
Exterminator: Automatically Correcting Memory Errors

Gene Novark
Dept. of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

gnovark@cs.umass.edu

Emery D. Berger
Dept. of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

emery@cs.umass.edu

Benjamin G. Zorn
Microsoft Research
One Microsoft Way

Redmond, WA 98052
zorn@microsoft.com

Abstract
Programs written in C and C++ are susceptible to memory er-
rors, including buffer overflows and dangling pointers. These er-
rors, which can lead to crashes, erroneous execution, and security
vulnerabilities, are notoriously costly to repair. Tracking down their
location in the source code is difficult, even when the full memory
state of the program is available. Once the errors are finally found,
fixing them remains challenging: even for critical security-sensitive
bugs, the average time between initial reports and the issuance of a
patch is nearly one month.

We present Exterminator, a system that automatically corrects
heap-based memory errors without programmer intervention. Ex-
terminator exploits randomization and replication to pinpoint errors
with high precision. From this information, Exterminator derives
runtime patches that fix these errors in current and subsequent exe-
cutions. In addition, Exterminator enables collaborative bug repair
by merging patches generated by multiple users. We present an-
alytical and empirical results that demonstrate Exterminator’s ef-
fectiveness at detecting heap errors and correcting them, for both
injected and real faults.

1. Introduction
The use of manual memory management and unchecked memory
accesses in C and C++ leaves applications written in these lan-
guages susceptible to a range of memory errors. These include
buffer overruns, where reads or writes go beyond allocated regions,
and dangling pointers, when a program deallocates memory while
it is still live. Memory errors can cause programs to crash or pro-
duce incorrect results. Worse, attackers are frequently able to ex-
ploit these memory errors to gain unauthorized access to systems.

Debugging memory errors is notoriously difficult and time-
consuming. Reproducing the error requires an input that exposes
it. Since inputs are often unavailable from deployed programs, de-
velopers must either concoct such an input or find the problem via
code inspection. Once a test input is available, software develop-
ers typically execute the application with heap debugging tools like
Purify [20] and Valgrind [29, 38], which slow execution by an or-
der of magnitude. When the bug is ultimately discovered, develop-
ers must construct and carefully test a patch to ensure that it fixes
the bug without introducing any new ones. According to Syman-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Submitted for publication.
Copyright c© 2007 ACM X-XXXXX-XXX-X/XX/XXXX. . . $5.00.

tec, the average time between the discovery of a critical, remotely
exploitable memory error and the release of a patch for enterprise
applications is 28 days [40].

As an alternative to debugging memory errors, researchers have
proposed a number of systems that either detect or tolerate them.
Fail-stop systems are typically compiler-based approaches that re-
quire access to source code, and abort programs when they per-
forms illegal operations like buffer overflows [1, 2, 13, 15, 28,
41, 42]. They rely either on conservative garbage collection [7]
or pool allocation [14, 16] to prevent or detect dangling pointer
errors. Failure-oblivious systems employ similar compiler technol-
ogy to detect overruns, but instead of aborting, they manufacture
read values and drop or cache illegal writes for later reuse [34].
Finally, fault-tolerant systems mask the effect of errors, either by
logging and replaying inputs in a new execution environment that
pads allocation requests and defers deallocations (e.g., Rx [31]),
or through randomization and voting-based replication that proba-
bilistically reduces the odds that an error will have any effect (e.g.,
DieHard [3]).

These approaches mitigate but can not eliminate the effect of
memory errors. In fail-stop systems, repeated memory errors be-
come denial-of-service attacks. In failure-oblivious systems, they
lead to increasingly unpredictable behavior. And although fault-
tolerant systems may reduce the impact of errors, repeated errors
eventually will cause these systems to fail.

Contributions: This paper presents Exterminator, a runtime sys-
tem that both detects and corrects heap-based memory errors. Ex-
terminator requires neither source code nor programmer interven-
tion, and fixes existing errors without introducing new ones. To our
knowledge, this system is the first of its kind.

Exterminator operates either with replication or iteration. It re-
lies on an efficient probabilistic debugging allocator that we call
DieFast. DieFast is based on DieHard’s allocator [3], which en-
sures that heaps are independently randomized. However, while
DieHard can only probabilistically tolerate errors, DieFast prob-
abilistically both detects and exposes errors when they occur.

When Exterminator discovers an error, it asynchronously dumps
a heap image that contains the complete state of the heap. Exter-
minator’s probabilistic error isolation algorithm then processes
multiple heap images (from replicas or iterated runs) to locate the
source and size of buffer overflows and dangling pointer errors.
This error isolation algorithm has provably low false positive and
false negative rates.

Once Exterminator locates a buffer overflow, it determines the
allocation site of the overflowed object, and the size of the over-
flow. For dangling pointer errors, Exterminator determines both the
allocation and deletion sites of the dangled object, and computes
how prematurely the object was freed.

Error DieHard [3] Exterminator
invalid frees tolerate tolerate
double frees tolerate tolerate
uninitialized reads detect∗ detect∗
dangling pointers tolerate∗ tolerate∗ & correct∗
buffer overflows tolerate∗ tolerate∗ & correct∗

Table 1. A summary of how Exterminator handles particular mem-
ory errors (Section 2): invalid and double frees have no effect, and
Exterminator probabilistically corrects dangling pointers and buffer
overflows. The asterisk superscript means “probabilistically.”

With this information in hand, Exterminator repairs the errors
by generating runtime patches. These patches operate in the con-
text of a correcting allocator. The correcting allocator prevents
overflows by padding objects, and prevents dangling pointer errors
by deferring object deallocations. These actions impose little space
overhead because Exterminator’s runtime patches are tailored to
the specific allocation and deallocation sites of each error.

After Exterminator completes patch generation, it both stores
the patches to correct the bug in subsequent executions, and triggers
a patch update in the running program to fix the bug in the current
execution. Exterminator’s patches also compose straightforwardly,
enabling collaborative bug repair: users running Exterminator can
automatically merge their patches, thus systematically and contin-
uously improving application reliability.

We experimentally demonstrate that, in exchange for modest
runtime overhead (geometric mean of 24%), Exterminator effec-
tively isolates and repairs both injected and real memory errors,
including a buffer overflow in the Squid web caching server. Our
prototype implementation of Exterminator currently targets single-
threaded programs; Section 8.1 discusses our plans to extend Ex-
terminator to work with multi-threaded applications.

Outline: The remainder of this paper is organized as follows. First,
Section 2 describes the errors that Exterminator detects and cor-
rects. Next, Section 3 introduces Exterminator’s software architec-
ture. Section 4 then presents Exterminator’s error isolation algo-
rithm, and analytically quantifies its precision. Section 5 describes
the repair algorithm that applies patches that the error isolator gen-
erates. Section 6 empirically evaluates their cost and effectiveness
on real applications, both with injected and actual memory errors.
Finally, Section 7 discusses key related work, and Section 8 con-
cludes with directions for future work.

