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Abstract
Modern architectures have made program behavior brittle and un-
predictable, making software performance highly dependent on
its execution environment. Even apparently innocuous changes,
such as changing the size of an unused environment variable,
can—by altering memory layout and alignment—degrade perfor-
mance by 33% to 300%. This unpredictability makes it difficult for
programmers to debug or understand application performance. It
also greatly complicates the evaluation of performance optimiza-
tions, since slight changes in the execution environment can have a
greater impact on performance than a typical optimization.

We present STABILIZER, a compiler and runtime system that
enforces reliable performance. By comprehensively randomizing
the placement of functions, stack frames, and heap objects in mem-
ory, STABILIZER provides predictable performance with high prob-
ability. Random placement makes bad layouts unlikely, and re-
randomization ensures they are short-lived when they do occur. We
demonstrate that STABILIZER effectively eliminates measurement
bias with minimal overhead, allowing it to be used in deployment to
ensure predictable performance. In addition, STABILIZER enables
statistically rigorous performance evaluation. We demonstrate its
use by testing the effectiveness of standard optimizations used in
the LLVM compiler; we find that, across the SPEC CPU2000 and
CPU2006 benchmark suites, the effect of the -O3 optimization
level is indistinguishable from noise.

1. Introduction
Modern architectures have made program behavior brittle and un-
predictable. Multi-level cache hierarchies and deeply pipelined ar-
chitectures can cause execution times of individual instructions to
vary over two orders of magnitude. Application performance is
greatly affected by subtle details of individual chips, such as the
size or implementation of caches and branch predictors. Even ap-
parently innocuous changes, such as changing the size of an unused
environment variable or the link order of object files, can dramati-
cally alter application performance. Mytkowicz et al. demonstrate
that such changes can degrade performance by 33% to 300% [14].
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This sensitivity of application performance to its environment has
numerous serious consequences:

• Impairs performance understanding: Environmental sensi-
tivity makes it difficult for programmers to understand the per-
formance of their applications. Even inserting a single non-
executed printf statement can, by changing program layout,
unexpectedly alter application performance.

• Risks performance pathologies in deployed code: Because
subtle changes in input, compiler, libraries, and architecture can
significantly degrade performance, deployed code may perform
drastically worse than in testing.

• Undermines performance analysis and research: Since even
a slight change in the environment can have a greater impact on
performance than a typical optimization, it is difficult for devel-
opers or researchers to judge the effectiveness of performance
optimizations with any degree of confidence.

Contributions
This paper presents STABILIZER, a system that eliminates perfor-
mance pathologies, provides predictable performance, and enables
rigorous performance analysis of programs:

Comprehensive Layout Randomization. STABILIZER consists
of a compiler and runtime library that repeatedly randomize the
placement of globals, functions, stack frames, and heap objects
during execution. Intuitively, STABILIZER makes it unlikely that
object and code layouts will be “unlucky”. By periodically re-
randomizing, STABILIZER further reduces these odds.

Predictable Performance. We show analytically and empirically
that STABILIZER’s use of re-randomization imposes a normal dis-
tribution on execution time, enabling predictability using standard
statistical approaches. STABILIZER makes performance outliers
quantifiably unlikely.

STABILIZER makes program execution independent of the ex-
ecution environment. It prevents performance pathologies due to a
wide range of factors, ranging from library versions down to archi-
tectural details. STABILIZER often operates with sufficiently low
overhead that it can be used in deployment (below 5% for a third
of benchmarks, and a median of 13.3%).

Sound Performance Analysis. By generating a normal distribu-
tion of execution times, STABILIZER makes it possible to perform
rigorous and statistically sound performance analyses. STABILIZER
allows researchers to answer the question: does a given change to
a program truly improve its performance, or is it indistinguishable
from noise? We use STABILIZER to assess the effectiveness of com-
piler optimizations in the LLVM compiler [10]. Across both the



SPEC CPU2000 and SPEC CPU2006 benchmark suites, we find
that the -O3 compiler switch (which includes argument promo-
tion, dead global elimination, global common subexpression elimi-
nation, and scalar replacement of aggregates) does not yield statis-
tically significant improvements.

