
IS
S

N
 0

24
9-

63
99

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
78

69
--

FR
+E

N
G

Embedded and Real Time Systems

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

PROARTIS: Probabilistically Analysable Real-Time
Systems

Francisco J. Cazorla1,5 — Eduardo Quiñones1 — Tullio Vardanega2 — Liliana Cucu3 —
Benoit Triquet4 — Guillem Bernat6 — Emery Berger1,7 — Jaume Abella1 — Franck

Wartel4 — Michael Houston6 — Luca Santinelli3 — Leonidas Kosmidis1 — Code Lo3 —
Dorin Maxim3

1 Barcelona Supercomputing Center. 2 University of Padua
3 Institut national de recherche en informatique et en automatique 4 Airbus France
5 Spanish National Research Council (IIIA-CSIC) 6 Rapita Systems
7 University of Massachusetts Amherst

N° 7869

26 january 2012

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

http://hal.inria.fr/hal-00663329
http://hal.archives-ouvertes.fr

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lès-Nancy
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

PROARTIS: Probabilistically Analysable Real-Time
Systems

Francisco J. Cazorla1,5 , Eduardo Quiñones1 , Tullio Vardanega2 ,
Liliana Cucu3 , Benoit Triquet4 , Guillem Bernat6 , Emery Berger1,7 ,

Jaume Abella1 , Franck Wartel4 , Michael Houston6 , Luca Santinelli3 ,
Leonidas Kosmidis1 , Code Lo3 , Dorin Maxim3

1 Barcelona Supercomputing Center. 2 University of Padua
3 Institut national de recherche en informatique et en automatique 4 Airbus France
5 Spanish National Research Council (IIIA-CSIC) 6 Rapita Systems
7 University of Massachusetts Amherst

Theme : Embedded and Real Time Systems
Algorithmics, Programming, Software and Architecture

Équipes-Projets Trio

Rapport de recherche n° 7869 — 26 january 2012 — 30 pages

Abstract: Static Timing Analysis is the state-of-the-art practice to ascertain the timing
behaviour of current-generation real-time embedded systems. The adoption of more
complex hardware to respond to the increasing demand for computing power in next-
generation systems exacerbates some of the limitations of Static Timing Analysis. In
particular, the effort of acquiring (1) detail information on the hardware to develop
an accurate model of its execution latency as well as (2) knowledge of the timing be-
haviour of the program in the presence of varying hardware conditions, such as those
dependent on the history of previously executed instructions. We call these problems
the Timing Analysis Walls.

In this vision-statement paper we present Probabilistic Timing Analysis, a novel
approach to the analysis of the timing behaviour of next-generation real-time embedded
systems. We show how Probabilistic Timing Analysis attacks the Timing Analysis
Walls; we then illustrate the mathematical foundations on which this method is based
and the challenges we face in the effort of efficiently implementing it. We also present
experimental evidence that shows how Probabilistic Timing Analysis reduces the extent
of knowledge about the execution platform required to produce probabilistically-safe
and tight WCET estimations.

Key-words: timing analysis

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS: Probabilistically Analysable Real-Time
Systems

Résumé : Notre article présente une analyse probabiliste de durée d’exécution d’un
programme. Nous présentons les bases mathématiques de notre approche et les défis à
surmonter pour rendre l’approche applicable dans des cas réels.

Mots-clés : durée d’exécution

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 3

Contents
1 Introduction 4

1.1 Problem Statement . 4
1.2 PROARTIS Vision and Approach . 5
1.3 Contribution . 6

2 Timing Analysis on Deterministic Platforms 7
2.1 A deterministic approach to timing analysis 8
2.2 WCET Dependence on Execution History 8

3 PROARTIS: a New Approach to Timing Analysis 9
3.1 A probabilistic approach to timing analysis 10
3.2 Challenges at the platform level . 15

3.2.1 Hardware level . 15
3.2.2 Software level . 17

4 An illustrative Example 17
4.1 Experimental Set-up . 17
4.2 Static Probabilistic Timing Analysis Results 18
4.3 Comparing Conventional Static Timing Analysis and Static Probabilis-

tic Timing Analysis . 19
4.4 Results . 22

5 Contextualising PROARTIS 24

6 Background 25

7 Ongoing and Future Work 27

8 Conclusions 27

9 Acknowledgments 28

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 4

1 Introduction

1.1 Problem Statement
The market for Critical Real-Time Embedded Systems (CRTES), which among others
includes the avionics and automotive sectors, is experiencing an unprecedented growth,
and is expected to continue to steadily grow for the foreseeable future [8]. Let us for
instance look at the automotive domain: a state-of-the-art high-end car, which currently
embeds up to 70 Electronic Control Units (ECUs), is predicted to embed many more
[7] to account for the inclusion of such new increasingly sophisticated functions as Ad-
vanced Driver Assistance Systems (ADAS). For CRTES of this kind it is imperative to
ensure the timing correctness of system operation: some form of Worst-Case Execution
Time (WCET) analysis is needed to that end.

The competition on functional value, measured in terms of application services
delivered per unit of product faces CRTES industry with rising demands for greater
performance, increased computing power, and stricter cost-containment. The latter
factor puts pressure on the reduction in the number of processing units and ECUs used
in the system, to which industry responds by looking at more powerful processors, with
aggressive hardware acceleration features like caches and deep memory hierarchies.

In this evolving scenario, it must be acknowledged that the industrial application
of current WCET analysis techniques [28], which accounts for a significant proportion
of total verification and validation time and cost of system production, yields far from
perfect results. IBM has for example found that 50% of the warranty costs in cars are
related to electronics and their embedded software, and that 30% of those costs are
related to timing flaws. These instances of incorrect operation cost industry billions of
Euros annually [7].

Current state-of-the-art timing analysis techniques can be broadly classified in two
complementary strands [28]: static timing analysis; and measurement-based analysis.

Measurement-based analysis techniques rely on extensive testing performed on the
real system under analysis using stressful, high-coverage input data, recording the so-
called high watermark execution time, i.e. the longest observed execution time; and
adding to it an engineering margin to make safety allowances for the unknown. How-
ever, the safeness of the engineering margin is extremely difficult – if at all possible –
to determine, especially when the system may exhibit discontinuous changes in timing
due to pathological cache access patterns or other unanticipated timing behaviour.

Static timing analysis techniques rely instead on the construction of a cycle-accurate
model of the system and a mathematical representation of the application code which
makes it possible to determine the timing behaviour on that model. The mathemati-
cal representation is then processed with linear programming techniques to determine
a safe upper-bound on the WCET, providing stronger guarantees than measurement-
based approaches. Static approaches have one important limitation though: they are
expensive to carry out owing to the need to acquire exhaustive knowledge of all fac-
tors, both hardware and software, that determine the execution history of the program
under analysis. Some processor architectures may dramatically increase this cost. Oth-
ers, possibly subject to intellectual property restrictions or incomplete documentation,
may even make it altogether impossible, and construction of the timing model must
resort to observations.

In order to appreciate the complexity of acquiring complete knowledge of execu-
tion history, consider a cache model with a Least Recently Used (LRU) replacement
policy. The accuracy in predicting the hit/miss outcome of a memory access depends

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 5

on knowing the full sequence and addresses of the previous memory accesses made
by the program up to the point of interest, in order to build a complete and correct
representation of the cache state. Any reduction of the available knowledge, e.g. when
the addresses of some memory accesses are unknown, leads to a rapid degradation of
the tightness of the WCET estimation. In fact, partial knowledge can lead to results as
inaccurate as those obtained with no information at all.

1.2 PROARTIS Vision and Approach
Our view is that the cost of acquiring the required knowledge to perform trustwor-
thy analysis can be significantly reduced by adopting a hardware/software architec-
ture whose execution timing behaviour eradicates dependence on execution history.
One way to achieve this independence is via introducing randomisation in the tim-
ing behaviour of the hardware and possibly of the software (while the functional be-
haviour is left unchanged), coupled with new probabilistic analysis techniques. An
example of such hardware is a cache memory in which, in the event of a miss, the
victim is randomly selected, from any position in the cache. We call this unit of
eviction/replacement, cache entry. Under this cache configuration, the probability of
hit/miss for an access has a small dependence on execution history, in particular, the
number of cache misses between the access under consideration and the previous ac-
cess to the same address. Note that the hit/miss probability is different from the fre-
quency of events. For instance, a memory instruction may have a 50% hit probability
if every time it accesses cache we flip a coin and hit if and only if we get heads. Con-
versely, if the instruction hits and misses alternately, that instruction does not have a
50% hit probability but a 50% hit frequency. This is so because the outcome, and hence
the latency, of each access is fully deterministic.