2. Memory Errors
Table 1 summarizes the memory errors that Exterminator ad-
dresses, and its response to each. Exterminator identifies and cor-
rects dangling pointers, where a heap object is freed while it is still
live, and buffer overflows (a.k.a. buffer overruns) of heap objects.
Notice that this differs substantially from DieHard, which toler-
ates these errors probabilistically instead of detecting or correcting
them.

Exterminator’s allocator (DieFast) inherits from DieHard its im-
munity from two other common memory errors: double frees, when
a heap object is deallocated multiple times without an intervening
allocation, and invalid frees, when a program deallocates an object
that was never returned by the allocator. These errors have serious
consequences in other systems, where they can lead to heap cor-
ruption.1 or abrupt program termination.2

1 Windows, Solaris, and GNU libc (Linux) ≤ 2.7.X.
2 GNU libc ≥ 2.8.

00000001 1010 10
����������	 ���
 ����

���������� ��� ��

3 5
3

A3 A1

A2
D2

00100000 0000 00

���������		
����� ��

D2 D3

1 2 4

����

���������

��� ����

����� ����

����� ��� �

�������� �����

� �
� ���� �
� ���

���
�� ���������
�� ������

A4 A2 A9

Figure 1. Exterminator’s heap layout. Metadata below the hori-
zontal line contains information used for error isolation and repair
(see Section 3.2).

Exterminator detects and prevents these invalid deallocation re-
quests from having any impact. DieFast’s bitmap-based allocator
(Section 3.2) makes multiple frees impossible since a bit can only
be reset once. By checking alignment, DieFast detects and ignores
invalid frees. Exterminator also probabilistically detects uninitial-
ized reads, where a program makes use of a value left over in
a previously-allocated object. Because the intended value is un-
known, it is not generally possible to repair such errors without
additional information, e.g. data structure invariants [11].

3. Software Architecture
Exterminator’s software architecture extends and modifies DieHard
to enable its error isolating and correcting properties. This section
first describes DieHard, and then shows how Exterminator aug-
ments its heap layout to track information needed to identify and
remedy memory errors. Second, it presents DieFast, a probabilistic
debugging allocation algorithm that exposes errors to Extermina-
tor. Finally, it describes both of Exterminator’s modes of operation:
an iterative mode intended for use during testing, and a replicated
mode suitable for use by deployed applications.

3.1 DieHard Overview
Berger and Zorn’s DieHard system includes a bitmap-based, fully-
randomized memory allocator that provides probabilistic memory
safety [3]. It uses a heap sized M times larger than the maximum
needed for the application. Allocation randomly probes the bitmap
associated with the given size class for a free bit (0): this oper-
ation takes O(1) expected time. Freeing a valid object resets the
appropriate bit. DieHard’s use of randomization across an over-
provisioned heap makes it probabilistically likely that buffer over-
flows will land on free space, and unlikely that a recently-freed
object will be reused soon, making dangling pointer errors rare.

DieHard can optionally use replication to further increase the
probability of successful execution in the face of errors. In this case,
it broadcasts inputs to a number of replicas, each of which is a copy
of the application process equipped with a different random seed.
A voter intercepts and compares outputs across the replicas, and
only actually generates output agreed on by a plurality of the repli-
cas. The independent randomization of each replica’s heap makes
the probabilities of memory errors independent. Replication thus
exponentially decreases the likelihood of a memory error affecting
output, since the probability of an error striking a majority of the
replicas is low.

int computeHash (int * pc) {
int hash = 0;
for (int i = 0; i < 4; i++) {

hash << 8;
hash ˆ= pc[i];

}
return hash;

}

Figure 2. Site information hash function, used to store allocation
and deallocation call sites (see Section 3.2).

3.2 Exterminator’s Heap Layout
Figure 1 presents Exterminator’s heap layout, which adds to Die-
Hard’s heap layout five additional fields per object for error iso-
lation and repair: an object id, allocation and deallocation sites,
deallocation time, which records the time that the object was freed,
and a canary bitset that indicates whether the freed object was
filled with canaries (Section 3.3).

The object id is an integer specific to each size class that in-
dicates which allocation this object corresponds to. An object id
of 12 means that the object is the 12th object allocated from that
size class. Exterminator uses object ids to identify objects across
replicated heaps. These ids are needed because an object’s address
cannot be used to identify an object across differently-randomized
heaps.

The site information fields capture the calling context for allo-
cations and deallocations. For each, Exterminator hashes the least
significant bytes of the four most-recent return addresses into a sin-
gle 32-bit value (see Figure 2).

This out-of-band metadata accounts for approximately 16 bytes
plus two bits of space overhead for every object. This overhead
is comparable to that of typical freelist-based memory managers
like the Lea allocator, which prepend 8-byte (on 32-bit systems)
or 16-byte headers (on 64-bit systems) to allocated objects [23].
Exterminator’s space overhead is fixed regardless of the underlying
architecture.

3.3 DieFast: A Probabilistic Debugging Allocator
Exterminator uses a new, probabilistic debugging allocator that we
call DieFast. DieFast uses the same randomized heap layout as
DieHard, but extends its allocation and deallocation algorithms to
detect and expose errors. Figure 3 presents pseudo-code for the
DieFast allocator. Unlike previous debugging allocators, DieFast
has a number of unusual characteristics tailored for its use in the
context of Exterminator.

Implicit Fence-posts
Many existing debugging allocators pad allocated objects with
fence-posts (filled with canary values) on both sides. They can thus
detect buffer overflows by checking the integrity of these fence-
posts. This approach has the disadvantage of increasing space re-
quirements. Combined with the already-increased space require-
ments of a DieHard-based heap, the additional space overhead of
padding may be unacceptably large.

DieFast exploits two facts to obtain the effect of fence-posts
without any additional space overhead. First, because its heap lay-
out is headerless, one fence-post serves double duty: a fence-post
following an object can act as the one preceding the next object.
Second, because allocated objects are separated by E(M−1) freed
objects on the heap, we use freed space to act as fence-posts.

void * diefast_malloc (size_t sz) {
void * ptr = really_malloc (sz);
// Check if the object wasn’t
// canary-filled or is uncorrupted.
bool ok = verifyCanary (ptr);
if (!ok) { signal error; }
return ptr;

}

void diefast_free (void * ptr) {
really_free (ptr);
// Check preceding and following objects.
bool ok = true;
if (isFree (previous (ptr))) {

ok &= verifyCanary (previous(ptr));
}
if (isFree (next(ptr))) {

ok &= verifyCanary (next(ptr));
}
if (!ok) { signal error; }
// Fill with canary with P=1/2.
if (random() < 0.5)

fillWithCanary (ptr);
}

Figure 3. Pseudo-code for DieFast, a probabilistic debugging al-
locator (Section 3.3).

Random Canaries
Traditional debugging canaries include values that are readily dis-
tinguished from normal program data in a debugging session, such
as the hexadecimal value 0xDEADBEEF. However, one drawback
of a deterministically-chosen canary is that it is always possible
for the program to use the canary pattern as a data value. Because
DieFast uses canaries located in freed space rather than in allocated
space, a fixed canary would lead to a high false positive rate if that
data value were common in freed space.

