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Abstract
Embedded systems can operate perpetually without being
connected to a power source by harvesting environmental
energy from motion, the sun, wind, or heat differentials.
However, programming these perpetual systems is challeng-
ing. In response to changing energy levels, programmers can
adjust the execution frequency of energy-intensive tasks, or
provide higher service levels when energy is plentiful and
lower service levels when energy is scarce. However, it is
often difficult for programmers to predict the energy con-
sumption resulting from these adjustments. Worse, explicit
energy management can tie a program to a particular hard-
ware platform, limiting portability.

This paper introduces Eon, a programming language and
runtime system designed to support the development of per-
petual systems. To our knowledge, Eon is the first energy-
aware programming language. Eon is a declarative coordi-
nation language that lets programmers compose programs
from components written in C or nesC. Paths through the
program (“flows”) may be annotated with different energy
states. Eon’s automatic energy management then dynami-
cally adapts these states to current and predicted energy lev-
els. It chooses flows to execute and adjusts their rates of ex-
ecution, maximizing the quality of service under available
energy constraints.

We demonstrate the utility and portability of Eon by de-
ploying two perpetual applications on widely different hard-
ware platforms: a GPS-based location tracking sensor de-
ployed on a threatened species of turtle and on automobiles,
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and a solar-powered camera sensor for remote, ad-hoc de-
ployments. We also evaluate the simplicity and effectiveness
of Eon with a user study, in which novice Eon programmers
produced more efficient efficient energy-adaptive systems in
substantially less time than experienced C programmers.

Categories and Subject Descriptors D.3.2 [Software]:
Language Classifications—Specialized application languages

General Terms Languages, Design, Management, Perfor-
mance

Keywords Coordination Languages, Energy Management,
Energy Harvesting, Embedded Systems

1. Introduction
Sensor devices that rely exclusively on an electrical connec-
tion or on batteries suffer from numerous deployment dis-
advantages, from limited range and mobility to high main-
tenance costs and limited deployment scale and length. Sen-
sor deployments that rely on the limited energy storage of
a battery must either sacrifice data quality in order to max-
imize the lifetime of the network, or force maintainers to
frequently change batteries, limiting the scale and coverage.
In mobile deployments, such as wildlife tracking, the size
of the battery may determine which deployments are even
feasible.

Sensor devices can overcome these obstacles by harvest-
ing energy from their environment. Available energy sources
include solar, wind, and vibration energy [17, 27, 21]. Har-
vesting environmental energy enables the deployment of
large-scale remote sensor systems that can run indefinitely:
we call these perpetual systems. Notable examples of appli-
cations ideal for perpetual operation include wildlife track-
ing (ZebraNet [13]), volcanic eruption monitoring [31], and
forest fire detection [20, 12].

However, despite their deployment advantages, systems
that employ harvested energy face numerous challenges.



• Dynamic energy availability. Sensor devices that rely on
environmental energy must cope with highly variable en-
ergy availability. The amount of available energy is often
difficult to predict, and may change dramatically with lo-
cation, time of day, time of year, weather, and other en-
vironmental factors. Figure 1(a) provides an example of
these variations, in which the amount of energy gathered
by two mobile, solar-powered devices over the same two
week period is plotted on a per day basis. Although both
devices show elements of the same general weather trend,
the two devices show significant variation in the amount
of gathered energy.

• Varying energy costs. The amount of energy required to
perform tasks varies widely, making it difficult to plan for
future energy needs. Figure 1(b) shows the amount of en-
ergy per reading that one device required to acquire GPS
data over the same two week period as Figure 1(a). Be-
cause the device is mobile and the degree of cloud cover
varies, the amount of time (and thus energy) required to
synchronize with satellites varies over an order of mag-
nitude. Comparing the graphs from Figures 1(a) and 1(b)
shows that times of substantial cost do not necessarily
correspond with times of plentiful energy; in this exam-
ple, they are almost opposite.

• Heterogeneous hardware platforms. It is difficult to make
a perpetual system portable or useful across a heteroge-
neous set of devices. Different hardware platforms have
widely varying energy characteristics. Because of the
complexities of testing and tuning a system to perform
well across different processors, storage systems, radios,
energy harvesting sources, and batteries, it is extremely
difficult to write a perpetual system that will work across
different platforms.

When programming systems to cope with these shifting
conditions and platforms, designers are forced to incorporate
adaptation with the core logic of the system. Such programs
are difficult to port, maintain, and understand. Further, there
is a great deal of runtime functionality that must be repli-
cated each time the system is deployed on a a new platform
with new energy characteristics.

Contributions: This paper presents Eon, a new language
and runtime system designed for programming perpetual
computing systems. To our knowledge, Eon is the first
energy-aware programming language. Eon is a declarative
coordination language based on Flux [3] that allows pro-
grammers build programs from code written in a variety of
languages, including nesC and C. Eon provides a simple
way to associate particular control flows with abstract en-
ergy states that represent the available energy in the system.
The Eon runtime system executes only those flows that the
Eon programmer has marked as suitable for the given energy
state. Thus, an Eon programmer can easily write programs
that provide different functionality or data quality based on
current and future energy availability.
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(a) A histogram of the average amount of daily energy
gathered by two devices.
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(b) The amount of energy needed to take a GPS reading
over the same period.

Figure 1. Energy traces from solar-powered GPS devices
over a two week period.