Deterministic
WCET

ΣP=1

Deterministic
Max Observed

PROARTIS
WCET Probability
Distribution

Execution with
deterministic
architecture

Execution with
time-randomised
architecture

f

T

N
o
rm

a
lis

e
d
 F

re
q
u
e
n

cy

Execution Time

PROARTIS
WCET

Time-randomised
Max Observed

c

a

b

1-10-6
1-10-12
1-10-50

ΣP=

Figure 1: Execution time distributions for conventional deterministic architectures and
a proposed time-randomised architecture, superimposed with the PROARTIS worst-
case probability distribution

Applying time-randomisation techniques has inevitable consequences for the average-
case execution time of a program. Figure 1 illustrates the PROARTIS view of execution
time; the execution time shift between deterministic and time-randomised architectures
is marked (a). In general we expect the time-randomized profile to shift to the right (to
increase) in relation to the deterministic profile, and to spread across a larger range of
execution times. However the resulting distribution becomes more predictable: by de-
coupling timing events (e.g., cache accesses), they compose into a smooth curve, with

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 6

a long tail describing execution times which are increasingly unlikely. Dependences
between events in deterministic architectures can have an abrupt impact on execution
time, producing discontinuities in the possible execution times which are difficult to
model with a parametric distribution.

The absolute maximum execution time produced by the PROARTIS analysis will
be many times greater than a conventional WCET, as it will correspond with the case
where all instructions take the longest possible time to execute (e.g., every cache access
is a miss [23]). We expect instead to gain by tightening the gap between observed ex-
ecution times and worst-case execution bounds using a probabilistic confidence limit.
The result of static analysis of deterministic architectures produces a degree of pes-
simism, where unknown states must be considered to have their worst consequences
on the timing of the system. The ‘true WCET’ lies somewhere in the range marked
(b) in Figure 1, between the maximum observed execution time and the WCET bound
produced by analysis.

In PROARTIS the consequences of these unknown states can be considered prob-
abilistically, which allows us to reason about the WCET probabilistically. Techniques
from Extreme Value Theory (EVT) are used to construct a worst-case probability dis-
tribution. We define worst-case bounds with stated confidence levels, which can be
chosen to match the degree of uncertainty present in the rest of the system being anal-
ysed. This will allow a tighter WCET bound to be considered (c).

WCET estimates are computed by considering the execution time at which the cu-
mulative probability (ΣP) exceeds the required level of confidence. These confidence
levels are expressed in Figure 1 in terms of the probability of exceeding the WCET
threshold in any given run, however this figure should be adjusted based on arrival
frequency to determine the probability per hour, or per year as necessary.

1.3 Contribution
In this paper we illustrate our vision, which attacks the limits of current timing anal-
ysis techniques using our novel EVT-based probabilistic timing analysis method. We
discuss the challenges to be faced at the different layers of the execution stack when
adopting our vision, and leave for future work the specification of complete solutions
for all of the identified challenges. We argue that our analysis can provide WCET
estimations with well-defined confidence bounds for CRTES: this assertion requires
that the execution time behaviour of the system has specific mathematical properties,
in particular independence and identical distribution, which we obtain by introducing
randomisation in the timing behaviour at the bottom of the execution stack.

Our main contributions can be summarised as follows:

• We present two approaches to Probabilistic Timing Analysis (PTA). The first,
statically derives a-priori probabilities from a model of the system: we call it
Static PTA, SPTA. The second, measurement-based, derives probabilities from
end-to-end runs on the target hardware of the software under study: we call
it MBPTA. From these runs we collect data about the timing behaviour of the
application software when executing on our proposed platform with randomised
timing behaviour.

• For each such approach, we sketch the mathematical foundations on which PTA
is based. We further enumerate and begin to attack the challenges we encounter
at hardware and software levels upward the execution stack to pursue our vision.

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 7

• We then show how SPTA reduces the amount of knowledge needed to achieve
tight WCET estimations, and we discuss the benefits that this reduction brings.
SPTA requires the reuse distances of every access, which in fact are much eas-
ier to obtain than the addresses of memory operations required for conventional
static timing analysis. Tight WCET estimations made with SPTA have less de-
pendence on complete knowledge than conventional methods, and lack of infor-
mation in the analysis has less impact on the WCET estimations. In fact, WCET
estimations provided by SPTA react much more smoothly to the lack of knowl-
edge, with a gradual shift towards a maximum value as knowledge is reduced.

Notably, a probabilistic analysis model is in match with the aging and reliability
behaviour of the hardware itself, which common wisdom accepts may fail with a given
(though very low) probability. In fact, not only the computing system, but any other
mechanical parts that form the embedded system, also have a distinct probability of
failure. In that sense, timing failures can be considered just another type of failure
that the system may experience. The objective of the probabilistic timing analysis is
to provide WCET estimations that are safe enough for the application, and keep the
overall failure rate of the system below the domain-specific threshold of acceptability.

Section 2 provides a background description of how current timing analysis meth-
ods work and their limitations. Section 3 explains our probabilistic timing analysis
approach and in particular how it addresses the main limitations of current timing anal-
ysis techniques. Section 4 provides a comparison of conventional static timing analysis
and static probabilistic timing analysis for the cache. Section 5 shows how the proba-
bilistic timing analysis approach fits with future embedded systems design. Section 6
presents related work. Section 7 surveys our main lines of future work. Finally, Sec-
tion 8 presents the main conclusions of this study.

2 Timing Analysis on Deterministic Platforms
Reliable timing analysis in the form of WCET analysis is a key stage in the design
and verification process of real-time systems, and becomes paramount for safety crit-
ical systems. WCET estimates are needed in the development of hard real-time sys-
tems to perform schedulability analysis, to ascertain whether the periodic and sporadic
tasks meet their timing requirements, that the latency in the handling of interrupts falls
within limits, and that aperiodic tasks are allowed sufficient time to perform useful
work within sufficiently short service windows.

Unfortunately, timing analysis is a complex process, as the variations in execution
time experienced by programs may be caused by the characteristics of the software
itself, as well as by the hardware platform upon which the program is to run. It therefore
follows that all salient characteristics of software and hardware must be thoroughly
understood in order to provide meaningful WCET estimations. On the software side,
execution time variations may arise from multiple sources, such as varying input sets
a program can be asked to operate on, or its layout in memory for both code and
data. Similarly, on the hardware side, all features that enhance average performance by
exploiting properties of execution history, such as caches, pipelines and speculation,
are potential sources of variation on the execution time.

In the following section we review current state-of-the-art techniques to perform
WCET analysis and identify one of the main sources that threatens to make the cost of
acquiring the information needed to perform timing analysis unaffordable: the depen-
dence of hardware and software timing behaviour on the history of execution.

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 8

2.1 A deterministic approach to timing analysis
Conventional static timing analysis methods require the underlying system to be Time
Deterministic (TD) or Time Predictable (TP). In a TD system, for a given input set, the
sequence of events which will occur in the system is fully known, and so is the time
after which the output of an event will be produced. This form of analysis obviously
needs a very accurate and detailed model of the system, fully consistent with the causal
dependence in place between all significant events. The safety and tightness of static
timing analysis depend directly on the accuracy of the available system model, which
in turn depends on the accuracy of information we can obtain about its actual operation
and timing. Conventional analysis can also be applied to TP systems, in which the
timing of the events that can occur during execution is not known in advance, but can
be safely bounded. Hence, when the precise timing of an event cannot be determined,
pessimistic assumptions can and must be made about its occurrence. This is, for exam-
ple, the case with cache accesses, which must be considered misses when the memory
address issued is not known beforehand, and hence the time of their occurrence can-
not be predetermined. Notably, this assumption only holds in the absence of timing
anomalies [19][26], whose presence significantly exacerbates the problem.

Unfortunately, with the increase in complexity of next-generation CRTES – at both
hardware and software level – the extent of knowledge needed, as well as the time,
effort, cost and complexity required to acquire and comprehend all the relevant details,
become unaffordable. That is, the large amount of state that is carried by a modern
processor leads to combinatorial explosion when trying to enumerate all possible ex-
ecution histories even for simple pieces of code. Thus, as long as current analysis
techniques are unable to scale up to the challenge, increased hardware complexity will
cause a significant degradation of the quality of the resulting products.

In summary, industry demands new functionality and higher levels of performance
together with reduced cost, weight and power dissipation, which can only be deliv-
ered by advanced hardware features. However, the timing behaviour of systems using
these advanced hardware features is very hard to deal with by current timing analysis
techniques as the amount of information required is becoming unaffordable.

Next we discuss an example of a hardware component, the cache, whose tight and
safe timing analysis requires an especially large amount of information.

2.2 WCET Dependence on Execution History
Exploiting the execution history of the program, in the form of either temporal or spatial
locality, is one of the most common principles of processor design. A typifying exam-
ple of this strategy is the cache. The use of caches is widespread in general-purpose
processors because they can dramatically improve the average application performance
by exploiting locality in memory access patterns, reducing access times by up to two
orders of magnitude. However, this strategy has an important downside: the execution
time of programs, and their WCET, heavily depend on execution history, which intro-
duces serious complexity, as we discuss below. For caches this dependence shows the
level of the cache hierarchy the required data is stored in, and where.