Outline
The remainder of this paper is organized as follows. Section 2 pro-
vides an overview of STABILIZER’s operation and statistical guar-
antees. Section 3 discusses related work. Section 4 describes the
implementation of STABILIZER’s compiler and runtime compo-
nents, and Section 5 gives an analysis of STABILIZER’s statistical
guarantees. Section 6 demonstrates STABILIZER’s low overhead
and avoidance of measurement bias. Section 7 leverages STABI-
LIZER to rigorously evaluate the effectiveness of LLVM’s standard
optimizations, and Section 9 concludes.

2. STABILIZER Overview
This section provides an overview of STABILIZER’s operation, and
how it leads to statistical properties that enable predictable and
analyzable performance.

Environmental sensitivity both undermines predictability and
rigorous performance evaluation because of a lack of indepen-
dence. Any change to a program’s code or execution environment
can lead to a different memory layout. Prior work has shown that
small changes in memory layout can degrade performance by as
much as 300% [14], making it impossible to evaluate any particu-
lar change in isolation.

2.1 Comprehensive Layout Randomization
By randomizing program layout dynamically, STABILIZER makes
layout independent of changes in code or execution environment.
STABILIZER performs extensive randomization, dynamically ran-
domizing the placement of a program’s functions, stack frames,
heap objects, and globals. Code is randomized at a function gran-
ularity, and each function executes on a randomly-placed stack
frame. STABILIZER also periodically re-randomizes code at run-
time.

2.2 Normally-Distributed Execution Time
STABILIZER’s randomization of memory layouts not only avoids
measurement bias, but also makes performance predictable and
analyzable by inducing normally distributed execution times.

At a high level, STABILIZER’s randomization strategy leads to
normally-executed distributions as follows. Each random layout
contributes to the total execution time. Total execution time is
thus proportional to the average over many different layouts. The
central limit theorem states that “the mean of a sufficiently large
number of independent random variables . . . will be approximately
normally distributed” [6]. As long as STABILIZER re-randomizes
layout a sufficient number of times, and each layout is chosen
independently, then execution time will be normally distributed.
Section 5 provides a more detailed analysis.

2.3 Predictable Performance
Ensuring that execution time conforms to the normal distribution
enables predictable performance, bounding the likelihood of out-
liers; the chance of a normally-distributed random value (here, ex-
ecution time) falling within two standard deviations of the mean is
95%.

2.4 Sound Performance Analysis
Normally distributed execution times allow researchers to evaluate
performance using powerful parametric hypothesis tests, which

rely on the assumption of normality. These tests are “powerful” in
the sense that they more readily reject false hypotheses than more
general (non-parametric) tests that make no assumptions about
distribution.

2.5 Evaluating Code Modifications
To test the effectiveness of any change (known in statistical par-
lance as a treatment), a researcher or developer runs a program with
STABILIZER, both with and without the change. Given that exe-
cution times are normally distributed, we can apply the Student’s
t-test [6] to determine whether performance varies across the two
treatments. The t-test, given a set of execution times, tells us the
probability of observing the given samples if both treatments re-
sult in the same distribution. If this probability is below a specified
confidence (typically 5%), we say that the null hypothesis has been
rejected—the distributions are not the same, so the treatment had a
significant effect.

2.6 Evaluating Compiler and Runtime Optimizations
To evaluate a compiler or runtime system change, we instead use
a more general technique: analysis of variance (ANOVA). ANOVA
takes as input a set of results for each combination of benchmark
and treatment, and partitions the total variance into components:
the effect of random variations between runs, and the effect of
each treatment [6]. Section 7 presents the use of STABILIZER and
ANOVA to evaluate the effectiveness of compiler optimizations in
LLVM.

3. Related Work
Randomization for Security. Most prior work in layout random-
ization has focused on security concerns. Randomizing the ad-
dresses of program elements makes it difficult for attackers to re-
liably trigger exploits. Table 1 gives an overview of prior work in
program layout randomization

The earliest implementations of layout randomization, Address
Space Layout Randomization (ASLR) and PaX, relocate the heap,
stack, and shared libraries in their entirety [17, 12]. Building on
this work, Transparent Runtime Randomization (TRR) and Ad-
dress Space Layout permutation (ASLP) have added support for
randomization of code or code elements (like the global offset ta-
ble) [21, 9]. Unlike STABILIZER, these systems relocate entire pro-
gram segments.