This flow and energy state information enables automatic
energy management, allowing the runtime system to han-
dle the complexities of adaptation. In response to changes
in energy, the Eon runtime system dynamically adjusts the
execution rate of flows and enables or disables application
features. Because Eon programs describe energy abstractly
(e.g., “high” and “low”), they are portable to hardware plat-
forms with arbitrary energy profiles. The language itself is
also highly portable: the current Eon compiler generates
code for a variety of embedded platforms and operating sys-
tems, including Linux and TinyOS.

To demonstrate Eon’s utility and portability, we have built
and deployed several Eon-based perpetual systems, includ-
ing two solar-powered systems: one for tracking turtles and
automobiles using GPS and another for capturing and trans-
mitting images from remote locations. To quantify the ease
of programming perpetual systems in Eon, we conducted a
user study showing that programmers who had just learned
Eon outperformed a control group using C, taking less time
to produce equally efficient code.

Outline: The remainder of this paper is organized as fol-
lows. First, Section 2 describes the Eon language, focusing
on the description of flows and energy states. Next, Section 3



describes Eon’s automatic energy management algorithms.
Section 4 describes implementation details of the hardware
and software systems, including the compiler, runtime sys-
tem, and the trace-based simulator that the compiler can gen-
erate to predict performance before deployment. Section 5
describes three Eon-based perpetual systems we have built.
Section 6 presents empirical results both for our user study
and for one of the perpetual systems deployments. Finally,
Section 7 discusses the most closely-related work, and Sec-
tion 8 concludes with directions for future work.

2. The Eon Programming Language
Eon is a domain-specific language intended to support a
broad range of perpetual systems. These include energy-
limited systems that follow an event-response model of op-
eration, such as devices that respond to external stimuli
or to periodic, internally created interrupts. Eon combines
both simplicity and elegance: its goals are to make energy-
adaptive systems simple to write and easy to understand and
to enable the use of optimized energy-aware runtime sys-
tems that automatically choose the highest sustainable ser-
vice level.

The Eon programmer writes code that describes the se-
quence of operations that follow in response to external
events and the desired adaptation policy, i.e., which se-
quences (flows) correspond to higher or lower power en-
ergy states. The Eon runtime system measures the probable
costs of each operation, the probable workload in the system,
and the probable amount of energy the system will acquire.
The runtime system then adjusts the rate of execution of
flows that the programmer has indicated are appropriate for
a given energy state.

It would be possible to build Eon’s energy-aware fea-
tures into either an entirely new general-purpose program-
ming language or as extensions to an existing language.
The first approach would require programmers to learn a
new language while muddling basic constructs such as loops
and conditionals with policy. This approach would also pre-
clude the reuse of the vast amount of code already writ-
ten in general purpose languages. While using annotations
would simplify adoption for new programmers, the annota-
tion syntax would have to be adapted to each new language.
The resulting system would still muddle the issues of adap-
tation with logic. Most importantly, conventional program-
ming languages do not explicitly manage program flows:
these are implicit in program execution, and thus difficult
to annotate.

Instead, Eon is a coordination language [9] that ties to-
gether code written in a conventional programming lan-
guage, like Java, C, or nesC [8]. This approach provides
programmers with a high level of abstraction that separates
the concerns of energy adaptation from program logic. It
also makes it straightforward to reuse existing code. Eon
currently supports a range of different languages (C/nesC)
and operating systems (Linux/TinyOS).

This approach also makes it simple to port an Eon pro-
gram to a new platform. For example, porting an Eon pro-
gram from an XScale-based device to a mote-class device re-
quired only modification of the platform-specific code used
to implement the program logic. This portability makes Eon
a natural candidate for use in embedded devices, given the
wide variety of platforms, operating systems, and languages
currently in use.

1 // Predicate Types

2 // SYNTAX : typedef PRED_TYPE PRED_TEST

3 typedef gotfix TestGotFix ;

4
5 // Source Node Declaration

6 // SYNTAX : NODENAME () = > ( OUTPUTS );

7 ListenBeacon () = > ( msg_t msg);

8 GPSTimer () = > ();

9
10 // Concrete Node Declaration

11 // SYNTAX : NODEAME ( INPUTS ) => ( OUTPUTS );

12 GetGPS () = >

13 (GpsData_t data , bool valid);

14 LogGPSData(GpsData_t data bool valid)

15 = > ();

16 LogGPSTimeout(GpsData_t data bool valid)

17 = > ();

18 LogConnectionEvent(msg_t msg ) = > ();

19
20 // Regular Sources

21 // SYNTAX : source NODENAME => NODENAME;

22 source ListenBeacon => HandleBeacon ;

23
24 // Timer Sources

25 // SYNTAX : source timer NODENAME

26 => NODENAME;

27 // Eon Timer Source

28 source timer GPSTimer => GPSFlow ;

29
30 // Eon States

31 // there is always an implicit BASE state

32 stateorder { HiPower };

33
34 // Abstract Nodes and Predicate Flows

35 // SYNTAX : ABSTRACT [[type ,..][ state ]] =

36 // CONCRETE ->... CONCRETE;

37 GPSFlow = GetGPS -> StoreGPSData ;

38 StoreGPSData :[*, gotfix ][*] = LogGPSData ;

39 StoreGPSData :[* ,*][*] = LogGPSTimeout ;

40
41 // Abstract Node using Energy Predicates

42 HandleBeacon :[* ,*][ HiPower]

43 = LogConnectionEvent;