With conventional static analysis approaches, knowledge of the execution history
(in addition to knowledge of the target hardware) is required to provide tight WCET
estimations. By maintaining the cache state for any point in the program, the analysis
can precisely determine whether a memory access will be a hit or a miss. Many re-
search efforts have attempted to obtain predictable cache behaviour by applying cache

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 9

locking (present in PowerPC 440, MPC5554, ARM 940) or deterministic replacement
policies such as Least Recently Used (LRU) [Rgbw07].

However, to model all possible cache states is extremely costly, as it requires
knowledge of all the memory accesses that a program makes. Not having the complete
list forces the analysis to make pessimistic assumptions. For example, in a direct-map
cache, if a single memory address is not known, the analysis must regard the cache
as completely empty, as all cache lines could have potentially been evicted. Mem-
ory access times are even harder to predict in the face of complex, multi-level cache
hierarchies.

Moreover, deterministic behaviour may result in pathological cases that are ex-
tremely difficult to predict or detect by testing. A recent study conducted for the Eu-
ropean Space Agency [Bce07] shows the difficulties of using caches in CRTES: small
program changes that lead to different memory layouts can trigger pathological cache
behaviour which were called cache risk patterns: they are systematic cache misses that
lead to large increases in WCET estimation. This may introduce abrupt changes in the
WCET when the execution conditions when the program is deployed are not exactly
the same as when it was analysed.

The difficulty of predicting memory access times in the presence of caches (even
though the program may never trigger pathological behaviours) can lead to WCET
estimates that are extremely pessimistic, where each unpredictable access is assumed
to be a cache miss. This is one of the key sources of pessimism in static WCET analysis.

The level of complexity and the pessimism introduced by cache analysis has led
many CRTES to dispense with caches altogether. Hence, despite the fact that the first
cache memories appeared in the late sixties, they are still seldom used in CRTES.

3 PROARTIS: a New Approach to Timing Analysis
The central hypothesis of PROARTIS [22] is that new advanced hardware features
can be used and analysed effectively in embedded real-time systems with designs that
provide time-randomised behaviour. The introduction of randomisation in the timing
behaviour of hard-to-analyse resources (e.g. caches), has a two-fold objective: (1) it
reduces the cost of acquiring the knowledge required to perform trustworthy analy-
sis; (2) it gives the system the properties needed for probabilistic timing analysis by
reducing the dependence on execution history. This property, which is discussed in
detail in Section 3.1, enables the use of probabilistic analysis techniques in verification
arguments for CRTES, proving that the probability of pathological execution times is
negligible, so that tighter bounds can be safely obtained. An element of the PROARTIS
objectives is to develop a probabilistic timing analysis that will prove that pathological
cases can only arise with quantifiably negligible probability, rather than trying to elim-
inate them (which is arguably not possible and could be detrimental to performance).
This analysis approach will provide a substantial advance over current methods, includ-
ing conventional static analysis techniques and testing, which are unlikely to scale up
to the size and complexity of next-generation CRTES, the advent of which can hardly
be stopped.

The techniques developed in PROARTIS will enable probabilistic guarantees of
timing correctness to be derived. For example, if the requirements placed on the re-
liability of a system indicate that the arrival rate of a timing failure must be less than
10−9 per hour of operation, then our analysis techniques translate this reliability re-
quirement into a probabilistic worst-case execution time for the system. Probabilistic

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 10

analysis provides a continuum of WCETs for different confidence levels. Hence, a
system may have a probability of 10−9 of exceeding an execution time of 1.5 ms over
a one hour period of operation, and arrival rates of 10−14, and 10−18 per hour of ex-
ecution times exceeding 1.6 ms and 1.7 ms, respectively. The aim of PROARTIS is
that for future CRTES (including the hard real-time systems among them), probabilis-
tic guarantees will offer significant advantages over deterministic approaches which
attempt to make absolute guarantees, severely limiting the use of advanced hardware
features and inevitably offering significantly lower performance guarantees.

Currently, the overall system reliability is expressed in terms of probabilities for
hardware failures, memory failures, software faults and for the system as a whole.
PROARTIS extends this notion to timing correctness. We aim to obtain WCET esti-
mations for arbitrarily low probabilities, e.g. in the region of 10−50 per time unit of
operation: to appreciate how small that probability is, consider that Extinction Level
Events, such as an asteroid hitting the Earth, are estimated to happen about once every
100 million years, hence at an arrival rate of 10−16 per second, or 10−12 per hour.

3.1 A probabilistic approach to timing analysis
In general, a probabilistic analysis estimates the chance of future events based on an
a-priori model of the probability. For instance, when throwing a die, assuming that
the die is not loaded, a probabilistic analysis of the ‘die model’ would assume that the
probability of it falling on any of its faces is 1/6.

Statistical analysis searches for a model or properties when studying some (often
large) body of data about observed past events. For instance, on the same example
as above and assuming each face has a unique number, in order for the statistician to
check if the die is loaded, he or she would define the hypothesis that ‘the probabil-
ity of each number appearing is the same’. By analysing a large number of throws,
this hypothesis will be accepted or rejected, with a level of confidence based on how
closely the observations match the model. In order to avoid confusion, in this paper
we will not use the word ‘stochastic’ which is often associated with non-deterministic
behaviour. Although the term is usually described to mean ‘based on the theory of
probability’, it is often used in other contexts with subtly different meanings. Instead,
we refer to probabilistic approaches outlining the nature of our idea which goes be-
yond the indeterminacy: we consider probability distributions to model the knowledge
of processes.

Both probabilistic and statistical analyses associate an event A with a random
variable1 A describing the probability that such an event occurs. For instance if A
is the event of throwing a die then A has the probability function (PF) fA(·) with
fA(a) = P (A = a) = 1

6 being the probability to obtain the value a ∈ {1, 2, · · · , 6}
after throwing the die.

The existing probabilistic and statistical analyses for CRTES consider usually either
closed form (usually continuous) to describe the distribution of the random variables
[16], or empirical distributions2 [21],[9]. Within PROARTIS we consider the second
option which is more appropriate for measurement-based approaches where the execu-
tion traces provide (by grouping the set of values) empirical distributions.

Moreover the existing probabilistic and statistical analyses for CRTES indicate that
they require precise hypotheses about the random variables [13] to be captured in the

1In this paper we use a calligraphic typeface to denote random variables. Without loss of generality we
consider discrete random variables.

2Some authors use the term "density histogram" to design the empirical distributions

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 11

analysis model. Among many hypotheses, we identify two of them: independence and
identical distribution of the random variables. We introduce below the definitions of
these notions, which we apply in our probabilistic timing analysis.

Definition 1 (Independent Random Variables). Two random variables X and Y are
independent if they describe two events such that the occurrence of one event does not
have any impact on the occurrence of the other event.

Definition 1 is equivalent to saying that X and Y are independent if and only if:

P (X ≤ x and Y ≤ y) = P (X ≤ x)P (Y ≤ y) (1)

Definition 2 (Identically Distributed Variables). Two random variables X and Y are
identically distributed if X and Y have the same probability distribution.

Definition 2 is equivalent to saying that two random variables X and Y defined on
the same space S3 are identically distributed if for any subset A ⊆ S:

P (X ∈ A) = P (Y ∈ A) (2)

We note that Definition 2 does not imply that two random variablesX and Y , which
are identically distributed, are equal.

Definition 3 (Independent And Identically Distributed Variables). A sequence of ran-
dom variables (Xn)n is independent and identically distributed (i.i.d.) when any two
random variables Xi and Xj , belonging to the sequence, are independent, i 6= j, and
have the same distribution function.

A sequence of (fair) die rolls where each roll is a random variable is i.i.d. as the
random variables describe the same event type and the outcomes are obtained from
mutually independent events.

Static4 Probabilistic Timing Analysis: in SPTA, execution time probability distri-
butions for individual operations, or components, are determined ‘statically’ from a
model of the processor or software. The design principles of PROARTIS will ensure
that it makes sense to derive execution time distributions for these operations, and to
make the assumption that the probabilities for the execution time of each instruction
are independent. For example, this means that regardless of whether an instruction is
actually a cache hit or a miss when executed, the probabilities for later instructions
remain the same.

SPTA is performed by calculating the convolution (⊕) of the discrete probability
distributions which describe the execution time for each instruction on a CPU; this
provides a probability distribution, or Execution Time Profile (ETP), representing the
timing behaviour of the entire sequence of instructions (see Figure 2).

We have used here a very basic model of the system: the CPU will execute each
instruction in a fixed number of cycles, and the only source of timing variation comes
from the cache. More complicated modeling is possible, generating a greater number
of possible timings for each instruction.

3In our case we suppose S allows the definition of an order relation
4We apply the term Static to all analyses that derive the a-priori probabilities from an abstraction of the

system.

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 12

Figure 2: SPTA uses a convolution to compute a probability distribution for the possible
execution times of a sequence of instructions

Applying this technique for all instructions in a trace yields a new execution time
distribution for the entire sequence of instructions, which includes all possible execu-
tion times for that sequence. By choosing a cut-off probability (e.g. 10−9) and measur-
ing where the inverse cumulative distribution function (the exceedance function) falls
below this level, we can read off a WCET with a given confidence that we will not
exceed that value.