DieFast instead uses a random 32-bit value set at startup. Since
both the canary and heap addresses are random and differ on every
execution, any fixed data value has only a 1/232 possibility of a
collision with the canary, thus ensuring a low false positive rate
(see Theorem 2).

Probabilistic Fence-posts
Intuitively, the most effective way to expose a dangling pointer
error is to fill all freed memory with canary values. For example,
dereferencing a canary-filled pointer will almost certainly trigger
a segmentation violation. However, this approach is unsuitable for
bug isolation.

The problem is that reading random values does not neces-
sarily cause programs to fail immediately. For example, in the
espresso benchmark, some objects hold bitsets. Filling a freed
bitset with a random value does not cause the program to terminate
but only affects the correctness of the computation.

If reading from a canary-filled dangling pointer causes a pro-
gram to diverge, there is no way to narrow down the error. In the
worst-case, half of the heap could be filled with freed objects, all
overwritten with canaries. All of these objects would then be po-
tential sources of dangling pointer errors.

To prevent this scenario, Exterminator non-deterministically
writes canaries into freed memory randomly with probability
P = 1/2, and sets the appropriate bit in the canary bitmap. While
this probabilistic approach may seem to degrade Exterminator’s

ability to find errors, it is in fact required to isolate read-only dan-
gling pointer errors, as Section 4.2 describes.

Probabilistic Error Detection
Whenever DieFast allocates memory, it examines the value of the
object to be returned to verify that its canaries are intact if it was
filled with canaries. If so, DieFast returns the object. Otherwise, in
addition to signalling an error (see Section 3.4), DieFast sets the
allocated bit for this bad object. This “bad object isolation” ensures
that the object will not be reused for future allocations, preserving
the contents for Exterminator’s subsequent use.

After every deallocation, DieFast checks both the preceding and
the subsequent objects. For each of these, DieFast checks if they are
free. If so, it performs the same canary check as above. Recall that
because DieFast’s allocation is random, the identity of these objects
will differ from run to run. Combined with the check performed for
each allocation, this approach probabilistically ensures a full heap
integrity check every H/3 object allocations and deallocations,
where H is the number of objects on the heap.

3.4 Modes of Operation
Exterminator can be used in two modes of operation: an iterative
mode suitable for testing or whenever all inputs are available, and a
replicated mode that is suitable both for testing and for deployment.
Both rely on the generation of heap images, which Exterminator
examines to isolate errors and compute runtime patches.

If Exterminator discovers an error when executing a program,
or if DieFast signals an error, Exterminator forces the process
to emit a heap image file. This file is akin to a core dump, but
contains less data (e.g., no code), and is organized to simplify
processing. In addition to the full heap contents and heap metadata,
the heap image includes the current allocation time (measured by
the number of allocations to date).

Iterative Mode
Exterminator’s iterative mode operates without replication. To find
a single bug, Exterminator is initially invoked via a command-line
option that directs it to stop as soon as it detects an error. Exter-
minator then re-executes the program in “replay” mode over the
same input (but with a new random seed). In this mode, Extermi-
nator reads the allocation time from the initial heap image to abort
execution at that point; we call this a malloc breakpoint. Extermi-
nator then begins execution and ignores DieFast error signals that
are raised before the malloc breakpoint is reached.

Once it reaches the malloc breakpoint, Exterminator triggers an-
other heap image dump. This process can be repeated a number of
times to generate independent heap images. Exterminator then per-
forms post mortem error isolation and runtime patch generation.
A small number of iterations usually suffices for Exterminator to
gather enough information to generate runtime patches for an indi-
vidual error, as we show in Section 6.2. When run with a correct-
ing memory allocator that incorporates these changes (described in
detail in Section 5.3), these patches automatically fix the isolated
errors.

Replicated Mode
The iterated mode described above works well when all inputs
are available so that re-running an execution is feasible. However,
when applications are deployed in the field, such inputs may not be
available. The replicated mode of operation allows Exterminator to
operate on deployed software.

Like DieHard, Exterminator can run a number of differently-
randomized replicas simultaneously (as separate processes), broad-
casting inputs to all and voting on their outputs. However, Exter-
minator uses DieFast-based heaps, each equipped with a correcting

seed

votebroadcast

input output

DieFast replica1seed

DieFast replica2seed

Error isolator

correcting allocator

correcting allocator

correcting allocator

DieFast replica3

runtime
patches

Figure 4. Exterminator’s replicated architecture: replicas are
equipped with different seeds that fully randomize their DieFast-
based heaps (Section 3.3), input is broadcast to all replicas, and
output goes to a voter. A crash, output divergence, or signal from
DieFast triggers the error isolator (Section 4), which generates run-
time patches. These patches are fed to correcting allocators (Sec-
tion 5), which fix the bug for current and subsequent executions.

allocator. This organization allows Exterminator to discover and fix
errors.

In replicated mode, when DieFast signals an error or the voter
detects divergent output, Exterminator sends a signal that triggers a
heap image dump for each replica. If the program crashes because
of a segmentation violation, a signal handler also dumps a heap
image.

If DieFast signals an error, the replicas that dump a heap im-
age do not have to stop executing. If their output continues to be in
agreement, they can continue executing concurrently with the er-
ror isolation process. When the runtime patch generation process is
complete, that process signals the running replicas to tell the cor-
recting allocators to reload their runtime patches. Thus, subsequent
allocations in the same process will be patched on-the-fly without
interrupting execution.

4. Error Isolation
Exterminator executes its probabilistic error isolation algorithm on
the multiple heap images that it generates either in its replicated or
iterative modes. The algorithm operates by searching for discrep-
ancies across these heap images. Exterminator relies on corrupted
canaries to indicate the presence of an error. A corrupted canary
(one that has been overwritten) can mean two things: if every object
has the same corruption, then it is likely a dangling pointer error,
as Theorem 1 shows. If canaries are corrupted in multiple objects,
then it is likely to be a buffer overflow. Exterminator generates no
false positives for overflows, and limits the number of false posi-
tives for dangling pointer errors.

4.1 Buffer Overflow Detection
Exterminator examines heap images looking for discrepancies
across the heaps, both in overwritten canaries and in live objects. If
an object is not equivalent across the heaps (see below), Extermi-
nator considers it to be a candidate victim of an overflow.

To identify victim objects, Exterminator compares the contents
of both objects identified by their object id across all heaps, word-
by-word. Exterminator builds an overflow mask that comprises
the discrepancies found across all heaps. However, because the
same logical object may legitimately differ across multiple heaps,
Exterminator must take care not to consider these as overflows.

First, a freed object may differ across heaps because it was filled
with canaries only in some of the heaps. Exterminator uses the
canary bitmap to identify this case.