44
45 // Eon Adjustable Timer

46 GPSTimer :[ HiPower ] = (1 hr , 10 hr);

47 GPSTimer :[*] = 10 hr;

Figure 2. A condensed version of Eon source code for the
turtle tracking application.
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Figure 3. A graph of a simplified turtle tracking application

2.1 Basic Eon Syntax
A coordination language describes the flow of data through
different components. We have built Eon on top of an exist-
ing coordination language called Flux [3], due to its features,
simplicity and available compiler tools. Flux is a declarative
language that describes a directed acyclic graph embody-
ing the flow of data through the program. Flux sources con-
nect to abstract nodes, which consist of a series of concrete
nodes. Concrete nodes correspond to implementations writ-
ten in a conventional programming language. Flux also al-
lows for conditional flow through a program—a feature that
Eon leverages for energy adaptation.

We illustrate Eon’s syntax using examples from Figure 2
and the graphical representation of the program in Figure 3.
We first describe the parts of the program that are the same
as in Flux, and then describe Eon’s extensions.

Flux-based syntax: As in Flux, an Eon programmer first
declares each source node in the program and what types
of data it outputs, such as ListenBeacon on Line 7, which
produces an output of type msg t.

Source nodes feed data into other concrete nodes, which
correspond to functions implemented in conventional pro-
gramming languages like C and nesC. Each concrete node
takes a set of input arguments and produces an output set
of arguments. For instance, GetGPS (declared on Line 12)
takes no input and produces two output variables: a Gps-
Data t and a boolean. The Eon compiler checks to ensure
that output and input types match in each flow.

Abstract nodes describe the flow of control and data
through multiple concrete or other abstract nodes. For in-
stance, GPSFlow (defined on Line 37) is an abstract node
that is the combination of two other concrete nodes.

Conditional flows are implemented in Eon using predi-
cate types: programmer-defined boolean functions that are
applied to a node’s output. In Figure 2, the StoreGPSData
abstract node specifies two possible execution paths on
Lines 38 and 39. By applying the gotfix predicate to the

output of StoreGPSData, the Eon program decides which
path to take. The test is defined on Line 3.

Each of the concrete nodes and all predicate tests must be
implemented by the programmer in a supported conventional
programming language (currently C or nesC). The Eon com-
piler generates a set of stub functions for each node that must
be implemented by the programmer.

2.2 Eon Extensions
While the parts of Eon drawn from Flux lets programmers
define the sequence of operations that follow from events,
they lack any method to express runtime adaptations. In this
section, we describe how Eon extends Flux with constructs
that describe what runtime adjustments to make as well as
the priority with which they should be applied. The Eon
application is then mapped to an adaptive runtime system,
which continually adjusts the application in order to balance
the demands of fidelity and sustainability. We continue to
use the application shown in Figure 2 as an example.

Power states
Adaptation policies could be expressed as a set of utility
functions describing the relative value of flows, and the rate
of flows in an Eon program [4, 18]. Our own experience
in building adaptive applications as well as anecdotal evi-
dence suggest that general utility functions are difficult for
programmers to use or understand.

In contrast to previous approaches, we have found that
a simple partial ordering of flows and rates is sufficiently
expressive. While a utility function can express a greater
number of policies, such as non-monotonic values, and are
amenable to a great number of interesting analytical results,
their usefulness is questionable while severely complicating
life for the programmer.

In an Eon program, a programmer specifies an adaptation
policy as a collection of behavior adjustments organized in
a state ordering. An adjustment is declared simply by listing
it in the state ordering, and its priority corresponds to the
row in which it appears. All adjustments on a given row are
applied together.

Figure 4 shows how the sample application’s operating
states are derived from the state ordering. An implicit BASE
state (S0) represents the program running without applying
any adjustments. Subsequent states are defined recursively
by applying an additional level of adjustments to the previ-
ous state (i.e. Si = Si−1 + Li−1). Also, a higher operat-
ing state is assumed to be more desirable and more energy-
intensive than all lower states.

The state ordering of an Eon program defines which oper-
ating states can be chosen by the runtime system. In addition
to declaring adjustments, the system designer must also de-
fine what those adjustments are.

Adaptive Timers
One of the most common adjustments used to reduce energy
consumption is to periodically turn off energy-hungry com-
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Figure 4. Sample State Order.

ponents, such as radios [1, 26]. In the turtle tracking appli-
cation, the GPS receiver consumes two orders of magnitude
more power than all other components combined. This cost
makes the frequency of GPS readings the most important
factor in the life of the device. Adaptively adjusting the duty
cycle of a component or task represents a trade-off between
application fidelity and energy consumption.

Duty-cycle adaptation is implemented in Eon using a spe-
cial type of event source node called an adaptive timer.
Adaptive timers differ from other sources in that they are
not concrete nodes and are not implemented by the program-
mer. Instead, the programmer specifies a range of acceptable
timer intervals. For example, the GPSTimer in the turtle ap-
plication can fire anywhere from every hour to once every
12 hours. The interval is then set by the runtime system.

Energy-State Based Paths
Another common way to trade value for energy is to change
the fidelity of data and the availability of services. Lowering
the quality of images, audio, or video reduces the energy a
device spends transmitting. Energy can be conserved further
by making some services unavailable. For example, a remote
camera may store images locally for later querying or only
stream metadata, instead of streaming the full images. [16].