The convolution of two ETPs requires only one assumption to be made about the
input data: that the probability that an instruction causes a cache miss must be indepen-
dent of the sequence of hits and misses which have occurred due to previous instruc-
tions. Note that this does not require that the probability distribution for an instruction
is independent of the sequence of preceding instructions, only that the actual outcome
of an event (a cache hit or miss) will not affect the calculated probability distribution
for following instructions. Dependences between instructions may be modelled by cre-
ating profiles for short sequences of instructions which represent all the possible timing
interactions between them. We aim to reduce the number of such dependences so that
the complexity of combining instruction sequences is reduced.

We now consider a theoretical implementation of a cache that fulfills this require-
ment, which we refer to as a time-randomised cache. It is fully associative and uses an
evict-on-access random replacement policy.

The major benefit to be had from this type of cache over conventional ones is that
pathological eviction patterns can be avoided by making the probability of any given
eviction pattern extremely small, and independent of the sequence of instructions ex-
ecuted. It also reduces the amount of information needed for modeling the cache be-
haviour to only the number of memory accesses, not their locations.

In our time-randomised cache configuration, the probability of evicting a given line
on every access is 1

N where N stands for the number of cache entries. The formula
used to compute the hit probability of a specific access to such a cache is as shown in
equation 3 [30]:

P (hit) =

(
N − 1

N

)K

(3)

In [30], K in Equation 3 corresponds to the number of cache misses between two
consecutive accesses to the same cache entry. For the purposes of our WCET analysis,
we must assume that every cache access could cause an eviction. Therefore, we define
K to be the number of memory accesses between two consecutive accesses to the same
cache entry, including the access for which we are computing K. K is referred to in
this paper as the ‘reuse distance’ of an address. The value of K must be computed
separately for each memory access, as the reuse distance depends on the address.

Under this cache configuration, the only information that the analysis requires for
each memory access is the reuse distance and not the full sequence and addresses of

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 13

Address Reuse Distance (K) Hit Probability (N=32)
A ∞ 0.00
B ∞ 0.00
C ∞ 0.00
D ∞ 0.00
A 4 0.88
B 4 0.88
C 4 0.88
A 3 0.91
B 3 0.91
C 3 0.91

Figure 3: Example of sequence of memory operations and their reuse distance and
probability of hit for a cache of 32 entries, i.e., N=32.

Figure 4: Example of SPTA Exceedance Function for simple 10 instruction trace.

the previous memory accesses as required when analysing conventional cache designs
such as LRU. Let’s assume the sequence of accesses A B C D A B C A B C (see
Figure 3). We assume that the the cache is initially empty for this example so the K
value for the first reference of each address is∞ and thus its probability of hit is 0 from
Equation (3).

To compute the distribution function for the instruction sequence in Figure 3, the
hit probability for each access is converted to a two-value distribution, containing the
hit and miss probabilities with their associated latencies.

For example, the hit probability for the second access to A in the example (0.88) is
translated to a distribution containing an execution time of 1 with probability 0.88, and
100 with probability 0.12. Accesses with zero hit probability create single valued dis-
tributions with an execution time of 100 and probability 1. These distributions are then
convolved, and the result can be seen in Figure 4. The chart shows an exceedance func-
tion, which is plotted as 1-cumulative probability over the range of execution times. It
allows us to read off the probability that the WCET will exceed any given execution
time value, or conversely to find a WCET to a given confidence level.

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 14

Notice that the maximum execution time is 1000 cycles: this represents the case
where each access is a cache miss.

Measurement-Based5 Probabilistic Timing Analysis: in MBPTA, complete runs of
the program under study are made on the target hardware. From these runs we collect
data about the timing behaviour of the program when run on low-level software and
hardware elements of the PROARTIS platform with randomised timing behaviour. This
information is used to determine the timing profile (as an execution time frequency
distribution) of individual elements of the system, and then use these as inputs to the
timing analysis of the overall system.

For MBPTA the maximum precision for the probability assigned to a given WCET
value is 1

number of runs . Hence, one would have to run an impossibly large number
of tests to be confident of having observed the longest possible execution time. For in-
stance, an execution time with a 1 in 109 probability of occurring will need, on average,
one billion test runs to be observed. Theories must be developed so that the required
number of experiments (runs) on the target platform is significantly decreased.

Our measurement-based timing analysis method is based on probabilistic tech-
niques, and provides an estimation of the WCET of a task or application running as
part of a larger system. Using randomisation in a system to defeat dependence on exe-
cution history is based on the observation that incurring the worst case is a rare event.
Therefore any accurate probabilistic timing analysis needs to use the theory of rare
events. This theory focuses on the analysis of tails of probability distribution, and it
is classically used to study how random processes deviate from their expected value.
More precisely the theory of rare events estimates for an event {X ≥ t} the values of
t for which the associated probability is very low (e.g. smaller than 10−4).

Two rare events theories fit the WCET estimation problem: the theory of extreme
values [12] and the theory of large deviations [17]. Extreme value theory (EVT) pro-
vides an estimate for the maximum of a sequence of i.i.d. random variables (Xi)n.
Large Deviation Theory (LDT) instead studies how rare events occur and it provides
an estimate for the sum of a sequence of i.i.d. random variables (Xi)n. LDT relies on
the acquired concept that rare events occur in the most likely way.

To the best of our knowledge EVT is the only rare event theory previously applied
to the WCET estimation problem. We provide here an analytical methodology to avoid
the limitations of existing work on EVT (as described in [13]).

Independent and identically distributed variables: since the analysis models the
behaviour of one and the same system in the same execution context, the variables
are naturally identically distributed. Thus we concentrate our presentation on ensuring
that the hypothesis of independence is valid. We identify two means to provide such
independence:

• statistical methods: the sequence of dependent variables is transformed into an
i.i.d. sequence using sampling techniques ([29]). The obtained i.i.d. sequence is
not guaranteed to have the same properties as the original sequence.

• hardware design: the architecture guarantees the minimisation of dependences
among traces. The PROARTIS solution is based on this means.

Continuous functions: the common utilisation of a discrete model within CRTES
introduces unsafeness if EVT is applied directly on (set of) discrete values. We identify
two methods to circumvent the problem:

5We apply the term Measurement Based to all analyses that derive a-priori probabilities from a measure-
ment based model.

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 15

• Block maxima: the values are grouped and EVT is applied only to the maximum
of each group. This method, which [14] applied to CRTES, helps EVT provide
WCET bounds instead of mere execution time estimation (as it was the case of
the EVT-based solution proposed in [10]). Coupling the grouping method to a
static probabilistic analysis improves the quality of group size.

• Exceedance threshold: only values that are larger than a given threshold are
retained. With respect to the block maxima method, this method compares the
values to a given value instead of the maximum value of a group. The difficulty
with this method stems from the determination of the threshold.

In addition to the limitations described in [13] we identify the over-estimation in-
curred by EVT in case of insufficient number of runs. Hence the knowledge of a
minimum number of runs for a program is required. This number could be obtained by
calibrating the results obtained with measurement-based approaches to the results of
the static probabilistic timing analysis: when the former match the latter then the num-
ber of measurement runs is sufficient. It follows that measurement-based probabilistic
analysis should be built on top of static probabilistic analysis, which thus is the root
of the solution. In this paper, we therefore focus on static probabilistic timing analysis
and leave the formulation of a measurement-based probabilistic analysis approach as
future work.

3.2 Challenges at the platform level
The ‘angle of attack’ taken by PROARTIS is to develop an execution platform (hard-
ware and software up to and including the middleware) whose timing behaviour has as
little dependence as possible on execution history and that enables probabilistic timing
analysis, without sacrificing average performance.

3.2.1 Hardware level

At hardware level our approach consists in time-randomising the behaviour of hard-
ware components. In adopting this approach several key questions have to be answered.
Do all hardware resources have to be randomised? Can a processor architecture have
deterministic and time-randomised resources at the same time? To answer these ques-
tions we classify hardware resources into four types. The main characteristic of re-
sources in terms of timing is whether their latency is fixed or not, whether it impacts
WCET noticeably and whether it can be easily predicted.

• Many resources have a fixed latency. Estimating their impact on timing is trivial
in our processor model. For instance, the latency to read a register or to perform
an addition is typically fixed, so estimating the latency of an instruction simply
requires knowing whether it uses such resources (which is implicit in the instruc-
tion itself) or whether all instructions must incur a time penalty as if they were
using such resource (which is fixed by the architecture).

• Some specific instructions may have a variable latency when accessing a given
resource. However, the difference between the worst-case and the best-case la-
tencies is rather low. In that case (low variability) the simplest solution would
consist of always assuming the worst-case latency to simplify the analysis. The
impact in the WCET is negligible. For instance, the latency of a division may

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 16

vary by few cycles depending on the value of the input registers to operate and
divisions are scarce. Thus, assuming the worst-case latency has very modest
impact on the determination of the WCET.