Fine-grained randomization has been implemented in a limited
form in the Address Obfuscation and Dynamic Offset Random-
ization projects, and by Bhatkar, Sekar, and DuVarney [3, 20, 4].
These systems combine coarse-grained randomization at load time
with finer granularity randomizations in some sections. These sys-
tems do not re-randomize programs during execution, and do not
apply fine-grained randomization to every program segment. STA-
BILIZER randomizes all code and data at fine granularity, and re-
randomizes during execution.

Heap Randomization. DieHard uses heap randomization to pre-
vent memory errors [2]. Placing heap objects randomly makes it
unlikely that use after free and out of bounds accesses will corrupt
live heap data. DieHarder builds on this to provide probabilistic se-
curity guarantees [15]. Heap randomization alone is not sufficient
to make performance predictable, but STABILIZER uses DieHard
as the basis for all of its randomizations.

Predictable Performance. Quicksort is a classic example of us-
ing randomization for predictable performance [8]. Random pivot
selection eliminates the possibility of a worst-case input, and
bounds the probability of observing quicksort’s O(n2) worst-case
time complexity.



Base Randomization ASLR TRR ASLP Address Obfuscation Dynamic Offset B.S.DV [4] DieHard STABILIZER
code X X X X X
stack X X X X X X
heap X X X X X X

Full Randomization
code X X X* X X
stack X* X* X
heap X X

Implementation
recompilation X X X X
dynamic X X X X* X X X X
re-randomization X X

Table 1. Prior work in layout randomization includes varying degrees of support for the randomizations implemented in STABILIZER. The
features supported by each project are marked by a checkmark. Asterisks indicate limited support for the corresponding randomization.

Randomization has also been applied to probabilistically ana-
lyzable real-time systems. Quiñones et. al showed that a random
cache replacement policy enables probabilistic worst-case execu-
tion time analysis, while still providing good performance. This is a
significant improvement over conventional hard real-time systems,
where analysis of cache behavior relies on complete information.
STABILIZER is a more general approach, but relies on some of the
same probabilistic arguments for predictable performance.

Rigorous Performance Evaluation. Mytkowicz et al. observe
that environmental sensitivities can degrade program performance
by as much as 300% [14]. They propose experimental setup ran-
domization to account for these sensitivities. Alameldeen and
Wood find similar sensitivities in processor simulators, which they
also address with the addition of non-determinism [1]. Tsafrir,
Ouaknine, and Feitelson report dramatic environmental sensitiv-
ities in job scheduling, which they address with a technique they
call “input shaking” [18, 19]. Georges et al. propose statistically
rigorous techniques for Java performance evaluation [7]. While
prior techniques for rigorous performance evaluation require many
runs over a wide range of environmental factors, STABILIZER en-
ables efficient, rigorous performance evaluation by eliminating the
dependence between experimental setup and program layout.

4. STABILIZER Implementation
STABILIZER fully randomizes the layout of its host application.
This randomization dynamically randomizes the layout of heap ob-
jects, code, stack frames, and globals. Each randomization consists
of a compiler transformation and runtime support. Figure 1 shows
the process for building a program using STABILIZER. Each source
file is first compiled to LLVM bytecode using the llvmc compiler
driver. The resulting bytecode files are linked and processed with
LLVM’s opt tool running the STABILIZER compiler pass. The re-
sulting executable is then linked with the STABILIZER runtime li-
brary, which performs the dynamic layout randomization. The fol-
lowing sections describe the implementation of each randomization
in detail.

4.1 Heap Randomization
STABILIZER applies heap randomization using the DieHard mem-
ory allocator [2, 16], a bitmap-based allocator that fully random-
izes individual object placement across a heap that is some factor
M larger than required (in Stabilizer, we set M to 4/3). Figure 2,
taken from Novark et al. [16], presents an overview of DieHard’s
internals. The following two paragraphs are adapted from that pa-
per:

llvmc

program.bc

Stabilizer 
Runtime

opt

Stabilizer Pass program.bc

llvmc

a.out

main.c foo.c bar.c

Figure 1. The process for building an application with STABI-
LIZER.
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Figure 2. The DieHard memory allocator’s heap layout (diagram
from Novark et al. [16]); STABILIZER uses DieHard as a source of
random objects for the heap, code, and stack frames.

DieHard allocates memory from increasingly large chunks that
we call miniheaps. Each miniheap contains objects of exactly one
size. DieHard allocates new miniheaps to ensure that, for each size,
the ratio of allocated objects to total objects is never more than
1/M. Each new miniheap is twice as large, and thus holds twice as
many objects, as the previous largest miniheap.