Fidelity and availability adaptation is provided in Eon
using energy-state based paths. This concept is akin to the
predicate types used for conditional flows except that instead
of choosing paths based on output types, paths are chosen
based on the energy state set by the runtime system. In
the case of our turtle application, LogConnectionEvent is
called when HandleBeacon produces any type and is in a
state labeled HiPower. If the node is low on energy, it may
enter the implicit BASE state and cease logging beacons
from other nodes to save energy. HandleBeacon does not
take inputs of the BASE state type, so the flow ends in an
implicit error that has no side-effects. In this example, Eon
lets the programmer express preference for local operations
over providing services to other nodes when energy is low.

Implementing Concrete Nodes
Implementing concrete nodes with nodes that block on I/O
is straightforward, such as read() in a C/Linux system: the
programmer merely adds procedures that run until the I/O
is finished and then return. If concurrency is a concern, Eon
can use Flux’s features for the automatic generation of multi-
threaded code [3].

Implementing Eon nodes for the nesC/TinyOS environ-
ment is less straightforward due to its use of split-phase,
event-based semantics. Instead of a single blocking function,
a TinyOS concrete node is implemented as a simple nesC
component that provides a single ”call” command and an
asynchronous ”done” event that is signaled with the node’s
return values upon completion. This allows simple nodes
that consist of a single function as well as more complex
nodes that perform split-phase TinyOS operations.

Discussion
One feature that we considered but rejected during the de-
velopment of Eon was to implement fine-tuned adjustments
in node fidelity. For instance, like timers, we could have pro-
vided an explicit adjustment in the fidelity of a node that per-
forms an operation such as video encoding. The runtime sys-
tem would then have been able to adjust this knob to adapt
the fidelity of video encoding in a large number of steps.

However, our experience with adaptive systems has been
that only gross levels of adjustment are used. Video is either
high-fidelity, low-fidelity, or perhaps a level in between.
While Eon’s timers are finely adjustable, the semantics of
timers and their resulting energy cost are both simple to
predict and effectively linear. For instance, firing a timer
twice as often will use approximately twice as much energy
per unit time.

The energy consumed by a video codec would likely have
a non-linear relationship to its resolution. Tuning the fidelity
would thus have a corresponding non-linear effect on nodes
downstream that transmit the video. Recall that one of our
goals is to provide a language that is conducive to well-
performing runtime systems. Without an accurate prediction
as to what effect an adaptation will have, it is more difficult
to select the correct operating point. To find such non-linear,
and often noisy, relationships takes a great number of sample
points, each of which may be consuming too much or too
little energy while the system runs.

Further, there are an unlimited number of power man-
agement optimizations that can be made in sensor systems,
from wireless duty-cycling, to link-layer power-control, and
CPU frequency scaling. Our standpoint has been that any-
thing that can be automatically inferred from the program
itself in a general and reasonably efficient manner, should
be. Along these lines, we have considered a great number of
features to add to the language, but have generally favored
simplicity over features instead of building a language that
can express every possible energy-management scheme. For
instance, instead of providing timers that synchronize to a
common time reference for a Synchronized MAC (S-MAC)



duty-cycling [32], we use the low-power listen mode present
in many modern sensor radios.

3. The Eon Runtime System
By using the flow descriptions in the program, on-line mea-
surements of the per-task energy costs and workload, and
predictions about the amount of incoming energy, Eon’s run-
time system adapts program execution according to the pro-
gram’s policies. This adaptation is completely automatic,
and requires minimal online measurements.

3.1 Design Goals
Two goals inform the design of the Eon runtime system.
First, it should support a broad array of low-power platforms,
such as Motes [25] and Stargates [30], powered by solar
energy. Because microcontroller platforms have relatively
small memory sizes, the runtime system must be constrained
to perform few measurements on-line.

Second, the runtime system should not require any ex-
plicit training, such as measuring the system under simu-
lated load in a lab. Not only is this process painful for pro-
grammers, it is also inherently brittle. For example, training
might require repeated measurement every time the program
is changed or deployed on a new platform with new peripher-
als and is dependent on having good models of the expected
workload. As long as in-situ measurement is sufficiently ac-
curate, and can be done with low-overhead, online measure-
ment is greatly preferable.

3.2 Energy Adaptation Algorithm
The runtime system executes an adaptation algorithm that
chooses the ideal power state for the system to use, based
on its measurements of energy consumption and production.
The adaptation algorithm strives to provide the highest fi-
delity to the application while avoiding two states: an empty
battery and a full battery.

An empty battery prevents the application from executing
even high priority flows. In many devices, it also imposes a
period of dead time for the system, during which the battery
must slowly charge up to a minimal level before the device
can turn on again. When the battery is full, any additional
environmental energy that the system harvests is wasted and
cannot be stored for later use.

From Eon’s perspective, any state of the battery between
these two states is effectively equivalent: the goal of the
system is to consume energy at a rate equal to the rate of
energy production. The battery’s role is to act as a buffer,
riding out periods of low energy production and storing
excess energy.

The runtime system periodically makes a decision about
the ideal power state for the system by searching the possible
adaptations, such as timer frequencies and power states. Eon
favors smoothness of adaptation and searches for a single
static policy that is sustainable for a long horizon.