• There are some resources whose latency varies significantly. Hence, simply as-
suming the worst-case latency is not convenient because the WCET may become
extremely pessimistic. However, if accurately predicting the latency of those in-
structions can be afforded in terms of the effort/cost required for getting the
information to have good predictions (highly predictable events), we can make
pessimistic assumptions in those cases where full guarantee on their latency can-
not be had. The impact on the WCET determination from that pessimism will be
rather low.

• Finally, some resources may have significantly variable latency and there is no
affordable way to predict it (hard to predict events). Those are the main candi-
dates to be re-designed so that their latency can be characterised probabilistically.

PROARTIS focuses on the latter type of resources, whose impact in timing is high
and unpredictable or, if predictable, too costly to reason about. The most prominent
examples of this type of resources are cache-like resources, which we analyse in more
detail next. The first three types of resources in the above taxonomy can be analysed
with static analysis techniques as well as with PROARTIS techniques.

Core design. No core resources have highly variable latency. Two factors influ-
ence possible probabilistically analysable designs: timing anomalies and performance.
We disallow the use of any hardware component that may introduce timing anomalies
[19] [2]. From a hardware-only perspective and according to [2], no timing anomalies
can occur in processors that do not allow allocating resources to instructions in a way
that could delay the completion of older instructions. The downside of this argument
is that we cannot use some performance acceleration features because they break this
restriction. However, as shown in the MERASA project [20], the memory and not the
core is the performance bottleneck in current CRTES. An in-order core processor de-
sign with in-order execution of the instructions and allocation of resources at issue time
makes the execution time of an instruction not to depend at all on subsequent instruc-
tions. Those processors avoid by design the occurrence of timing anomalies [2]. By
the same reasoning, more complex processor pipelines can in principle be used with-
out any problem in our context. Branch prediction, and in particular the instructions
executed on a misprediction may affect the state of the processor and hence, WCET
estimations. As for the case of static analysis we can simply prevent speculative in-
structions to change the processor state so that the effect on WCET is bound. Overall,
if a pipeline can be analysed with pipeline analysis techniques for Static Timing Anal-
ysis, nothing prevents its use with a probabilistic time analysis tool.

Cache design. Caches are among the most difficult resources to analyse for tim-
ing, as their timing behaviour, which is inherently jittery, greatly depends on previous
execution history. Two main sources of dependence can be singled out: the placement
policy, which selects the set to which a memory address maps, and the replacement
policy, which selects the cache line to be evicted from a cache set.

• Fully-associative caches with a random replacement policy effectively reduce
such dependence by making each cache line eviction independent of previous
cache accesses. By doing so, we can probabilistically characterise the outcome
(hit or miss) of memory accesses, simply based on the reuse distance (see section
3.1).

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 17

• Fully-associative caches are complex to implement and energy-consuming. How-
ever, when using a set-associative (with random replacement) or a direct-map
cache, the placement policy is deterministic. Deterministic placement policies
create dependencies and lead to cache risk patterns and hence to time patholog-
ical cases. We devise designs based on set-associative or direct-mapped caches
using random replacement algorithms, which exhibit a similar behaviour at a
lower cost. At hardware level, we devise a solution where we can randomise the
placement function at program start up. To that end we XOR the address access-
ing the cache with a randomly generated number and use the result as the new
address to access the cache. Under every placement setup, the address colliding
in the different sets are different. Hence, different runs will lead to different (ran-
dom) colliding addresses in each set and hence different (random) conflicts and
execution times. Alternatively, the compiler can provide software-level support
to randomise cache placement as we explain in the next subsection.

Communication elements design. The communication elements between hard-
ware components, such as buses or interconnection networks, can also be a source of
dependence, especially those which use access policies based on execution history such
as Round-Robin or Least-Recently Accessed. We devise using random access-granting
policies to remove such dependencies (e.g., lottery bus [15]).

3.2.2 Software level

Random-replacement caches with deterministic placement policies can be comple-
mented with compiler support, as the timing behaviour of the placement policy depends
directly on how objects are mapped in memory, i.e. on the memory layout. Thus, com-
piler techniques to randomise the allocation of objects in memory, such as the code,
the stack or the heap, can be applied [3]. By doing so, the effective memory addresses
of objects and so the cache set to which they are mapped will periodically change,
thereby “randomising" cache placement and consequently enabling probabilistic anal-
ysis for cache memories with deterministic placement.

At the run-time level, it is known that not all operating system calls have constant
timing behaviour; some system calls may in fact exhibit timing behaviour that depends
on the invocation time of the call in relation to the internal operations of the operating
system, and on which applications have executed and when and for how long, since
the previous system call. An operating system with constant-time services also capable
of not causing execution history dependence in the subsequent run time of the appli-
cation would warrant time composability between the operating system itself and the
application. Working towards this goal is also part of our future work.

4 An illustrative Example
In this section we discuss results obtained from the application of Static Probabilistic
Timing Analysis. The development of techniques based on measurement-based proba-
bilistic timing analysis is left for future work.

4.1 Experimental Set-up
For the experiments shown in this section we focused on the data cache and assumed a
perfect instruction cache (so that all its accesses were hits). The analysis we conducted

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 18

:LOOP_START load @1
load @2
...
load @100
iter = iter + 1
compare iter, 100
jump LOOP_START if smaller

Figure 5: Synthetic benchmark used in this section. The loop performs 100 iterations.

can equally be applied to the instruction cache removing the all-hits hypothesis. All
core operations have a fixed latency of 1 cycle. Latencies for the data cache are 1 cycle
in case of hit and 100 cycles in case of miss.

To study the potential of probabilistic timing analysis, we used a synthetic bench-
mark consisting of a loop with 100 distinct data memory accesses (see Figure 5). Apart
from memory operations, we included 3 core operations with a fixed latency of 1 cycle
for the loop control. The only relevant event in this experiment is the latency of data
accesses, as the fixed latency control operations simply add 3 cycles per iteration.

Results are shown for 100 consecutive iterations after executing the loop at least
once. This way we avoid compulsory misses that would simply add 10,000 cycles (100
misses with a 100-cycle latency each) to the WCET estimation regardless of the cache
and analysis used.

For the conventional static timing analysis we consider 2-way, 4-way and 8-way
LRU replacement caches. For the probabilistic timing analysis we consider a fully-
associative cache in which elements can be allocated randomly in any position. In our
particular example, K = 100 for all accesses.

While time-deterministic caches (e.g. those based on LRU) produce a single WCET,
time-probabilistic caches produce a distribution of execution times. In all experiments
we use the execution time whose exceedance probability is at most 10−9 for the WCET,
unless otherwise stated.

We assume that addresses do not conflict in the conventional LRU-based caches.
So all accesses are hits in each LRU cache configuration if data fit in cache.

4.2 Static Probabilistic Timing Analysis Results
With SPTA, the distribution function is computed by convolving the discrete prob-
ability distribution calculated for each instruction. These distributions describe the
probability that each instruction will take a given execution time. In our example, the
distributions for memory operations contain only two values: the execution time when
the instruction hits an existing cache entry (1 cycle), with probability p(hit), and the
execution time when the instruction causes a cache miss (100 cycles), with probability
1 − p(hit). The distribution for core operations will contain a single value of 1 cycle
with a probability of 1.

Figure 4 shows an exceedance plot of the distribution function for a very short, 10
access sequence. With longer sequences of instructions, we can obtain WCET estima-
tions for arbitrarily low probabilities (see Figure 6). Probabilities can be in the region
of e.g. 10−50 or lower.

The horizontal ‘shelf’ which can be seen in Figure 6 corresponds to the level of
precision used in the calculation of the probabilities: for probabilities lower than those
representable by the level of precision selected, the value is not representable and re-
sults in the shown artefact . The ‘real’ distribution continues to follow the shape of

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 19

(a) Overall execution time distribution

(b) Zoomed region of the function focussing on the area of the large drop in probability.

Figure 6: WCET exceedance function plotted on a logarithmic scale. Results are for the
synthetic benchmark described in this paper with N=1000 and no unknown addresses.

a normal distribution, which puts the probability of the maximum value (the far right
of Figure 6(a), 1,000,000 cycles) at an extremely small probability: 100 iterations of
a 100 memory access loop in which every memory access misses in a cache of 1,000
entries (N=1,000) has a probability of 1× 10−30,000.

4.3 Comparing Conventional Static Timing Analysis and Static Prob-
abilistic Timing Analysis

We have shown that static probabilistic timing analysis requires less information than
conventional static timing analysis. Moreover, the dependence between different parts

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 20

of an application can be reduced when using probabilistic techniques. In this section
we provide examples of how the probabilistic and conventional analyses react as the
amount of information available about execution history decreases.