Second, an object can contain pointers to other objects, which
are randomly located on their respective heaps. Exterminator uses
both deterministic and probabilistic techniques to distinguish inte-
gers from pointers. Briefly, if a value interpreted as a pointer points
to the same logical object across all heaps, then Exterminator con-
siders it to be the same logical pointer, and thus not a discrepancy.
We prove that this algorithm is unlikely to misidentify an integer as
a pointer in the Appendix.

Finally, an object can contain values that legitimately differ
from process to process. Examples of these values include pro-
cess ids, file handles, pseudorandom numbers, and pointers in data
structures that depend on object’s addresses (e.g., certain red-black
tree implementations). When Exterminator examines an object and
encounters any word that differs at the same position across the
heaps, it considers it to be legitimately different, and not an over-
flow.
False negative analysis: For small to modest overflows, the risk
of missing an overflow by ignoring overwrites of the same objects
across multiple heaps is low:

Theorem 1. Let k be the number of heap images, S the length
(in number of objects) of the overflow string, and H the number of
objects on the heap. Then the probability of an overflow overwriting
k objects identically is at most:

P(identical overflow) ≤ 1
2k ×

1
(H−S)k .

Proof. Assume that buffer overflows overwrite past the end of an
object. Thus, for an overflow from object i to land on a given object
j, it must both precede it and be large enough to span the distance
from i to j. An object i precedes j in k heaps with probability
(1/2)k. Objects i and j are separated by S or fewer objects with
probability at most (1/(H − S))k. Combining these terms yields
the joint probability.

False negative analysis: We now bound the worst-case false nega-
tive rate for buffer overflows; that is, the odds of not finding a buffer
overflow because it failed to overwrite any canaries.

Theorem 2. Let M be the heap multiplier, so a heap is never more
than 1/M full. The likelihood that an overflow of length b bytes
fails to be detected by comparison against a canary is at most:

P(missed overflow) ≤
(

1− M−1
2M

)k
+

1
256b .

Proof. Each heap is at least (M− 1)/M free. Since DieFast fills
free space with canaries with P = 1/2, the fraction of each heap
filled with canaries is at least (M − 1)/2M. The likelihood of a
random write not landing on a canary across all k heaps is thus
at most (1− (M− 1)/2M)k. The overflow string could also match
the canary value. Since the canary is randomly chosen, the odds of
this are at most (1/256)b.

Culprit Identification
At this point, Exterminator has identified the possible victims of
overflows. It next scans the heap images for a matching culprit,
the source of the overflow into a victim. We assume that overflows
are deterministic, so the culprit will be the same distance δ bytes
away from the victim in every heap image.

Exterminator checks every other heap image for the candidate
culprit, and examines the object that is the same δ bytes forwards. If
that object is free and should be filled with canaries but they are not

intact, then it adds this culprit-victim pair to the candidate overflow
list.
False positive analysis: Because buffer overflows can be discon-
tiguous, every object in the heap that precedes an overflow is a po-
tential culprit. However, each additional heap dramatically lowers
this number:

Theorem 3. The expected number of objects (possible culprits)
the same distance δ from any given victim object across k heaps is:

E(possible culprits) =
1

(H−1)k−2 .

Proof. Without loss of generality, assume that the victim object
occupies the last slot in every heap. An object can thus be in any of
the remaining n = H−1 slots. The odds of it being in the same slot
in k heaps is p = 1/(H−1)k−1. This is a binomial distribution, so
E(possible culprits) = np = 1/(H−1)k−2.

With only one heap image, all (H−1) objects are potential culprits,
but one additional image reduces the expected number of culprits
for any victim to just 1 (1/(H − 1)0), effectively eliminating the
risk of false positives.

Once Exterminator identifies a culprit-victim pair, it records the
overflow size for that culprit as the maximum of any observed δ to
a victim. Exterminator also assigns each culprit-victim pair a score
that corresponds to its confidence that it is an actual overflow. This
score is the sum of the length of detected overflow strings across all
pairs. Intuitively, small overflow strings (e.g., one byte) detected in
only a few heap images are given low scores, and large overflow
strings present in many heap images get high scores.

After overflow processing completes, Exterminator generates a
runtime patch for the top-ranked overflow for each culprit.

4.2 Dangling Pointer Isolation
Isolating dangling pointer errors falls into two cases: a program
may read and write to the dangled object, leaving it partially or
completely overwritten, or it may only read through the dangling
pointer.

Overwritten Dangling Object
When a freed object has been overwritten with identical values
across all heap images, Exterminator assumes that a dangling
pointer overwrite has occurred. As Theorem 1 shows, this situa-
tion is highly unlikely to occur for a buffer overflow. Exterminator
then generates an appropriate repair patch, as Section 5.2 describes.

Intact Dangling Object
When a dangling pointer error leaves the target object intact, iso-
lating the source of the error can be challenging. When DieFast
probabilistically overwrites the dangling pointer with a canary, the
program may crash if it dereferences this value. However, as Sec-
tion 3.3 points out, a program may also treat the canary as data and
propagate it through a computation. In this case, the error may not
manifest for a long time, until the error finally propagates to out-
put or causes the program to crash. Worse, every canary-filled freed
object is a potential source of a dangling pointer error.

Exterminator’s probabilistic canary filling resolves this prob-
lem. By filling freed objects with canaries with p = 1/2, Exter-
minator turns every execution into a Bernoulli trial. If overwrit-
ing a prematurely-freed object with canaries leads to an error, then
its overwrite will correlate with a failed execution with probabil-
ity p > 1/2. Conversely, if an object was not prematurely freed,
then overwriting it with canaries should have no correlation with
the failure or success of the program.

Exterminator counts the number of times h out of the total num-
ber of images n that the following predicate holds for each object:
(canary-filled∧ failure)∨ (not canary-filled∧ success). Extermina-
tor currently rejects the null hypothesis (that the object is not a dan-
gling pointer) only when its likelihood is less than one in 150,000.
Assuming a normal distribution, this likelihood is approximately
4.358 standard deviations away from the mean:

2h−n√
n

> 4.358

It thus takes a relatively large number of heap images (e.g.,
where the predicate holds 19/19 times) to identify the source of
read-only dangling pointer errors.

Since it would be impractical to run with this number of repli-
cas, Exterminator combines results from multiple runs. As objects
do not map one-to-one across different executions, Exterminator
identifies potentially dangled objects by their allocation and deal-
location sites. For each of these pairs, Exterminator tracks the fol-
lowing statistics: the number of dynamic objects matching those
sites, and the number of times the predicate held across all these
objects.

Exterminator generates a repair patch for a particular alloca-
tion and deallocation site only when the above confidence level is
reached.

5. Error Repair
We now describe how Exterminator uses the information from the
error isolation algorithm to repair specific errors. Exterminator first
generates runtime patches for each error. It then relies on a cor-
recting allocator that uses this information, padding allocations to
prevent overflows, and deferring deallocations to prevent dangling
pointer errors.

5.1 Buffer overflow repair
For every culprit-victim pair that Exterminator encounters, it gen-
erates a repair patch consisting of the allocation site hash and the
padding needed to contain the overflow (δ + the size of the over-
flow). If a repair patch has already been generated for a given allo-
cation site, Exterminator uses the maximum padding value encoun-
tered so far.