Eon can make large adjustments using the energy-state
based paths, and smaller adjustments using the adjustable

timers. Eon initially assumes that the system runs at the
highest energy state with the minimum frequency for all of
the timers. It then computes the amount of consumed and
produced energy over a short interval Ti. Taking into account
the current state of the battery, if this power state would
empty the battery, the system lowers the energy state (for
instance, Hi-Power to Lo-Power), and then repeats. Once it
finds a state that is sustainable over the short interval Ti,
it looks further into the future to see if the rate is truly
sustainable, examining time horizons 2n ·Ti for n = {1..N}
time intervals.

Once the system finds a sustainable energy state, it per-
forms a binary search on the timers using the same time
horizons to discover the exact sustainable policy. This search
strategy ensures that the policy is sustainable both over the
short and long term, without requiring excessive compute
time. More weight is given to the short term, as the runtime
system periodically reexamines the policy to adapt to chang-
ing workloads and energy dynamics. The entire process runs
in just 100 ms on a Mica2 mote for our full tracking program
with 31 flows and a horizon of half a year.

Energy Attribution and Consumption
For adaptation, the system must have an accurate model of
its energy consumption, including the energy cost and fre-
quency of each independent execution path, or flow, through
the program. Each time an Eon flow completes, the runtime
system updates an exponentially weighted moving averages
(EWMA) of the flow’s energy cost. The system also esti-
mates the originating source’s firing frequency and the prob-
ability of each branch taken by the flow. In the example in
Figure 2, there are four possible paths through the program,
each with a different energy cost and frequency.

Measuring per-path energy consumption requires careful
accounting and hardware support. One option is to use a
Fuel-Gauge IC, like those included in many modern laptop,
mobile phone, and PDA batteries; two popular example in-
clude TI’s bq27000 and Maxim’s DS2770. These chips mea-
sure the capacity of the battery and charge/discharge rates,
including corrections for temperature, battery-chemistry,
and aging effects. A fuel-gauge chip provides an averaged,
coarse-grained view of the energy remaining in the battery
and the current rate of charge or discharge. While necessary,
this information not sufficient to distinguish between energy
consumption and charge, as both occur simultaneously.

The Eon runtime system requires both a fuel-gauge chip
and fine-grain current measurement to attribute energy to in-
dividual program flows. In our hardware platform, we use an
integrated current sensor, which separately measures the rate
of consumption. This hardware is accurate to within 0.6mA,
sensitive enough to measure differences in current consump-
tion due to radio, flash, or peripheral use by individual flows
on a variety of platforms.

The runtime system samples the current once every sec-
ond, while simultaneously tracking the start and end times
of each node in the program graph. Based on the percent-



age of time that nodes from a particular flow were running,
the runtime system attributes energy to the flow. The rest of
the energy is attributed to the runtime system and to the idle
energy consumption of the platform.

Given the amount of energy consumed by the program
and runtime system, Eon estimates the energy production
rate. Adding the energy consumption for a period of time
to the loss or gain in battery capacity yields the energy
production over that same period.

Energy Source Model
In addition to knowing how much energy each path con-
sumes, adaptation requires a model of how much energy
the system is going to receive in the future. While Eon is
not tied to any one energy production method, we concen-
trate on solar power, which is particularly challenging. The
amount of available solar energy is highly variable. It is also
unpredictable, since predicting sun intensity is, in essence,
predicting the weather.

The model we use in our prototype is an adapted ex-
ponential weighted moving average (EWMA) based pre-
diction algorithm from Kansal, et al. [14, 15]. This model
essentially predicts that the energy production in the fol-
lowing days will be similar to recent days. Eon measures
the energy production over a day, and assigns this value as
E(t). It then computes the expected value of E(t + 1) as
αE(t)+ (1−α)E(t− 1). This model masks the diurnal cy-
cles inherent to solar energy harvesting and is simple enough
for use in small embedded devices.

4. Implementation and Deployment
This section describes the details of the Eon software and its
hardware support. In addition, it describes the details of three
Eon deployments: a turtle tracker, an automobile tracker,
and a remote imaging system. The designs for the hardware,
as well as a release of the application code, compiler, and
runtime system, are all available from our website (http:
//prisms.cs.umass.edu/∼sorber/eon).

4.1 Software
The software implementation of Eon includes a compiler
and runtime system, as well as a generator for a trace-based
simulator.

Compiler
The Eon compiler is a three-pass compiler implemented in
Java, using the JLex Lexer and the CUP LALR parser gener-
ator. It is based on the original Flux compiler [3], extended
with support for Eon’s energy management features. The
first two stages of the compiler build a graph representa-
tion of the program and then decorate each edge with in-
put and output types. The third stage links this intermedi-
ate code with the Eon adaptive runtime system and user-
supplied code that contains the program logic.

Eon can be ported to new languages and architectures
with minimal effort. Our current implementation has been

ported to two different environments: an Intel/CrossBow
Stargate [30] XScale Linux system, using nodes written in C,
and an Atmel microcontroller-based TinyOS system using
nodes written in nesC [8]. In addition, we have ported Eon
to a number of hardware platforms, including the Mica2Dot,
Mica2, MicaZ motes [25], the TelosB mote [24], and the
Shockfish Tinynode [5].

Runtime System
The Eon runtime system measures and adapts to energy us-
age and production. At the start and end of every flow, the
code generated by the compiler invokes a set of functions
that interface with the hardware, perform predictions, and
calculate a running state. The result then informs the rest of
the runtime system which state the system will operate in.
The size of the TinyOS runtime is 4850 lines of code, occu-
pying 18 kbytes of program ROM. While running, the run-
time system uses 900 bytes of RAM for an empty program,
plus approximately 30 bytes of RAM for each independent
path in the program, depending on the size of the arguments
passed between nodes.