Making a fair comparison between two timing analysis techniques is difficult. There
are many factors that affect the accuracy of the provided WCET estimations in each
case. As an illustrative example, in this section we focus on the timing analysis of the
cache only. To that end, we propose an evaluation framework in which the cache is the
only source of WCET estimation inaccuracy. In order to prevent the processor pipeline
affecting timing variability, which can be significant if the processor suffers from tim-
ing anomalies or domino effects, we assume a simple in-order pipeline in which each
instruction that is not a memory operation takes a fixed latency which is known a-
priori. Analogously, in order to discount the effect of other phases of the analysis, such
as path analysis or loop bound analysis, we take programs with one only possible path,
i.e., the input data is fixed so that all loop bounds are fixed and any branches are chosen
deterministically. In order to extend this approach to software with multiple paths, we
intend initially to compute the SPTA distribution for each path under analysis, and then
to combine them using the maximum envelope of the inverse cumulative distribution
functions. This can be shown to be a pessimistic upper bound on the execution time of
the system, regardless of any relative weighting which could be given to different paths
in the system.

Addressing the feasibility of analysing every path in a program, the sequences of
instructions which make up a basic block or a single path through a function could
be considered a smaller-scale version of our single path problem. By using a tree-
based approach to combine the blocks using the envelope method at branch locations
and convolutions for sequential segments, it should be possible to construct an SPTA
profile without the need to evaluate all paths in the software separately. This is part of
our future work.

• Conventional Static Timing Analysis of the cache distinguishes between certain
cache hits/misses and unclassified accesses. An exact static data cache analy-
sis requires knowledge of the target addresses of all memory access operations,
which is often not possible to calculate statically. As a reference configuration
in our experimental environment, we assume that the cache is the only source
of inaccuracy for conventional WCET estimations. We further assume that all
addresses are known, so in this configuration we have the tightest WCET esti-
mation possible, which is, in fact, the actual WCET of the program.

• For the Static Probabilistic Timing Analysis of the cache we assume that the
reuse distance is known. Note that knowing the reuse distance requires much
less information about the memory operations than knowing the exact sequence
of memory operations, which is the information required for tight conventional
WCET estimations. For example, we may not know until run time the address
of a variable on the stack, or the target of a function pointer, but we can compute
the reuse distance for accesses to such a variable, and similarly for pointers if the
pointer itself is not modified between the accesses.

Reducing the amount of required information In addition to the idealised case in
which all the information required by the analysis is available, we show how different
WCET techniques react when part of this information is missing. In particular, for the
conventional analysis we assume that a given percentage of the accesses to memory

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 21

(a) initial state (b) 1 unknown address processed (c) 2 unknown addresses processed

Figure 7: Cache state kept by the conventional static analysis after several unknown
addresses are processed

have an unknown address. For the conventional WCET analysis and in our experimen-
tal set-up this lack of information translates into assuming that unknown accesses are
misses and that in the cache state kept by the conventional analysis, every unknown ad-
dress that accesses the cache moves all the data one position towards the LRU position.

For example, Figure 7(a) shows a two-way 8-set cache with a given initial state.
Each cell represents a line in the cache and in each cell we have a piece of data, rep-
resented by a letter. The subscript is the LRU-stack position. In this case, in each set
a line can be either the Most-Recently used line (MRU) or the Least-Recently Used
(LRU) line. With exact cache analysis and full information on the accesses, this would
be the state of the cache analysis. Figure 7(b) shows the effect on the cache state of
one unknown address. Even if the address will affect only one set, the particular set
that is affected cannot be determined, meaning that the unknown access can hit any set.
Hence, all lines in all sets are moved to the LRU position: the data in the LRU position
is assumed to be evicted and the data in the MRU position in our 2-way cache moves
to the LRU position. Figure 7(c) shows the cache state after two unknown addresses
are processed. All data have been virtually evicted from the cache because we can-
not guarantee any particular piece of data to be in cache after those two accesses with
unknown addresses.

In the case of Static Probabilistic Timing Analysis, we assume that the reuse dis-
tance of some of the addresses is not known. To track reuse distance we only need to
know the number of different accesses between two accesses to the same cache entry.
This can be calculated without knowing the actual addresses.

One of the properties of this probabilistic model is that every unknown address
only has effect on previous instances of the same address. Let’s illustrate this concept
with the same simple example used before. With our random cache the probability of
evicting each line is (N−1

N)K , where K is the reuse distance. Let us again assume the
sequence of accesses A B C D A B C A B C discussed in Section 3.1. If the second
instance of A is unknown, the K value of the third instance of A increases from 3 to 7
(see Figure 8). Obviously, the K value for the access with an unknown address is∞.

We observe how the lack of information for a particular access affects two accesses
at most. So the effect of lack of information at analysis time about some addresses has
a small effect on WCET.

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 22

Address Reuse Distance (K) Hit Probability (N=32)
A ∞ 0.00
B ∞ 0.00
C ∞ 0.00
D ∞ 0.00
? ∞ 0.00
B 4 0.88
C 4 0.88
A 7 0.80
B 3 0.91
C 3 0.91

Figure 8: Example of sequence of memory operations and their reuse distance and
probability of hit for a cache of 32 entries, when the reuse distance of one access is
missing

(a) 1024-entry caches (b) 128-entry caches

Figure 9: WCET estimations for caches with different size, expressed in number of
cache entries, when varying the fraction of unknown addresses.

4.4 Results
Effect of lack of information on WCET estimations The objective of this exper-
iment is to show the dependence of each type of analysis on the amount of available
knowledge. To that end, in this experiment we show the WCET bounds obtained for
different cache configurations with varying extents of unknown information.

In terms of WCET estimation, those accesses where the address is unknown are
assumed to miss in cache and to produce the worst potential impact, as considered by
the timing analysis methods. In particular, any element in the LRU position of each set
cannot be assumed to be in cache after an unknown access. Conversely, an unknown
access does not vary the K for all remaining accesses in the loop for the randomised
caches.

Figures 9(a) and 9(b) show WCET bounds for the benchmark example for two
different cache sizes: 1024 and 128 entries for different percentages of unknown in-
formation; that is, the number of accesses for which the address is unknown in the
conventional analysis and the number of accesses where the reuse distance is unknown
in the case of probabilistic analysis. When the number of entries is significantly larger
than the working set (N = 1024) LRU-based caches provide the best WCET if all or
almost all addresses are known. However, as the amount of uncertainty grows (which
is the common case), the WCET for LRU-based caches becomes rapidly pessimistic.
Conversely, the randomised cache still provides low WCET estimates, and degrades
smoothly as the amount of uncertainty grows. This is a desirable property, since small

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 23

Figure 10: WCET estimations for a time-randomised cache and different fractions of
unknown addresses when varying the cache size expressed in number of cache entries.

changes in the deployment conditions with respect to the analysis conditions do not
cause abrupt changes in the WCET.

Figure 9(b) shows results for a cache where data occupies most of the space (N =
128). LRU-based caches show an abrupt increase in WCET when only a few addresses
are unknown. With SPTA, caches experience higher replacement probabilities because
of the lower N (see Equation 3), but the WCET increases smoothly and is signifi-
cantly lower than that of LRU-based caches when at least 3% of the addresses are
unknown. Although not shown, when the cache size is lower than the working set
LRU-based caches are unable to provide any cache benefit, even if all addresses are
known. Time-randomised caches still provide some hits because any piece of data has
some probability to remain in cache after an arbitrary number of evictions.

Sensitivity analysis The second set of experiments studies the sensitivity of the dif-
ferent cache designs to the cache size for different levels of unknown information (0%,
20%, 40%, 60% and 80%). In Figure 9 we can observe that WCET estimations for
LRU-based caches are good only if the working set fits in cache and all (or almost
all, i.e. 10%) addresses are known. However, if some addresses are unknown or the
working set does not fit in cache the WCET becomes very pessimistic. Conversely,
the time-randomised cache provides low WCET estimates that degrade smoothly as
we reduce the cache size or increase the fraction of unknown addresses, as shown in
Figure 10.

Note that in our experimental set-up, we made the cache be the only source of
WCET overestimation. Under this scenario, when the amount of unknown information
is 0%, the WCET estimation matches the actual execution time. What we change in
each experiment is the amount of information the analysis method knows, which is
the source of pessimism of the WCET with respect to the actual execution time. In
the particular case of no unknown information, the WCET estimation of Static Tim-
ing Analysis with LRU caches is 5-7x better than Static Probabilistic Timing Analysis
with random caches. However, this scenario is unrealistic, as in most cases a signifi-
cant fraction of the information needed for the timing analysis is unavailable. This is
what we show in Figure 9 as we move right on the x axis. Some examples of lack of
information are (i) matrices indexed with input-dependent variables, (ii) pointers, (iii)
stack size and location for functions with input-dependent parameters, etc.

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 24

(a) 1024-entry cache (b) 128-entry cache

Figure 11: WCET estimations for a time-randomised cache of varying size, expressed
in number of cache entries, when varying the exceedance probability.