Allocation randomly probes a miniheap’s bitmap for the given
size class for a 0 bit, indicating a free object available for recla-
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mation, and sets it to 1. This operation takes O(1) expected time.
Freeing a valid object resets the appropriate bit, which is also a
constant-time operation.

Unlike conventional allocators, DieHard does not cache and
reuse recently freed heap memory, but instead selects from the full
range of available heap memory on every allocation, making each
allocation’s placement independent of the last.

STABILIZER’s compiler pass rewrites calls to malloc and
free (exposed in LLVM IR) to target the DieHard heap. Note that
STABILIZER cannot move heap-allocated objects during execution
because this is not permitted by C/C++.

4.2 Code Randomization
STABILIZER randomizes code at the function granularity. Every
transformed function has a relocation table (see Figure 3), which
is placed immediately following the code for the function. The
relocation table contains a users counter that tracks the number of
active users of the function, followed by the addresses of all globals
and functions referenced by the relocated function.

Every function call or global access in the function is indirected
through the relocation table. Relocation tables are not present in
the program binary but are created on demand by the STABILIZER
runtime.

Pointers to entries in the relocation table actually point into
the following function. Each function refers to its own adjacent
relocation table using relative addressing modes, so two randomly
located copies of the same function do not share a relocation table.
STABILIZER adds code to each function to increment its users
counter on entry and decrement it on exit.

Initialization. During startup, STABILIZER overwrites the first
byte of every relocatable function with a software breakpoint (the
int 3 x86 opcode, or 0xCC in hex). When a function is called,
STABILIZER intercepts the trap and relocates the function. Every
random function location has a corresponding function location
object, which is placed on the active locations list.

Relocation. Functions are relocated in three stages: first, STABI-
LIZER requests a sufficiently large block of memory from the Die-
Hard heap and copies the function body to this location. Next, the
function’s relocation table is constructed next to the new function
location with the users counter set to 0. Finally, STABILIZER
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Figure 4. STABILIZER makes the stack non-contiguous. Each
function has a frame table, which stores a frame for each recursion
depth.

overwrites the beginning of the function’s original base address
with a static jump to the relocated function.

Re-randomization. STABILIZER re-randomizes functions at reg-
ular time intervals. When a timer signal is delivered, all running
threads are interrupted. STABILIZER then processes every function
location in the active locations list. The original base of the func-
tion is overwritten with a breakpoint instruction, and the function
location is added to the defunct locations list. This list is scanned on
every timer interrupt, and any locations with no remaining users are
freed. The users counter will never increase for a defunct func-
tion location because future calls to the function will execute in a
new location with its own users counter.

4.3 Randomization of Globals
STABILIZER randomizes the locations of global objects by allocat-
ing them on the DieHard heap at startup. If code randomization is
also enabled, globals are already accessed indirectly through the
function relocation table. In this case, the new random address for
the global replaces the default location in the relocation table. If
code randomization is disabled, STABILIZER rewrites accesses to
globals to be indirected through a pointer global variable that holds
the random address of the global. As with heap objects, STABI-
LIZER does not relocate globals after startup.

4.4 Stack Randomization
STABILIZER randomizes the stack by making it non-contiguous:
each function call moves the stack to a random location. These
randomly placed frames are also allocated via DieHard, and STA-
BILIZER reuses them for some time before they are freed. This
bounded reuse improves cache utilization and reduces the number
of calls to the allocator while still enabling re-randomization.

Every function has a per-thread depth counter and frame table
that maps the depth to the corresponding stack frame. The depth
counter is incremented at the start of the function an decremented
just before returning. On every call, the function loads its stack
frame address from frame_table[depth]. If the frame ad-
dress is NULL, the STABILIZER runtime allocates a new frame.

External functions. Special handling is required when a stack-
randomized function calls an external function. Because external
functions have not been randomized with STABILIZER, they must



run on the default stack to prevent overrunning the randomly lo-
cated frame. STABILIZER returns the stack pointer to the default
stack location just before the call instruction, and returns it to the
random frame after the call returns. Calls to functions processed by
STABILIZER do not require special handling because these func-
tions will always switch to their randomly allocated frames.

Re-randomization. At regular intervals, STABILIZER invalidates
saved stack frames by setting a bit in each entry of the frame table.
When a function loads its frame from the frame table, it checks this
bit. If the bit is set, the old frame is freed and a new one is allocated
and stored in the table.