5.2 Dangling pointer repair
The repair patch for a dangling pointer consists of the combination
of its allocation and deallocation site info, plus a time by which to
delay its deallocation.

Exterminator computes this delay as follows. Let τ be the
recorded deallocation time of the dangled object, and T be the
last allocation time. Exterminator has no way of knowing how long
the object is supposed to live, so computing an exact delay time
is impossible. Instead, it extends the object’s lifetime (delays its
deferral) by twice the distance between its premature free and the
last allocation time, plus one: 2∗ (T − τ)+1.

This choice ensures that Exterminator will compute a correct
patch in a logarithmic number of executions. As we show in Sec-
tion 6.2, multiple iterations to correct pointer errors are rare in prac-
tice, because the last allocation time can be well past the time that
the object should have been freed.

It is important to note that this deallocation deferral does not
multiply its lifetime but rather its drag [37]. To illustrate, an object
might live for 1000 allocations and then be freed just 10 allocations
too soon. If the program immediately crashes, Exterminator will
extend its lifetime by just 21 allocations, increasing its lifetime
by less than 1% (1021/1010). Section 6.3 empirically evaluates
the impact of both overflow and dangling pointer repair on space
consumption.

void * correcting_malloc (size_t sz) {
// Update the allocation clock.
clock++;
// Free deferred objects.
while (deferralQ.top()->time <= clock) {

really_free (deferralQ().pop()->ptr);
}
int allocSite = computeAllocSite();
// Find the allocation pad (if any)
// for this allocation site.
int pad = padTable (allocSite);
void * ptr = really_malloc (sz + pad);
// Store object info and return.
setObjectId (ptr, clock);
setAllocSite (ptr, allocSite);
return ptr;

}

void correcting_free (void * ptr) {
// Compute the site info for this pointer
// (combined allocation and free sites).
int allocS = getAllocSite (ptr);
int freeS = computeFreeSite();
setFreeSite (ptr, freeS);
// Defer or free?
int defer = deferralMap (allocS, freeS);
if (defer == 0) {

really_free (ptr);
} else {

deferralQ.push (ptr, clock + defer);
}

}

Figure 5. Pseudo-code for the correcting memory allocator, which
incorporates the runtime patches generated by the error isolator.

5.3 The Correcting Memory Allocator
The correcting memory allocator incorporates the runtime patches
described above and applies them when appropriate. Figure 5
presents pseudo-code for the allocation and deallocation functions.

At start-up, or upon receiving a reload signal (Section 3.4), the
correcting allocator loads the runtime patches from a specified file.
It builds two hash tables: a pad table mapping allocation sites to
pad sizes, and a deferral table, mapping a tuple of allocation and
deallocation sites to a deferral value. Because it can reload the run-
time patch file and rebuild these tables on-the-fly, Exterminator can
apply patches to running programs without interrupting their exe-
cution. This aspect of Exterminator’s operation may be especially
useful for systems that must be kept running continuously.

On every deallocation, the correcting allocator checks to see if
the object to be freed needs to be deferred. If it finds a deferral value
for the object’s allocation and deallocation site, it pushes onto the
deferral priority queue the pointer to the object and the time to
actually free the object (the current allocation time plus the deferral
value).

The correcting allocator then checks the deferral queue on every
allocation to see if an object should now be freed. It then checks
whether the current allocation site has an associated pad value. If
so, it adds the pad value to the allocation request, and forwards the
allocation request to the underlying allocator.

Exterminator Overhead

0

0.5

1

1.5

2

2.5

cf
ra

c

es
pre

sso

lin
dsa

y
p2c

ro
boop

16
4.

gzip

17
5.

vp
r

17
6.

gcc

18
1.m

cf

18
6.

cr
af

ty

19
7.p

ar
se

r

25
3.p

er
lb

m
k

25
4.

gap

25
5.

vo
rte

x

25
6.

bzip
2

30
0.

tw
olf

Geo
m

et
ric

 m
ea

n

N
o

rm
a

li
z
e

d
 E

x
e

cu
ti

o
n

 T
im

e

GNU libc Exterminator

allocation-intensive SPECint2000

Figure 6. Runtime overhead for Exterminator across a suite of
benchmarks, normalized to the performance of GNU libc (Linux)
allocator.

5.4 Collaborative Repair
Each individual user of an application is likely to experience dif-
ferent errors. To allow an entire user community to automatically
improve software reliability, Exterminator provides a simple utility
that supports collaborative repair. This utility takes as input a num-
ber of runtime patch files. It then combines these patches by com-
puting the maximum buffer pad required for any allocation site,
and the maximal deferral amount for any given allocation/deallo-
cation site pair. The result is a new runtime patch file that covers
all observed errors. Because the size of patch files is limited by the
number of allocation and deallocation sites in a program, we expect
these files to be compact and practical to transmit. For example, the
uncompressed size of the runtime patches that Exterminator gener-
ates for injected errors in espresso was just 22K.

6. Results
Our evaluation answers the following questions:

1. What is the runtime overhead of using Exterminator without
runtime patching?

2. How effective is Exterminator at finding and correcting memory
errors, both for injected and real faults?

3. What is the space overhead of Exterminator’s runtime patches?

6.1 Exterminator Runtime Overhead
We evaluate Exterminator’s performance with the SPECint2000
suite [39] running reference workloads 3, as well as a suite of
allocation-intensive benchmarks. We use the latter suite of bench-
marks both because they are widely used in memory management
studies, including the original DieHard paper [3, 18, 21], and be-
cause their high allocation-intensity stresses memory management
performance.

For the execution time experiments, we fix Exterminator’s heap
size at 32 megabytes per size class (the same value used in the
DieHard paper), except for 176.gcc and 253.perlbmk, which
require 64 megabytes per size class. Since larger heap sizes worsen
performance by degrading L2 and TLB locality, this choice makes
our experimental execution time results conservative.

We use the smallest possible heap for our fault injection experi-
ments with espresso (8 megabytes per size class), since smaller

3 We are unable to run 252.eon either with GNU libc or Exterminator.

Buffer Overflow Isolation

0%

20%

40%

60%

80%

100%

4 8 16

Overflow Size

Im
ag

es
 R

eq
u

ir
ed

 (
%

)

3 images 4 images 5 or more

Figure 7. The number of images required for Exterminator to
isolate and correct buffer overflows of different sizes.

����������	��
����	��
�	�

��

���

���

���

���

����

� �	
����

�������	�������

Figure 8. The number of images required for Exterminator to
isolate and correct dangling pointer errors.

heap size multiples (values of M) stress Exterminator’s ability to
isolate errors.

All of our experiments are the average of five runs on a quies-
cent, dual-processor Linux system consisting of Intel Xeons, each
3.06GHz processor (hyperthreading active) equipped with 512K L2
caches and with 3 gigabytes of RAM. Our observed experimental
variance is below 1%.