Trace-Based Simulator
The Eon compiler optionally generates a trace-based sim-
ulator. By feeding an energy trace and traces for external
inputs, an Eon programmer can test different energy pre-
dictors, workloads, programs, and adaptation policies. Dur-
ing deployment, an Eon node collects measurements of so-
lar energy, consumed energy, battery state, estimated idle
power draw, estimated per-path energy costs, path probabil-
ities, and source frequencies. All of this information is then
used as input to the simulator. Additionally, we have found
that the information recorded by the runtime system is ex-
tremely useful as an energy profiling tool. Although not as
accurate as an external measurement tool, it has been crucial
in identifying energy bottlenecks in our systems.

4.2 Hardware
Eon’s adaptation algorithms require hardware support. We
have built a new charging and energy management board
that controls the solar charging of lithium ion batteries, mea-
sures the capacity of the battery with a Maxim DS2770, and
measures the current consumption using a Maxim DS2751.
We have fabricated two versions of the board, one that ac-
cepts a Mica2DOT mote as a drop in module, and one that
attaches to a Shockfish Tinynode via a Molex connector. We
adapted some parts of the hardware design from the He-
liomote project [17]. The same board can be used with the
Stargate, by attaching the board via a mote.

Figure 5 shows the deployment platforms for the Mica2DOT
and TinyNode, shown with battery and GPS. This board can
handle a wide variety of solar cells, ranging from a small,
25mA peak current cell up to a cell producing 2A. Addi-
tionally, Eon requires no program or runtime changes when
changing the size or number of solar cells, since it only
tracks the amount of energy production.



Figure 5. The two implementations of the energy measure-
ment and charging board with a Mica2Dot and a TinyNode.

5. Deployment
In order to evaluate Eon, we have built several energy adap-
tive systems: a turtle tracking node, an automobile tracking
node, and a remote imaging system. The evaluation section
focuses on the automobile tracking system, and we describe
all three systems here. We have also constructed a solar-
powered WiFi web server on the Stargate platform.

While these deployments are somewhat limited in their
scale and duration, we have gathered sufficient data to
demonstrate Eon’s utility in performing energy adaptation.
Perhaps more importantly, these deployments have driven
the development of Eon, rather than following as a conse-
quence of it. The applications have informed which features
to add to the language, runtime system, and hardware sup-
port.

5.1 Turtle Tracking
The first deployment is motivated by the efforts of conserva-
tion biologists to protect threatened turtles. The Wood Tur-
tle (Clemmys insculpta), is found throughout the Northeast
and Great Lakes regions and into Canada. They live pri-
marily in and along streams, and are terrestrial for about
4 months of the year. Wood Turtles are of particular inter-
est since their numbers are rapidly declining. Unfortunately,
conservation efforts have been hindered by a general lack of
data due to current tracking methods. Researchers currently
track turtles manually using radio telemetry and are limited
to taking a single location fix every 2-3 days for each animal
being studied. The turtles often travel up to 1 kilometer be-
tween fixes and practical concerns preclude the collection of
location information at night.

Much of the development of Eon is inspired by this par-
ticular problem. We have designed and built an Eon node
and program to run on the Mica2DOT environment. The
turtle node includes a SiRF Star III-based GPS Receiver,
an Ultralife UBC581730 250 mAh battery, and one or two
4.2V PowerFilm flexible solar cells. The node is packaged
in shrink-wrap tubing and the ends are sealed with a water-
proof epoxy. The design of the node is primarily driven by
form-factor. The node must weigh less than 50 grams and fit

(a) Photo of an Eon node on a Turtle. (b) Camera

Figure 6. Photos of two of the test applications, a turtle
tracking device, and a remote camera.

without protruding from the shell. Figure 6(a) shows the Eon
node mounted on a turtle’s shell.

Unfortunately, our deployment took place at the end of
an unusually cool fall. The turtles prepared for hibernation
early and spent a large amount of their time immobile and
underwater, not emerging until the next summer. We thus
collected relatively little data from the turtles: five days of
solar traces and a handful of GPS locations.

Despite this small amount of data, we learned new facts
about turtle behavior that were useful from a zoological
perspective and that have led to improvements in our system.
In particular, we discovered that the turtles were underwater
98.5% of the time. Because GPS does not work underwater,
we added a water sensor to the node that lets the programmer
specify that no GPS readings should take place if the turtle
is underwater. In addition, we found that the turtles receive
a great deal less energy while underwater, so little that even
our upper-bound for the GPS timer was not sufficient to let
the node survive. The combination of these two fixes should
allow the node to survive long periods of time underwater.

5.2 Automobile Tracking
As a proxy for the turtles, we performed a second deploy-
ment using automobiles. We used the same hardware, adap-
tation policy, program, and runtime system, and collected
two weeks of data from five devices mounted on the roofs
of cars. The weather for that two weeks was highly vari-
able, with several days of consecutive cloudy weather. These
traces can be extended by looping them, which gives us a
good idea of how Eon adapts to changing conditions. In
addition, this automobile-based deployment has led to bug
fixes and other improvements to the runtime system.