4.5 Architecture-Specific Implementation Details
STABILIZER runs on the x86, x86_64 and PowerPC architectures.
Most of the implementation details are the same, but some specific
modifications were required for portability.

x86_64
Supporting the x86_64 architecture introduces two complications
for STABILIZER. The first is for the jump instructions: jumps,
whether absolute or relative, can only be encoded with a 32-bit ad-
dress (or offset). STABILIZER uses mmap with the MAP_32BIT
flag to request memory for relocating functions, but on some sys-
tems (notably, Mac OS X), this memory is extremely limited.

To handle cases where functions must be relocated more than a
32-bit offset away from the original copy, STABILIZER simulates a
64-bit jump by pushing the target address onto the stack and issuing
a return instruction. This form of jump is much slower than a 32-bit
relative jump, so high-address memory is only used if low-address
memory is exhausted.

PowerPC
PowerPC instructions use a fixed-width encoding of four bytes.
Jump instructions use 6 bits to encode the type of jump to per-
form, so jumps can only target sign-extended 26 bit addresses (or
offsets, in the case of relative jump). This limitation results in a
memory hole that cannot be reached by a single jump instruction.
To ensure that code is never placed in this hole, STABILIZER uses
the MAP_FIXED flag when initializing the code heap to ensure that
all functions are placed in reachable memory.

4.6 Optimizations
STABILIZER performs a number of optimizations that reduce the
overhead of randomization. The first addresses the cost of soft-
ware breakpoints. Frequently-called functions incur the cost of a
software breakpoint after every function relocation. Functions that
were called in 3 consecutive randomization periods are marked as
persistent. The STABILIZER runtime preemptively relocates persis-
tent functions at instead of on-demand with a software breakpoint.
STABILIZER occasionally selects a persistent function at random
and resets it to on-demand relocation to ensure that only actively
used functions are eagerly relocated.

The second optimization addresses inadvertent instruction cache
invalidations. If relocated functions are allocated near randomly
placed frames, globals, or heap objects, this could lead to unnec-
essary instruction cache invalidations. To avoid this, functions are
relocated using a separate randomized heap. For x86_64, this ap-
proach has the added benefit of preserving low-address memory,
which is more efficient to reach by jumps. Function relocation ta-
bles pose a similar problem: every call updates the users counter,
which could invalidate the cached copy of the relocated function.
To prevent this, the relocation table is located at least one cache
line away from the end of the function body.

5. STABILIZER Statistical Analysis
This section presents an analysis that demonstrates that, for pro-
grams that meet several basic assumptions described below, STA-
BILIZER’s randomization results in normally-distributed execution
times. Section 6 empirically verifies this analysis.

The analysis proceeds by first assuming programs with a trivial
structure (running in a single loop), and successively weakens this
assumption to handle increasingly complex programs.

Base case: a single loop. Consider a small program that runs
repeatedly in a loop. The space of all possible layouts l for this
program is the population L. For each layout, an iteration of the
loop will have an execution time e. The population of all iteration
execution times is E. Clearly, running the program with layout l for
1000 iterations will take time:

Trandom = 1000∗ e

When this same program is run with STABILIZER, every itera-
tion is run with a different layout li with execution time ei. Running
this program with STABILIZER for 1000 iterations will have total
execution time:

Tstabilized =
1000

∑
i=1

ei

The values of ei comprise a sample set x from the population E
with mean:

x̄ =
∑

1000
i=1 ei

1000
The central limit theorem tells us that x̄ must be normally dis-

tributed (30 samples is sufficient for normality. We have 1000).
Interestingly, the value of x̄ is only different from Tstabilized by a
constant factor. Multiplying a normally distributed random vari-
able by a constant factor simply shifts and scales the distribution.
The result remains normally distributed. It should be easy to see
that for this simple program STABILIZER leads to normally dis-
tributed execution times. Note that the distribution of E was never
mentioned—the central limit theorem guarantees normality regard-
less of the sampled population’s distribution.

The above argument relies on two conditions. The first is that
STABILIZER runs each iteration with a different layout. STABI-
LIZER is not coupled to iterations in programs, so this is clearly not
true. However, it is easy to see that if STABILIZER re-randomizes
every n iterations, we can simply redefine an “iteration” to be n
passes over the same code.