Sensitivity to exceedance probability The third set of experiments studies the sensi-
tivity of the time-randomised cache to the exceedance probability used as threshold to
determine the WCET. Results are shown for 4 particular combinations of cache sizes
(1024 and 128 entries) and unknown information fractions (0% and 20%), although
trends are very similar for other scenarios. The exceedance probabilities we studied
range between 10−3 and 10−30. Figures 11(a) and 11(b) show results for 1024 and
128 entries caches respectively. Decreasing the exceedance probability to increase the
safety level of the system does not have a significant impact in the WCET obtained.
Decreasing the exceedance probability by 3 orders of magnitude requires increasing
the WCET by 0.9% on average across configurations. Hence, the WCET estimations
can be used in systems with the highest timing constraints.

5 Contextualising PROARTIS
Cost pressure, flexibility, extensibility and the demand for increased functional com-
plexity are changing the fundamental paradigms for the definition of automotive and
aeronautics architectures. In this section we motivate the applicability of the PROAR-
TIS approach in the avionics domain. Similar reasoning can be applied to the automo-
tive domain.

In the past, conventional avionics systems were based on the federated architecture
paradigm, in which each computer is a fully dedicated unit, which may have local op-
timisations. However, since most of the federated computers perform essentially the
same functions (input acquisitions, processing and computation, and output genera-
tion), a natural optimisation of resources is to share the development effort by identify-
ing common subsystems, standardising interfaces and encapsulating services; in other
words, adopting a modular approach. This is the purpose of the Integrated Modular
Avionics (IMA) concept, where ‘integrated’ refers to the sharing of these resources by
several systems. To that end, federated architectures have been replaced by integrated
architectures in which the same computer can execute one or more applications, or
‘partitions’, potentially of different criticality levels.

One fundamental requirement of IMA is to ensure the possibility of incremental
qualification, whereby each partition can be subject to verification and validation – in-
cluding timing analysis – in isolation, independent of the other partitions, with obvious
benefits for cost, time and effort. From the perspective of timing analysis, incremental
qualification relies on each hardware and software component that is part of the sys-
tem, such as the cache at hardware level or the linker at software level, exhibiting the

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 25

property of time composability. In the most general definition, composability ensures
that, given a certain property of each item of a collection, that property can be deter-
mined for each item taken in isolation and does not change when that item is brought
together with other items. Time composability refers to the fact that the execution time
of a software partition, observed in isolation by the timing analysis, is not affected by
the presence of other partitions on the same system.

The PROARTIS approach attacks the root of this problem: firstly by reducing, or
even completely eliminating, the information required to calculate WCET estimations,
which reduces the cost of acquiring the required knowledge to model the timing be-
haviour of the system; secondly, by reducing the dependence of the WCET estimations
on execution history. In this way, software execution times are less dependent on pre-
vious executed software components, which can belong to other partitions. As a result
the system integration can be easily achieved. In the extreme case, if all the execution
history dependence is completely eliminated, each individual resource will be timing
composable, allowing partitions to be replaced without requiring the timing of other
components to be re-analysed.

6 Background
The first papers in the real-time community related to the contribution of this paper
used the words ‘stochastic analysis’ [11], ‘probabilistic analysis’ [27], ‘statistical anal-
ysis’ [1] and ’real-time queuing theory’ [16]. Since the paper of Diaz et al. [9], the
‘stochastic analysis’ of real-time systems has been used regularly by the community
regardless of the approach (probabilistic or statistical). We note that the terminology
used in the past is somewhat inconsistent; one of the objectives of the paper is to define
precisely those terms so that they can be widely used.

The literature on probabilistic methods is vast. It is difficult to draw a cohesive view
of the field. We rather describe here the precise application of these techniques to the
timing analysis of real-time systems. Probabilistic approaches for real-time systems
are promising because they answer questions that cannot be addressed in a determinis-
tic manner (e.g., distribution of different task parameters) and consider more realistic
models of task execution time or the expression of soft real-time constraints. In general,
a probabilistic approach provides the distribution function of a parameter.

Probabilistic approaches for real-time systems can be divided into two main classes:

• One class consists of extracting quantitative information for one or more parame-
ters (e.g., distribution of execution times) from samples of observations collected
by monitoring the system. The first paper considering such statistical estimation
of worst-case execution times is [10] in which extreme value statistics are used
to model the behaviour of caches; more recently [14] improved the analysis, ad-
dressed flaws in the previous work and produced a refined method also based
on extreme value statistics. This line of work is promising if one can show that
hypotheses like independence (for instance) are met, which unfortunately is not
the general case [13]. Such hypotheses can be met for instance by designing
platform (hardware and software) support as we suggest in Section 3.2.

The RapiTime tool [24] from RAPITA is the only timing analysis tool that cap-
tures execution time distributions, also called Execution Time Profiles (ETP),
and implements a method based on the theory of copulas [5] to compute the dis-

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 26

tribution of execution times of the worst-case path. The results in [21, 6] are the
only response time analysis that belongs to this class of probabilistic approaches.

• The second class of approaches concerns the temporal analysis of systems with at
least one parameter described by a random variable. We present here the papers
that consider the temporal analysis of systems with WCET described by random
variables. In this case the probabilistic analysis specifically decides the schedu-
lability of the system, i.e., answers the question are the deadlines met, and with
what probability, when the elementary execution times and thus the WCET are
random variables?. Therefore such analysis takes WCET estimations for each
program in input (as provided as random variables) and returns the probability
of missing the deadline for the set of programs. The first results on probabilistic
schedulability analysis were proposed in [16] where the author extends queuing
theory under real-time hypotheses. Even if this work was subsequently improved
by results such as [31], the main limitation concerns the use of the same proba-
bility law for the execution times of all programs. This latter hypothesis is not
always realistic, e.g., the traces of execution of two different programs could fit
(after a WCET estimation) to different probability laws.

Another relevant work [1] proposes an interesting definition of probabilistic
deadline, but the authors consider a special scheduling model providing isolation
between tasks. The results presented in [11, 27] consider also execution times as
random variables and special assumptions are made on the critical instant.

The main result of this class is proposed in [18], but the analysis is difficult to
use in practice for computational reasons. An improvement based on re-sampling
was proposed in [25] but this work fits better in the first class of approaches for
the statistical analysis of real-time systems.

The main difficulty when using both approaches is the consideration of worst-case
behaviours that are known to be rare events. In this case, Rare Events Theory needs
to be used in order to ensure that the worst-case behaviour is considered. These ap-
proaches have the advantage of predicting unexpected behaviours, but they also have
the disadvantage of offering incomplete information (the distribution function is not
entirely defined). Except for [4, 5], all existing approaches consider that the parame-
ters given by random variables are independent. This hypothesis is due to theoretical
limitations, but also to the difficulty of describing and capturing the relations between
different parameters like the relation between the execution times of two programs for
instance.

Besides some known probabilistic results (such as the stability of Markov chains)
the results used for the schedulability of real-time systems are mainly based on opera-
tions with random variables which extend deterministic calculation. Queuing theory is
a notable exception, but it is usually classified as operations research.

As regards the three distributions of Extreme Values Theory (Gumbel, Frechet, and
Weibull) [12], we are interested in using Gumbel’s which provides information on the
right-tail part of a distribution (thus the interesting part for a WCET estimation). A
first step toward fitting the data to this particular distribution is needed and errors could
be introduced during this step (thus different levels of confidence might be proposed).
One solution to decrease the errors is proposed in [14] and it is based on block maxima
(grouping different values within a distribution into the maximal one). Another rare
events theory that interests us is Large Deviation Theory [17]. This theory also deals
with tail events, and extends Central Limit Theory. Thus it has the feature that it can

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 27

only be applied to a sum of i.i.d. random variables. This property could be useful
for instance if we wanted to reason on the combination of execution traces taken from
different "parts" (e.g., paths, units) of a program.

7 Ongoing and Future Work
In this paper we have shown the feasibility and the requirements to properly implement
a probabilistic timing analysis approach. Given the seminal nature of this work, we
consider several lines of future work.

Firstly, providing more measurement-based and static probabilistic analysis tech-
niques. A key aspect of this line, is that these techniques have to be designed hand-in-
hand with the platform, which has to ensure that the hypotheses used by the technique,
e.g., i.i.d, are demonstrated by the hardware and low-level software.

Secondly, at the hardware level our aim is to find designs which facilitate analysis in
general and improve the behaviour of both static and measurement based probabilistic
timing analysis. We want to extend our solutions to hardware resources that are hard-to-
analyse with current analysis techniques, e.g. the Translation Lookaside Buffer (TLB).

Thirdly, at the software level our objective is to determine how software support
for randomisation can be used in conjunction with the hardware techniques to further
facilitate probabilistic timing analysis.

And finally, there is a shift towards multicore processors in the real-time market.
The main impediment of the use of multicores in real-time systems is the difficulty of
predicting how tasks will interact in shared hardware resources. We believe that prob-
abilistic timing analysis is a promising solution to bound (in a probabilistic manner)
inter-task interactions, so that we know the effect that one task may introduce in the
WCET estimations for another.