We focus on the non-replicated case, which we expect to be a
key limiting factor for Exterminator’s performance as the number
of available processing cores grows. This case assumes that addi-
tional processing cores are available to run replicas, and ignores the
cost of voter-imposed synchronization.

We compare the runtime of Exterminator (DieFast plus the
correcting allocator, without any patches) to the GNU libc allocator.
This allocator is based on the Lea allocator [23], which is among
the fastest available [4]. Figure 6 shows that, versus this allocator,
Exterminator degrades performance by from 1% (186.crafty)
to 109% (300.twolf), with a geometric mean of 24.3%. While
Exterminator’s overhead is substantial for the allocation-intensive
suite (geometric mean: 43.4%), it is significantly less pronounced
across the SPEC benchmarks (geometric mean: 16.5%).

6.2 Memory Error Correction
Injected Faults
To measure Exterminator’s effectiveness at isolating and correcting
bugs, we used the fault injector that accompanies the DieHard
distribution to inject both buffer overflows and dangling pointer
errors. For each data point, we run the injector using a random seed
until it triggers an error or divergent output. We next use this seed
to deterministically trigger a single error in Exterminator, which
we run in iterated mode. We then measure the number of iterations
required to isolate and generate an appropriate runtime patch. The
total number of images (iterations plus the first run) corresponds
to the number of replicas that would be required when running
Exterminator in replicated mode.

Figure 7 presents the result of triggering 26 different buffer
overflows for three different sizes (4, 8, and 16 bytes) in the
espresso benchmark. The number of images required to iso-
late and correct these errors is generally just 3, although occasion-
ally there are outlier cases, where the number of images required
reaches at most 5. Notice that this result is substantially better than
the analytical worst-case. For three images, Theorem 2 bounds the
worst-case likelihood of missing an overflow to 42% (Section 4.1),
rather than the 4% false negative rate we observe here.

Figure 8 presents the result of running 10 dangling pointer in-
jection experiments. We have verified that in the three runs where
three images were required, the program partially overwrote the
contents of the canary-filled dangling pointer. Six of the injected
faults are read-only dangling pointer errors, and the required num-
ber of images is consequently large, as the analysis in Section 4.2
shows.

One case is particularly notable because it violates our assump-
tion that errors are deterministic. In this case, writing the canary
into the dangled object triggers a cascade of errors that corrupts the
heap. Worse, each random canary results in different corruption, so
Exterminator cannot process it.

Real Faults
We also tested Exterminator with an actual bug in a real applica-
tion, the Squid web caching server. Version 2.3s5 has a buffer over-
flow; certain inputs cause Squid to crash with either the GNU libc
allocator or the Boehm-Demers-Weiser collector [3, 31].

We ran Squid three times under Exterminator with an input that
triggers a buffer overflow. Exterminator continues executing cor-
rectly in each run, but the overflow corrupts a canary. Extermina-
tor’s error isolation algorithm identifies a single allocation site as
the culprit and generates a pad of exactly 6 bytes, fixing the error.

6.3 Space Overhead
Exterminator’s approach to correcting memory errors consumes
additional space, either by padding allocations or by deferring
deallocations. We measure the space overhead for buffer overflow
repairs by multiplying the size of the pad by the total number of
dynamic objects that Exterminator patches. For the buffer overflow
experiment with overflows of size 16, this value is at most 224
bytes.

We measure space overhead for dangling pointer repairs by
multiplying the object size by the number of allocations for which
the object is deferred; that is, we compute the total additional drag.
In the dangling pointer experiment, the amount of excess memory
ranges from 32 bytes to 1024 bytes (one 256 byte object is deferred
for 4 deallocations). This amount constitutes less than 1% of the
maximum memory consumed by the application.

7. Related Work
This section describes work most closely related to Exterminator.

7.1 Randomized Memory Managers
Several memory management systems employ some degree of
randomization, including locating the heap at a random base ad-
dress [5, 30], adding random padding to allocated objects [6], shuf-
fling recently-freed objects [22], or a mix of padding and object
deferral [31]. This level of randomization is insufficient for Exter-
minator, which requires full heap randomization.

As noted previously, Exterminator builds on DieHard, whose
goal is to provide probabilistic memory safety; Section 3.1 pro-
vides an overview. Exterminator substantially modifies and extends
DieHard’s heap layout and allocation algorithms. It also applies a
novel, probabilistic algorithm that, in addition to tolerating errors,
identifies and repairs them.

7.2 Automatic Repair
We are aware of only one other system that repairs errors automat-
ically: Demsky et al.’s automatic data structure repair [10, 11, 12].
Guided by a formal description of the program’s data structures
(specified manually or derived automatically by Daikon [17]), auto-
matic data structure repair enforces data structure consistency spec-
ifications. Exterminator attacks a different problem, namely that of
isolating and repairing memory errors, and is orthogonal and com-
plementary to data structure repair.

7.3 Automatic Debugging
Two previous systems apply techniques designed to help isolate
bugs. Statistical bug isolation is a distributed assertion sampling
technique that helps pinpoint the location of errors, including but
not limited to memory errors [24, 25, 26]. It operates by injecting
lightweight tests into the source code; the result of these tests, in the
form of a bit vector, can be processed to generate likely sources of
the errors. This statistical processing differs entirely from Extermi-
nator’s probabilistic error isolation algorithms, although Extermi-
nator’s treatment of read-only dangling pointer errors as Bernoulli
trials is similar to the approach of Liu et al. [26]. Like statistical bug
isolation, Exterminator can leverage the runs of deployed programs
to improve its results. However, unlike statistical bug isolation, Ex-
terminator requires neither source code nor a large deployed user
base in order to find errors, and automatically generates runtime
patches that repair them.

Delta debugging automates the process of identifying the small-
est possible inputs that do and do not exhibit a given error [9, 27,
44]. Given these inputs, it is up to the software developer to ac-
tually locate the bugs themselves. Exterminator focuses on a nar-
rower class of errors, but is able to isolate and repair an error given
just one erroneous input, regardless of its size.

7.4 Fault Tolerance
Recently, there has been an increasing focus on approaches for tol-
erating hardware transient errors that are becoming more common
due to fabrication process limitations. Work in this area ranges from
proposed hardware support [32] to software fault tolerance [33].
While Exterminator also uses redundancy as a method for detect-
ing and correcting errors, Exterminator goes beyond tolerating soft-
ware errors, which are not transient, to correcting them perma-
nently. Like Exterminator, other efforts in the fault tolerance com-
munity seek to gather data from multiple program executions to
identify potential errors. For example, Guo et al. use statistical tech-
niques on internal monitoring data to probabilistically detect faults,
including memory leaks and deadlocks [19]. Exterminator goes be-
yond this previous work by characterizing each memory error so
specifically that a correction can be automatically generated for it.

7.5 Memory Managers
Conservative garbage collection can be used with unmodified C
and C++ binaries to prevent dangling pointer errors [7], but it
does not prevent buffer overflows. Exterminator’s error isolation
and correction is orthogonal to garbage collection, and could be
combined with a randomized conservative collector to preclude
dangling pointer errors, while detecting and correcting overflows.