Programs with phase behavior. The second condition is that the
program is simply a loop repeating the same code over and over
again. In reality, programs have more complex control flow and
may even exhibit phase-like behavior. The net effect is that for
one randomization period, where STABILIZER maintains the same
random layout, one of any number of different portions of the
application code could be running. However, the argument still
holds.

This program can be decomposed into subprograms, each
equivalent to the trivial looping program described earlier. These
subprograms will each comprise some fraction of the program’s
total execution, and will all have normally distributed execution
times. The total execution time of the program is a weighted sum
of all the subprograms. The sum of two normally distributed ran-
dom variables is also normally distributed, so the program will still
have a normally distributed execution time. This decomposition
also covers the case where STABILIZER’s re-randomizations are
out of phase with the iterations of the trivial looping program.
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5.1 Assumptions
STABILIZER can only guarantee normality when a program is ran-
domized a sufficient number of times. Code layout randomization is
performed at function granularity, so a program with a single func-
tion will not be re-randomized. This situation could arise in large
programs if aggressive inlining eliminates most of the program’s
function calls. Most programs have a large number of functions,
which allows STABILIZER to re-randomize code frequently enough
to guarantee normality.

STABILIZER supports unmanaged languages, so live heap ob-
jects are not relocated. Every allocation returns a randomly selected
heap address, so programs with a sufficiently large number of short-
lived heap objects will be effectively re-randomized. This require-
ment corresponds to the generational hypothesis for garbage col-
lection, which has also been shown to be true in unmanaged envi-
ronments [5, 13].

Searching for Optimal Layouts
STABILIZER makes it possible to change the layout of a program
dynamically. This raises the question: instead of randomizing lay-
out, why not search for an optimal layout? Unfortunately, the space
of possible layouts is prohibitively large. A program with just three
functions and no globals or heap objects has 2476 ≈ 7.8x1084 pos-
sible layouts for code and stack in a 64-bit address space (48 bits
sign-extended, reserving the higher half for the kernel). As a com-
parison, there are an estimated 1080 atoms in the observable uni-
verse. Only considering cache ways, and not absolute addresses,
a program with 35 cache line-sized functions will have a similar
number of mappings onto a 16-way cache (not accounting for off-
set within the cache line).

Even if we disregard the gigantic state space for layouts, we are
left with a problem of generality. The impact of layout is machine-
and input-dependent. A good layout for one input may be the worst
case for another. This means the search for an optimal layout would
need to be run on every execution.

A deterministic memory layout opens the door for degenerate
execution environments or inputs, which consistently lead to per-
formance outliers. This is similar to quicksort with deterministic
pivot selection [8]. Introducing randomization makes it impossi-
ble for any input to consistently produce the worst-case behavior.
Unlike a fixed, “optimal” layout, a randomized layout can be gen-
erated efficiently, will have no degenerate cases, and bounds the
probability of observing performance outliers for any input.

6. STABILIZER Evaluation
We evaluate STABILIZER in two dimensions. First, we test the
claim that STABILIZER eliminates the impact of execution environ-
ment on program performance and leads to normally distributed ex-
ecution times. Next, we quantify the overhead of running programs
with STABILIZER relative to unrandomized execution.

All evaluations were performed on an dual-socket 6-core Intel
Xeon X5650 running at 2.67GHz equipped with 24GB of RAM.
Each core has 32KB of data L1 cache, 32KB of instruction L1
cache, and 256KB of unified L2 cache. Each socket has a single
12MB L3 cache shared by all cores. The system runs version
2.6.32 of the Linux kernel (unmodified). All programs (with and
without STABILIZER) were built using version 2.9 of the LLVM
compiler with the GCC 4.2 front-end using -O2 optimizations
unless otherwise specified.

Benchmarks. We evaluate STABILIZER on the SPEC CPU2006
and CPU2000 benchmark suites. From SPEC CPU 2006, we
ran astar, bzip2, gcc, gobmk, h264ref, hmmer, lbm,
libquantum, mcf, milc, namd, perlbench, sjeng, and
sphinx3. We were unable to run omnetpp, xalancbmk,
dealll, soplex, povray, and all the Fortran benchmarks.
LLVM does not support the Fortran front-end, and STABILIZER
currently does not support C++ exceptions. All SPEC CPU2006
benchmarks were run with train inputs.