While we plan to redeploy the turtle nodes in a large-
scale experiment in the summer, the evaluation we present
here is based on data gathered from the automobile-based
experiment. The complete application, excluding Eon run-
time code, is 7900 lines of code. The complete system, in-
cluding the Eon runtime, compiles to 42 Kbytes of program
memory, and runs in 3600 bytes of RAM.



5.3 Remote Camera
Finally, we have built a remote camera application that
demonstrates Eon’s versatility. This application was inspired
by various remote image applications at James Reserve [20],
in SensEye [16], and at Virginia Coast Reserve (VCR) [6].
Of note is the fact that VCR researchers programmed their
cameras to scale their frame rates to cope with fluctuations
of gathered solar power.

To ease their programming burden, we have constructed
the video system using a TinyNode [5], a CMUCam low-
power camera [28], a 400-mW-peak solar panels, and a 1 Ah
battery, shown in Figure 6(b). The Eon application trades off
the competing concerns of the frequency of image capture,
and image streaming(high power), and image storage (lower
power). Using the TinyNode’s XE1205 radio, the images can
be streamed from the solar-powered node to a base-station
up to 1 kilometer away.

Once the CMUCam was connected, building a fully adap-
tive application took a single developer only three hours to
build. No modifications were required to handle the larger
solar cells or the energy requirements for the new platform
and camera.

6. Evaluation
Our primary goal in Eon was to provide a simple language
for building efficient energy-adaptive embedded systems. In
this section, we evaluate the Eon language with respect to
both usability and system performance.

6.1 User Study
To evaluate Eon’s usability, we conducted a user study. Nine
programmers were recruited for the study, the majority from
a junior-level operating systems course and all having at
least 4 years of prior programming experience. None had
any prior knowledge of Eon and all were familiar with C.
Each subject was initially asked to provide a self evaluation
of past experience and programming expertise, which was
used to divide them into two balanced groups, one using Eon
and the other using C.

Each test subject then completed the user study individ-
ually. Participants were first given a 45-minute long tutor-
ial covering the programming tools and computing environ-
ment, and an overview of energy-aware embedded systems.
Following the tutorial, each subject was asked to write two
applications.

The first application was a simple sensor application
which periodically samples a sensor, stores the collected
sensor readings, and answers simple network requests for
past readings. The second application was an extension of
the first application to make it adaptive, with the goal of
providing the best sampling rate that their device could sus-
tain without running out of energy. After completing these
programming assignments, each participant was asked to
take a post-experiment survey qualitiatively evaluating their
experience.

The students performed the study in a simulated environ-
ment that included APIs for measuring energy spent using
the Flash device, the radio, and for taking sensor readings.
Also, in order to provide a fair comparison, we provided
the C group with the same solar energy predictor used by
the Eon runtime system. The build environment was instru-
mented in order to collect a snapshot of each participant’s
code with every successful compile. After the study was
complete, we tested each submission. The initial program
was tested for correctness to verify that it performed read-
ings and answered queries correctly. The adaptive code was
evaluated in terms of how well it was able to adapt to the
provided solar trace.

Figures 7(a) and 7(b) show the results of the user study
for the first and second applications, respectively. In Fig-
ure 7(a), the progress of each group is shown with respect
to time spent (in minutes). Progress is measured as the per-
centage of correctness tests passed, with 100% meaning that
all members of the group had passed all test cases.

One striking feature is the similarity in progression be-
tween experienced C programmers and first-time Eon pro-
grammers. Members of the Eon group commented that the
primary difficulties were learning Eon’s syntax and under-
standing how Eon sources and flows are executed. Some
commented that once these details were overcome, Eon pro-
vided a simple and intuitive programming style. We believe
that the small difference between groups can be attributed to
the Eon group’s initial unfamiliarity with the language. We
expect that experienced Eon programmers would be able to
produce correct code for non-adaptive applications at least
as quickly as programmers using a conventional general pur-
pose language.

However, the results from the second application, shown
in Figure 7(b), demonstrate the clear advantages of us-
ing Eon when building energy-aware software. This figure
shows the performance of user submissions over time in
terms of percent coverage. Every time a sensor reading is
taken, an arbitrary amount of time t before and after the
reading is considered “covered.” The figure shows the per-
centage of time that was covered by at least one reading. For
this experiment, we chose t such that the highest sustainable
sampling rate would provide 100% coverage. Choosing a
rate that is either too aggressive or too conservative results
in reduced coverage. In this figure, we plot an individual line
for each study participant. We also plot the best solution so
far to make the figure easier to understand.

Unlike the results from the first stage, Figure 7(b) shows
a substantial difference between the two groups. All mem-
bers of the Eon group achieved 90% coverage within 40
minutes, while the C group lagged behind both in program-
ming time and coverage. The Eon group’s solutions were
also uniformly good; this result stems from the effective-
ness of Eon’s runtime system. Three of the five members
of the C group eventually achieved performance comparable
to the Eon group, but took between 90 to 140 minutes to de-
velop their solutions. Two of these solutions were inspired
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(a) This figure compares experienced C programmers with first-time Eon
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is shown over time. Despite language differences, both groups’ progression
is surprisingly similar. Small differences are likely due to the overhead of
learning a new language.

0 50 100 150
0

20

40

60

80

100

TIme (minutes)

S
e

n
s

o
r 

C
o

v
e

ra
g

e
 (

%
)

Eon Group

C Group

(b) Percent sensor coverage (best so far) is shown comparing C and Eon
programmers. By separating adaptation policy from execution, Eon users
were able to build high-performing adaptive sensor applications signifi-
cantly faster than those using C.

