. F. Kaplan, and P. R. Wilson.
The EELRU adaptive replacement algorithm.
Performance Evaluation, 53(2):93-123, July 2003.

[20] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis.
The case for compressed caching in virtual memory
systems. In Proceedings of The 1999 USENIX
Annual Technical Conference, pages 101-116,
Monterey, California, June 1999. USENIX
Association.

APPENDIX

A. SAD AND LRU EXTENSIONS

As previously mentioned, we needed to extend the SAD
and LRU models to handle mmap and nunmap sensi-
bly. Since SAD and LRU both treat the first access to
a page not previously seen as a compulsory miss, nmap
actually requires no special handling. We do need to han-
dle munnmap events specially, however. First we describe
how to model unmapping for the LRU stack algorithm,
and then describe how to extend SAD accordingly. Con-
sider the diagram in Figure 8(a). The upper configuration
shows the state of the stack after the sequence of refer-
encesa, b,c,d, e, f,g,h,i,j,k,]I, followed by
unmapping c andj .

Note that we leave place holders in the LRU stack for
the unmapped pages. Suppose the next reference is to
page e. We bring e to the front of the stack, and move
the first unmapped page place holder to where e was in
the stack. Why is this correct? For memories of size 2
or less, it reflects the page-in of e and the eviction of k.
For memories of size 3 through 7, it reflects the need to
page in e, and that, because there is a free page, there is
no need to evict a page. For memories of size 8 or more,
it reflects that there will be no page-in or eviction. Note
that if the next reference had been to k or | , we would
not move any place holder, and if the next reference had
been to a, the place holder between k and i would move
down to the position of a. When a place holder reaches
the old end of the stack (the right as we have drawn it), it
may be dropped.

Now consider Figure 8(b), which shows what happens
when we reference page ¢, a page not in the LRU stack (a
compulsory miss or demand-zero page). We push ¢ onto
the front of the stack, and slide the previously topmost
elements to the right, until we consume one place holder
(or we reach the end of the stack). This is correct because
it requires a page-in for all memory sizes, but requires
eviction only for memories of size less than 3, since the
third slot is free.

One might be concerned that the place holders can cause
the LRU stack structure to grow without bound. However,

reference to page e

!

before 1k :thfed bla

aer |€|1|k|i|h|g|f d bla

(a) Touching apage in the LRU stack

reference to page c —»

before 1k 1hgfed bla

ater |C|1llk|i|lh|g|[f]e|d bla

(b) Touching a page not in the LRU stack

Figure 8: LRU Stack Handling of Unmapped Pages

because of the way compulsory misses are handled (Fig-
ure 8(b)), the stack will never contain more elements than
the maximum number of pages mapped at one time.

To explain the modifications to SAD, we first provide
a more detailed overview of its operation. Given a re-
duction memory size m, SAD maintains an m-page LRU
stack as well as a window of references from the refer-
ence trace being reduced. Critically, this window con-
tains references only to those pages that are currently in
the m-page LRU stack. Adding the next reference from
the source trace to the front of this window triggers one of
two cases. Case one: the reference does not cause evic-
tion from the LRU stack (i.e., the stack is not full or the
reference is to a page in the stack): we add the reference
to the window, and, if the window contains two previous
references to the same page, we delete the middle refer-
ence.Case two: the reference causes an eviction from the
LRU stack: If p is the evicted page, then SAD removes
references from the back of the window, emitting them
to the reduced trace file, until no references to p remain
in the window. This step preserves the window’s prop-
erty of containing references only to pages that are in the
LRU stack. At the end of the program run, SAD flushes
the remaining contents of the window to the reduced trace
file.

An unmapped page affects SAD only if it is one of the
m most recently used pages. If this case occurs, it is ade-
quate to update the LRU stack by dropping the unmapped
page and sliding other pages towards the more recently
used end of the stack to close up the gap. Since that un-
mapped page no longer exists in the LRU stack, refer-
ences to it must be removed from the window. Our mod-
ified SAD handles this case as it would an evicted page,
emitting references from the back of the window until it
contains no more references to the unmapped page. This
also maintains SAD’s guarantee that the window never
holds more than 2m + 1 entries.