We also ran the ammp, art, crafty, equake, gzip, parser,
twolf, vortex, and vpr benchmarks from SPEC CPU2000.
We excluded benchmarks that have more recent versions in SPEC
CPU2006 (gcc, mcf, and perlbmk). We were unable to run gap
and mesa because they would not build on our 64-bit machine.
eon uses exceptions, so it is not yet supported by STABILIZER.
All Fortran benchmarks from SPEC CPU2000 were also included.
SPEC CPU 2000 benchmarks were run with ref inputs.

6.1 Performance Isolation
We evaluate the claim that STABILIZER results in normally dis-
tributed execution times across the entire benchmark suite. Using
the Shapiro-Wilk test for normality, we can check if the execution
times of each benchmark are normally distributed with and without
STABILIZER. Every benchmark was run 10 times, adding a random
number of bytes (between 0 and 4096) to the shell environment
variables on each run.

Without STABILIZER, 10 benchmarks exhibit execution times
that are not randomly distributed with 95% confidence: ammp,
astar, gzip, lbm, libquantum, mcf, milc, namd, vortex,
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Figure 6. Speedup of -O3 over the -O2 optimization level in LLVM. Error bars indicate the p-values for the T-test comparing -O2 and
-O3.Benchmarks with dark bars showed a statistically significant change with -O3 relative to -O2. However, despite these individual results
of statistical significance, the data do not indicate significance across the entire suite of benchmarks (see Section 7.1).

and vpr. Running each of these benchmarks with STABILIZER
leads to normally distributed execution times.

Figure 7 shows the distributions of four benchmarks using
quantile-quantile (QQ) plots. QQ plots are useful for visualizing
how close a set of samples is to a distribution (or another set of
samples). The quantile of every sample is computed. Each data
point is placed at the intersection of the sample and reference dis-
tributions’ quantiles. If the samples come from the reference distri-
bution (modulo differences in mean and variance), the points will
fall along a straight line in the diagonal.

Result: These figures demonstrate that STABILIZER imposes nor-
mally distributed execution times. This normality holds even for
programs with execution times that were not originally normally
distributed (that is, without STABILIZER).

6.2 Efficiency
Figure 5 shows the overhead of STABILIZER relative to unrandom-
ized execution. Each benchmark was run 10 times for each con-
figuration. The results show that for most benchmarks, code and
stack randomization ad under 13% overhead. With all randomiza-
tions enabled, STABILIZER adds a median overhead of 14.5%.

When does STABILIZER hurt performance?
The overhead added by STABILIZER is mostly due to the reduced
locality of a randomized program. Code and stack randomization
both add additional logic to function invocation, but in practice this
extra work does not significantly degrade performance. Programs
run with STABILIZER use a larger portion of the virtual address
space, putting additional pressure on the TLB. Randomly placed
code and data are sparse across this increased virtual memory
range, reducing cache utilization. In most cases the added overhead
is modest, but for larger programs (gcc, gobmk, perlbench,
sjeng, and vortex) it can measurably degrade performance.

With all randomizations enabled, STABILIZER adds signifi-
cant overhead for ammp, art, equake, gobmk, perlbench
and vortex. The majority of this overhead is due to startup
costs with global randomization and the increased cost of heap
allocations. Global randomization is not performed lazily, so for
some short running benchmarks with many globals (art, gobmk,
perlbench, and vortex) startup time contributes a large frac-
tion of the overhead. This overhead could be reduced by random-
izing globals lazily, which we leave for future work.

When does STABILIZER improve performance?
In some cases, STABILIZER improves the performance of bench-
marks. Benchmarks are unlikely to exhibit cache conflicts and
branch aliasing for repeated random layouts. Two programs (mcf
and hmmer) show improved performance only when global and
heap randomization are enabled. Stack randomization improves the
performance of two more benchmarks (lbm and libquantum).
Code randomization does slightly improve the performance of lbm
and libquantum, likely due to elimination of branch aliasing.

7. Sound Performance Analysis
STABILIZER enables a sound method for performance evaluation,
which we use to evaluate the effectiveness of LLVM’s -O3 opti-
mization level. Figure 6 shows the speedup of -O3 over -O2 for
all benchmarks. Running benchmarks with STABILIZER guaran-
tees normally distributed execution times, so we can apply rigorous
statistical methods to determine the effect of O3.