8 Conclusions
The industrial demand for new functionality and higher levels of performance in addi-
tion to reduced cost, weight and power dissipation calls for the adoption of advanced
hardware acceleration features, of which cache memories are the epitome. However,
the timing behaviour of systems using these advanced hardware features is very hard
to analyse with current timing analysis techniques: the level of knowledge needed to
compute tight WCET estimations, as well as the time, effort, cost and complexity re-
quired to acquire and comprehend all down to the finest the system details become
unaffordable. This is so because the large amount of state information that is carried
by a modern processor incurs a combinatorial explosion when one tries to enumerate
all possible histories of execution even for simple programs. Thus, as long as current
analysis techniques are unable to scale up to the challenge, increased hardware com-
plexity will lead to a significant degradation of the quality of the resulting products.

We call these problems the Time Analysis Walls. Probabilistic Timing Analysis
attacks these walls and has potential for tearing them down. It is our contention that
the cost of acquiring the required knowledge to perform trustworthy analysis can be
significantly reduced by adopting a hardware/software architecture whose execution
timing behaviour eradicates dependence on execution history. One way to achieve this
independence is via introducing randomisation in the timing behaviour of the hardware

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 28

and software (while the functional behaviour is left unchanged), together with new
probabilistic analysis techniques.

We have devised two different flavours of Probabilistic Timing Analysis. The first,
SPTA, is static in the sense that it derives a-priori probabilities from a model of the
processor or software. The second, MBPTA, derives probabilities from complete runs
of the program under study that are made on the target hardware. From these runs we
collect data about the timing behaviour of the program when run on low-level software
and hardware elements of the PROARTIS platform with randomised timing behaviour.

In each case we have shown the main challenges and opportunities in implementing
that approach. Our initial results for the cache using the SPTA approach show that (1)
SPTA requires knowing the reuse distances of every access, which in fact are much
easier to obtain than the addresses of memory operations required for Static Timing
Analysis. (2) SPTA has minimal dependence on the amount of knowledge required to
provide tight WCET estimations. Moreover, with SPTA, any lack of information in the
analysis has modest negative effect on the WCET determination and the tightness of
the resulting WCET estimations degrades smoothly with increasing lack of knowledge.

Finally, we have outlined the direction of our current and future work in the regard
of the subject matter.

9 Acknowledgments
This work was primarily funded by PROARTIS STREP-FP7 European Project under
the grant agreement number 249100. Eduardo Quiñones is partially funded by the
Spanish Ministry of Science and Innovation under the grant Juan de la Cierva JCI2009-
05455. Jaume Abella has been also supported by the Generalitat of Catalunya under
grant Beatriu Pinos 2009 BP-B 00260. Emery Berger is partially supported by the
National Science Foundation under Grant No. CCF-1012195

References
[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time

systems. In the 19th IEEE Real-Time Systems Symposium (RTSS98), pages 4–13,
1998.

[2] Peter P. Puschner. Albrecht Kadlec, Raimund Kirner. Avoiding timing anomalies
using code transformations. In ISORC, 2010.

[3] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic memory safety
for unsafe languages. In In Proceedings of the ACM SIGPLAN 2006 Conference
on Programming Language Design and Implementation, pages 158–168. ACM
Press, 2006.

[4] G. Bernat, A. Colin, and S.M. Petters. WCET analysis of probabilistic hard real-
time systems. In RTSS, 2002.

[5] G. Bernat and M. Newby. Probabilistic WCET analysis, an approach using cop-
ulas. Journal of Embedded Computing, 2006.

[6] P. Binns. Statistical estimation of aperiodic response times when scheduled on
top of static timelines. In 1st Int Workshop on Probabilistic Analysis Techniques
for Real-Time and Embedded Systems(PARTES04), 2004.

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

PROARTIS 29

[7] R.N. Charette. This car runs on code. In IEEE Spectrum online, 2009.

[8] P. Clarke. Automotive chip content growing fast, says gartner. In
http://www.eetimes.com/electronics-news/4207377/Automotive-chip-content-
growing-fast, 2011.

[9] J.L Díaz, D.F. Garcia, K. Kim, C.G. Lee, L.L. Bello, López J.M., and
O. Mirabella. Stochastic analysis of periodic real-time systems. In the 23rd IEEE
Real-Time Systems Symposium (RTSS02), pages 289–300, 2002.

[10] S. Edgar and A. Burns. Statistical analysis of WCET for scheduling. In the 22nd
IEEE Real-Time Systems Symposium (RTSS01), pages 215–225, 2001.

[11] M.K. Gardner and J.W. Lui. Analyzing stochastic fixed-priority real-time sys-
tems. In the 5th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS99), pages 44–58, 1999.

[12] B.V. Gnedenko. Sur la distribution limite du terme maximum d’une seris
aleatoire. Annals of Mathematics, 44:423–453, 1943.

[13] David Griffin and Alan Burns. Realism in Statistical Analysis of Worst Case
Execution Times. In the 10th International Workshop on Worst-Case Execution
Time Analysis (WCET 2010), pages 44–53, 2010.

[14] J. Hansen, S. Hissam, and G. A. Moreno. Statistical-based wcet estimation and
validation. In the 9th International Workshop on Worst-Case Execution Time
(WCET) Analysis, 2009.

[15] K. Lahiri, A. Raghunathan, and G. Lakshminarayana. LOTTERYBUS: a new
high-performance communication architecture for system-on-chip designs. In
Proceedings of the 38th annual Design Automation Conference, DAC ’01, pages
15–20, 2001.

[16] J.P. Lehoczky. Real-time queueing theory. In the 10th IEEE Real-Time Systems
Symposium (RTSS96), pages 186–195, 1996.

[17] J. T. Lewis and R. Russel. An introduction to large deviations for teletraf-
fic engineers, 1997. available at http://www.statslab.cam.ac.uk/%7Errw1/ld/LD-
tutorial.ps.

[18] J.M. Lopez, J. L. Diaz, J. E., and D. Garcia. Stochastic analysis of real-time sys-
tems under preemptive priority-driven scheduling. Real-time Systems, 40(2):180–
207, 2008.

[19] T. Lundqvist and P. Stenstrom. Timing anomalies in dynamically scheduled mi-
croprocessors. In RTSS, 1999.

[20] MerasaD2.2. http://www.merasa.org/downloads/Deliverable_
2_2.pdf. 2008.

[21] N. Navet, L. Cucu, and R. Schott. Probabilistic estimation of response times
through large deviations. In WIP session of the 28th IEEE Real-Time Systems
Symposium (RTSS’07), 2007.

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

http://www.merasa.org/downloads/Deliverable_2_2.pdf
http://www.merasa.org/downloads/Deliverable_2_2.pdf

PROARTIS 30

[22] PROARTIS. Probabilistically analyzable real-time systems. feb 2010.
http://www.proartis-project.eu/.

[23] Eduardo Quinones, Emery D. Berger, Guillem Bernat, and Francisco J. Cazorla.
Using Randomized Caches in Probabilistic Real-Time Systems. In 22nd Euromi-
cro Conference on Real-Time Systems (ECRTS), pages 129–138. IEEE, 2009.

[24] RapiTime. www.rapitasystems.com, 2008.

[25] Khaled S. Refaat and Pierre-Emmanuel Hladik. Efficient stochastic analysis of
real-time systems via random sampling. pages 175–183, 2010.

[26] J. Reineke et al. A definition and classification of timing anomalies. In WCET,
2006.

[27] T.S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.C. Wu, and J.S Liu. Prob-
abilistic performance guarantee for real-time tasks with varying computation
times. In the 2nd IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS95), pages 164–174, 1995.

[28] Wilhelm R. et al. The worst-case execution-time problem overview of methods
and survey of tools. ACM Transactions on Embedded Computing Systems, 7:1–
53, May 2008.

[29] Lu Yue, Iain Bate, Thomas Nolte, and Liliana Cucu-Grosjean. A new way about
using statistical analysis of worst-case execution times. September 2011.

[30] S. Zhou. An efficient simulation algorithm for cache of random replacement
policy. In Proceedings of the 2010 IFIP international conference on Network and
parallel computing, NPC’10, 2010.

[31] H. Zhu, J.P. Hansen, J.P. Lehoczky, and R. Rajkumar. Optimal partitioning for
quantized EDF scheduling. pages 202 – 213, 2002.

RR n° 7869

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

ha
l-0

06
63

32
9,

 v
er

si
on

 1
 -

26
 J

an
 2

01
2

	Introduction
	Problem Statement
	PROARTIS Vision and Approach
	Contribution

	Timing Analysis on Deterministic Platforms
	A deterministic approach to timing analysis
	WCET Dependence on Execution History

	PROARTIS: a New Approach to Timing Analysis
	A probabilistic approach to timing analysis
	Challenges at the platform level
	Hardware level
	Software level

	An illustrative Example
	Experimental Set-up
	Static Probabilistic Timing Analysis Results
	Comparing Conventional Static Timing Analysis and Static Probabilistic Timing Analysis
	Results

	Contextualising PROARTIS
	Background
	Ongoing and Future Work
	Conclusions
	Acknowledgments