Finally, there has been a long history of debugging memory
allocators; the documentation for one of them, mpatrol, includes
a list of over ninety such systems [36]. Notable recent allocators
with debugging features include dnmalloc [43], Heap Server [22],
and version 2.8 of the Lea allocator [23, 35]. These tools detect
certain memory errors. Exterminator not only prevents some errors,
but also pinpoints the location of and repairs buffer overflows and
dangling pointer errors.

8. Conclusion
This paper presents Exterminator, a system that automatically cor-
rects heap-based memory errors in C and C++ programs. Extermi-
nator operates entirely at the runtime level on unaltered binaries,
and consists of three key components: (1) DieFast, a probabilistic
debugging allocator based on DieHard [3] that exposes errors in-
stead of masking them, (2) a probabilistic error isolation algorithm,
and (3) a correcting memory allocator. Exterminator’s probabilistic
error isolation isolates the source and extent of memory errors with
provably low false positive and false negative rates. Its correcting
memory allocator incorporates runtime patches that the error isola-
tion algorithm generates to repair memory errors. Exterminator is
not only suitable for use during testing, but also can automatically
repair deployed programs.

8.1 Future Work
While Exterminator can effectively locate and repair memory er-
rors on the heap, it does not yet address stack errors. We are ac-
tively investigating the use of binary instrumentation to apply sim-
ilar techniques to the stack.

Exterminator currently requires programs to be deterministic in
their allocation patterns and their storage to heap objects. Individual
executions of a program are expected to yield the same sequence of
object allocation identifiers (i.e., object i always refers to the same
semantic object).

These requirements make Exterminator well-suited for serial
programs, but less useful for multi-threaded programs. While
Exterminator can run programs with a small amount of non-
determinism, its isolation algorithm is not robust with respect to
disruptions to the allocation sequence.

While simulation or deterministic replay mechanisms [8] would
enable Exterminator to work reliably for multi-threaded programs,
we plan to explore a variety of ways to directly handle programs
with extensive non-determinism. One way to improve its behavior
in the face of non-determinism would be for Exterminator to asso-
ciate object identifiers with thread ids. This change would prevent
multiple threads from disrupting a global allocation sequence. We
are especially interested in combining statistical alignment tech-
niques from machine learning with information gleaned from locks
and other synchronization variables to let us recover allocation se-
quences across multiple threads.

References
[1] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection of

all pointer and array access errors. In PLDI ’94: Proceedings of the
ACM SIGPLAN 1994 conference on Programming language design
and implementation, pages 290–301, New York, NY, USA, 1994.
ACM Press.

[2] D. Avots, M. Dalton, V. B. Livshits, and M. S. Lam. Improving
software security with a C pointer analysis. In ICSE ’05: Proceedings
of the 27th international conference on Software engineering, pages
332–341, New York, NY, USA, 2005. ACM Press.

[3] E. D. Berger and B. G. Zorn. DieHard: Probabilistic memory safety
for unsafe languages. In Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), pages 158–168, New York, NY, USA, 2006. ACM Press.

[4] E. D. Berger, B. G. Zorn, and K. S. McKinley. Composing high-
performance memory allocators. In Proceedings of the 2001 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Snowbird, Utah, June 2001.

[5] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation:
An efficient approach to combat a broad range of memory error
exploits. In Proceedings of the 12th USENIX Security Symposium,
pages 105–120. USENIX, Aug. 2003.

[6] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques
for comprehensive protection from memory error exploits. In
Proceedings of the 14th USENIX Security Symposium, pages 271–
286. USENIX, Aug. 2005.

[7] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Software Practice and Experience, 18(9):807–820,
1988.

[8] J.-D. Choi and H. Srinivasan. Deterministic replay of Java
multithreaded applications. In Proceedings of the SIGMETRICS
Symposium on Parallel and Distributed Tools, pages 48–59, Aug.
1998.

[9] H. Cleve and A. Zeller. Locating causes of program failures. In ICSE
’05: Proceedings of the 27th international conference on Software
engineering, pages 342–351, 2005.

[10] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and
M. Rinard. Inference and enforcement of data structure consistency
specifications. In ISSTA ’06: Proceedings of the 2006 international
symposium on Software testing and analysis, pages 233–244, New
York, NY, USA, 2006. ACM Press.

[11] B. Demsky and M. Rinard. Automatic detection and repair of errors
in data structures. In OOPSLA ’03: Proceedings of the 18th annual
ACM SIGPLAN conference on Object-oriented programing, systems,
languages, and applications, pages 78–95, New York, NY, USA,
2003. ACM Press.

[12] B. Demsky and M. Rinard. Data structure repair using goal-directed
reasoning. In ICSE ’05: Proceedings of the 27th international
conference on Software engineering, pages 176–185, 2005.

[13] D. Dhurjati and V. Adve. Backwards-Compatible Array Bounds
Checking for C with Very Low Overhead. In Proceedings of the
2006 International Conference on Software Engineering (ICSE’06),
Shanghai, China, May 2006.

[14] D. Dhurjati and V. Adve. Efficiently Detecting All Dangling
Pointer Uses in Production Servers. In International Conference
on Dependable Systems and Networks (DSN’06), pages 269–280,
2006.

[15] D. Dhurjati, S. Kowshik, and V. Adve. Safecode: enforcing alias
analysis for weakly typed languages. In PLDI ’06: Proceedings
of the 2006 ACM SIGPLAN conference on Programming language
design and implementation, pages 144–157, New York, NY, USA,
2006. ACM Press.

[16] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory safety
without runtime checks or garbage collection. In ACM SIGPLAN
2003 Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES’2003), San Diego, CA, June 2003. ACM Press.

[17] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly
detecting relevant program invariants. In Proceedings of the 22nd
International Conference on Software Engineering (ICSE’00), pages
449–458, New York, NY, USA, 2000. ACM Press.

[18] D. Grunwald, B. Zorn, and R. Henderson. Improving the cache local-

ity of memory allocation. In Proceedings of SIGPLAN’93 Conference
on Programming Languages Design and Implementation, volume
28(6) of ACM SIGPLAN Notices, pages 177–186, Albuquerque, NM,
June 1993. ACM Press.

[19] Z. Guo, G. Jiang, H. Chen, and K. Yoshihira. Tracking probabilistic
correlation of monitoring data for fault detection in complex systems.
dsn, 0:259–268, 2006.

[20] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. In Proc. of the Winter 1992 USENIX Conference, pages
125–138, San Francisco, California, 1991.

[21] M. S. Johnstone and P. R. Wilson. The memory fragmentation
problem: Solved? In P. Dickman and P. R. Wilson, editors, OOPSLA
’97 Workshop on Garbage Collection and Memory Management, Oct.
1997.