We first apply the two-sample T-test to determine whether -O3
provides a statistically significant performance improvement over
-O2. With a 95% confidence level, we determined that there is a
statistically significant difference between -O2 and -O3 for 13 of
23 benchmarks. While this result may suggest that -O3 does have
an impact, there is a serious caveat: gzip and perlbench show
a statistically significant increase in execution time with the added
optimizations.

7.1 Analysis of Variance
Evaluating optimizations with pairwise t-tests is error prone. This
methodology runs a high risk of erroneously rejecting the null hy-
pothesis. In this case, the null hypothesis is that -O2 and -O3 op-
timization levels produce execution times with the same distribu-
tions. Using analysis of variance, we can determine if -O3 has a
significant effect over all the samples.

We run ANOVA with the complete set of benchmark runs at
both -O2 and -O3 optimization levels. For this configuration,
the optimization level and benchmarks are the independent factors
(specified by the experimenter), and the execution time is the de-
pendent factor.

ANOVA takes the total variance in execution times and breaks
it down by source: the fraction due to differences between bench-
marks, the impact of optimizations, interactions between the inde-
pendent factors, and random variation between runs. Not surpris-
ingly, 99.9% of the variance in our experiment is due to differences
between benchmarks. Of the remaining variance, 46.5% is due to
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Figure 7. Immunity from measurement bias: Quantile-quantile plots comparing the distribution of execution times for three benchmarks to
the normal distribution. The solid line indicates where points drawn from a normal distribution will fall. In the first three cases, unrandomized
execution times fall well outside of the range for normality, while runs with STABILIZER closely match the normal quantile line. The figure
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the interaction between specific benchmarks and -O3, 47.5% is due
to random variation, and just 6.0% is due to the -O3 optimizations.

Result: Using the F-test, we can determine if the variances are
statistically significant [6]. We fail to reject the null hypothesis,
and must conclude that -O3 optimizations are not statistically
significant with 95% confidence.

8. Future Work
We plan to extend STABILIZER to randomize code at finer granu-
larity. Instead of relocating whole functions, STABILIZER can relo-
cate individual basic blocks at runtime. This finer granularity would
allow for branch-sense randomization. Randomly relocated basic
blocks can appear in any order, and STABILIZER can randomly
swap the fall-through and target blocks during execution. This ef-
fectively randomizes the history portion of the branch predictor ta-
ble, addressing another source of potential performance outliers.

Parallel programs suffer from the same sensitivity to layout as
serial programs, but can suffer from more dramatic performance
outliers due to false sharing [11]. False sharing occurs when two
threads share different variables that happen to fall on the same
cache line. This phenomenon incurs the same cache coherence
penalty as true sharing. We believe that STABILIZER’s random-
ization of heap objects and globals will make false sharing prob-
abilistically unlikely. In its current form, STABILIZER does not ef-
ficiently support parallel programs. The cost of atomic operations
performed at function call boundaries accounts for most of this
overhead. Additionally, on some platforms, thread-local accesses
are prohibitively expensive. We plan to address this overhead by
reducing the amount of STABILIZER runtime data shared between
threads.

Finally, DieHard may not be the best fit for the randomization
of large, fixed-size functions and stack frames. Its power-of-two
size classes lead to increased demand for virtual address space,
placing unneeded pressure on the TLB. We plan to implement a
specialized allocator that reduces the cost of STABILIZER’s code
and stack randomization.

9. Conclusion
Modern processor architectures are highly dependent on program
layout. Layout can be affected by input, code changes, program
link order, optimizations, shared library versions, and even shell
environment variables. These dependencies lead to highly unpre-
dictable performance, complicating performance evaluation and
optimization.

This paper presents STABILIZER, a compiler and runtime sys-
tem for comprehensive layout randomization. STABILIZER dynam-
ically relocates functions, stack frames, heap objects, and glob-
als on every execution, and repeatedly relocates code and stack
during execution. STABILIZER makes performance outliers statis-
tically unlikely, and makes execution times conform to a normal
distribution. Normally distributed execution times enable a wide
range of statistical techniques for performance evaluation. We use
STABILIZER to rigorously evaluate the effectiveness of LLVM’s
-O3 optimization level across the SPEC CPU2000 and CPU2006
benchmark suites, and found no statistically significant improve-
ment.

We plan to make STABILIZER freely available by publication
time, and encourage researchers to use it as a basis for sound
performance evaluation.
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