[22] M. Kharbutli, X. Jiang, Y. Solihin, G. Venkataramani, and
M. Prvulovic. Comprehensively and efficiently protecting the heap.
In ASPLOS-XII: Proceedings of the 12th international conference
on Architectural support for programming languages and operating
systems, pages 207–218, New York, NY, USA, 2006. ACM Press.

[23] D. Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.html,
1997.

[24] B. Liblit, A. Aiken, A. Zheng, and M. Jordan. Bug isolation
via remote program sampling. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and
Implementation (PLDI 2003), 2003.

[25] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
statistical bug isolation. In PLDI ’05: Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 15–26, New York, NY, USA, 2005. ACM
Press.

[26] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER: statistical
model-based bug localization. In ESEC/FSE-13: Proceedings of the
10th European Software Engineering Conference held jointly with
13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 286–295, New York, NY, USA, 2005.
ACM Press.

[27] G. Misherghi and Z. Su. Hdd: hierarchical delta debugging. In ICSE
’06: Proceeding of the 28th international conference on Software
engineering, pages 142–151, New York, NY, USA, 2006. ACM
Press.

[28] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy code. In POPL ’02: Proceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 128–139, New York, NY, USA, 2002. ACM Press.

[29] N. Nethercote and J. Fitzhardinge. Bounds-checking entire programs
without recompiling. In SPACE 2004, Venice, Italy, Jan. 2004.

[30] PaX Team. PaX address space layout randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt.

[31] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs as
allergies: A safe method to survive software failures. In Proceedings
of the Twentieth Symposium on Operating Systems Principles,
volume XX of Operating Systems Review, Brighton, UK, Oct. 2005.
ACM.

[32] M. K. Qureshi, O. Mutlu, and Y. N. Patt. Microarchitecture-based
introspection: a technique for transient-fault tolerance in micropro-
cessors. In Proceedings of the 2005 International Conference on
Dependable Systems and Networks (DSN 2005), pages 434–443,
2005.

[33] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August.
SWIFT: Software Implemented Fault Tolerance. In CGO ’05:
Proceedings of the International Symposium on Code Generation
and Optimization, pages 243–254, Washington, DC, USA, 2005.
IEEE Computer Society.

[34] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and J. William
S. Beebee. Enhancing server availability and security through failure-

oblivious computing. In Sixth Symposium on Operating Systems
Design and Implementation, San Francisco, CA, Dec. 2004. USENIX.

[35] W. Robertson, C. Kruegel, D. Mutz, and F. Valeur. Run-time detection
of heap-based overflows. In LISA ’03: Proceedings of the 17th
Large Installation Systems Administration Conference, pages 51–60.
USENIX, 2003.

[36] G. S. Roy. mpatrol: Related software. http://www.cbmamiga.demon.
co.uk/mpatrol/mpatrol 83.html, Nov. 2006.

[37] C. Runciman and N. Rojemo. Lag, drag and postmortem heap
profiling. In Implementation of Functional Languages Workshop,
Bastad, Sweden, Sept. 1995.

[38] J. Seward and N. Nethercote. Using Valgrind to detect undefined
value errors with bit-precision. In Proceedings of the USENIX’05
Annual Technical Conference, Anaheim, California, USA, Apr. 2005.

[39] Standard Performance Evaluation Corporation. SPEC2000.
http://www.spec.org.

[40] Symantec. Internet security threat report. http://www.symantec.com/
enterprise/threatreport/index.jsp, Sept. 2006.

[41] W. Xu, D. C. DuVarney, and R. Sekar. An efficient and backwards-
compatible transformation to ensure memory safety of C programs.
In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT
twelfth international symposium on Foundations of software engi-
neering, pages 117–126, New York, NY, USA, 2004. ACM Press.

[42] S. H. Yong and S. Horwitz. Protecting C programs from attacks via
invalid pointer dereferences. In ESEC/FSE-11: 11th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
pages 307–316, New York, NY, USA, 2003. ACM Press.

[43] Y. Younan, W. Joosen, F. Piessens, and H. V. den Eynden. Security
of memory allocators for C and C++. Technical Report CW 419,
Department of Computer Science, Katholieke Universiteit Leuven,
Belgium, July 2005. Available at http://www.cs.kuleuven.ac.be/
publicaties/rapporten/cw/CW419.pdf.

[44] A. Zeller. Yesterday, my program worked. Today, it does not. Why? In
ESEC/FSE-7: Proceedings of the 7th European software engineering
conference held jointly with the 7th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 253–267,
London, UK, 1999. Springer-Verlag.

http://pax.grsecurity.net/docs/aslr.txt
http://www.cbmamiga.demon.co.uk/mpatrol/mpatrol_83.html
http://www.cbmamiga.demon.co.uk/mpatrol/mpatrol_83.html
http://www.symantec.com/enterprise/threatreport/index.jsp
http://www.symantec.com/enterprise/threatreport/index.jsp
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW419.pdf
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW419.pdf

9. Appendix
9.1 Probabilistic pointer disambiguation
To disambiguate pointers from data, Exterminator combines stan-
dard approaches from conservative garbage collection with proba-
bilistic techniques. It first eliminates from consideration any value
that, if interpreted as an address, would point outside the heap area.

After performing these tests, Exterminator relies on its random-
ized heaps to identify pointers with high probability. Exterminator
checks whether these addresses point to the same offset in equiva-
lent objects (same object id) across all heap images. If they do, then
Exterminator considers the value to be a valid pointer. Exterminator
also handles the case where pointers point into dynamic libraries,
which newer versions of Linux place at random base addresses.

The following formula gives the precision of probabilistic
pointer disambiguation.

Theorem 4. Let H be the number of objects on the heap, and k
the number of replicas. Then the false positive rate (misidentifying
an integer as a pointer) is at most:

P(pointer id false positive) ≤ 1
Hk−1 .

Proof. Consider the case where an object has a field that takes on
the values of any address on the heap uniformly at random (rather
than taking on any possible value; this is the worst case). For the
first replica, this value points to some object i. The likelihood of a
random value pointing to the same object in a particular heap image
is 1/H, so across k heaps, the odds of a random value pointing to
the same object are at most (1/H)k−1.

Probabilistic pointer disambiguation provides excellent odds of
success. As a concrete example, if there are one million slots on the
heap and three heap images, the odds of misidentifying a random
integer as a pointer will be at most one in a trillion.

	Introduction
	Memory Errors
	Software Architecture
	DieHard Overview
	Exterminator's Heap Layout
	DieFast: A Probabilistic Debugging Allocator
	Modes of Operation

	Error Isolation
	Buffer Overflow Detection
	Dangling Pointer Isolation

	Error Repair
	Buffer overflow repair
	Dangling pointer repair
	The Correcting Memory Allocator
	Collaborative Repair

	Results
	Exterminator Runtime Overhead
	Memory Error Correction
	Space Overhead

	Related Work
	Randomized Memory Managers
	Automatic Repair
	Automatic Debugging
	Fault Tolerance
	Memory Managers

	Conclusion
	Future Work

	Appendix
	Probabilistic pointer disambiguation