Figure 7. User study results

by TCP’s exponential backoff. The other two C program-
mers’ best submissions achieved 60% and 12% coverage,
respectively. The longer programming times, high variance,
and user comments all demonstrate the difficulty of writing
adaptive software in conventional programming languages,
even on a simplified sensor platform that avoids many com-
mon real-world complications.

6.2 Adaptation
One of the primary benefits of Eon is its ability to adapt the
rate of flows in a program based on its currently available
and predicted energy supply. Here we compare Eon’s per-
formance against several other possible systems and across
individual devices.

To provide a fair and realistic comparison, we use trace-
driven simulations based on data collected during the two
week automobile deployment. During this deployment, each
of the five nodes collected hourly measurements that we then
fed into our trace-based Eon simulator. To avoid measuring
transient behavior based on the initial battery state and to
show long-term behavior, we loop the measured traces to
extend our simulations from two weeks to three months, and
report only the results for the last month. Each test was run
five times, and the simulator generates the amount of energy
used by the GPS drawn from the distribution gathered from
each trace.

In each test case, we change the GPS sampling rate ac-
cording to five energy policies: a conservative, static pol-
icy based on the minimum sustainable rate across all of the
traces; a similar, greedy, static policy based on the maxi-
mum sustainable rate; a best sustainable rate taken for each
device individually; Eon using the solar predictor algorithm
(T = 24); and Eon (Oracle) that uses a perfect weather pre-
dictor that knows the exact amount of solar energy that can
be harvested in the future. Note that the conservative pol-
icy is an over-provisioning implementation that a system de-
signer may try first: collect traces, find the one that gave the
least amount of energy, derive a static policy, and use that on
all of the devices.

The results presented in Figure 8 show the average rate
of GPS readings. The error bars represent the standard de-
viation of the rate within each trace averaged over the five
runs. This demonstrates the variability of the policy over the
duration of each run.

The results in Figure 8 show that a conservative policy,
unsurprisingly, only performs well for device 5, from which
the policy was derived. The rest of the devices pay a large
opportunity cost for not using a more aggressive policy.
The Eon (oracle) policy, best sustainable, and Eon provide
similar average results. However, Eon shows more variance,
demonstrating that misprediction in energy harvesting leads
to a larger range of rates. It is important to note that neither
the best sustainable policy, nor the oracular system can be
realized, as both require advance knowledge of future solar
trends.

We initially found it surprising that the Eon predictor
would do as well as the oracle. However, a closer look
reveals that given the size of the battery in the system and
the typical rate of consumption, a full battery will last for
five days. This lifetime means that the solar power prediction
does not need to be extremely accurate day-to-day, as long
as it is accurate on average. In systems where the ratio of
consumption to battery size is higher, prediction algorithms
have more impact. Lastly, the greedy system exhibits a high
average rate for most of the traces, but its variation is high.
This variation is because the node often ran out of energy,
dropping the rate to zero for long periods of time.

Figure 9 shows a more detailed view of the results from
the same experiment. The stacked bars show the breakdown
of how energy was spent by the different policies. The per-
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Figure 8. The average number of daily GPS readings taken
are shown for different energy policies and energy traces.
Despite large variations in energy supply, Eon is able to
accurately approximate the best sustainable energy policy.

centage numbers at the top of the bars show the average
amount of time during the trace the device had a dead bat-
tery. The board overhead is the energy spent in the measure-
ment board, the idle is the energy spent by the mote while
not executing a flow (e.g. the overhead of the runtime sys-
tem and the cost of an idling mote). The GPS energy was
spent on taking samples, unused energy was energy left in
the battery, and wasted is any energy that was collected, but
could not be stored due to a full battery.

This graph shows the chief shortcoming of the greedy
policy: aggressive use of energy leads to large periods of
dead time. While sparse and bursty readings are generally
undesirable, there is a more serious downside: the inability to
run higher-priority flows. As we show in later experiments,
when the program contains more than one flow, the dead
time caused by one flow’s overuse negates any prioritization
the program may need.

6.3 Impact of Energy-State Based Paths
To examine the usefulness of energy-state based paths, we
conducted a longer experiment using the remote camera ap-
plication. Rather than conduct a year-long deployment, we
used the solar cell to collect adequate solar traces for simu-
lation, and then lengthened those traces using solar intensity
data from the US Climate Reference Network, National Cli-
mate Data Center, and NOAA. By constructing a model that
maps solar intensities to the power produced by the solar
cells, we were able to extend the trace backwards for years’
worth of data. Note that this process only works for the sta-
tionary camera. Long-term simulation of mobile nodes re-
quires information about each node’s mobility as well as the
weather, to determine its energy budget.

Using the energy profiles collected from a running cam-
era system and generated by our simulator, we compared the
behavior of Eon against two systems, one that uses a fixed

5

10

15

E
n

e
rg

y
 (

k
J

)

Wasted Unused GPS Idle Board

0%

30%

45%

5%

65%

(C) Conservative (G) Greedy (B) Best Static (E) Eon (O) Eon(Oracle)

C G B E O C G B E O C G B E O C G B E O C G B E O
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Jan Mar May July Sept Nov Jan Mar May

7 Fph Dead

2.4 Fph Dead

Eon (No Streaming)

0

5

10

15

20

25

F
ra

m
e

 R
a

te
 (

F
ra

m
e

s
/h

r)

Eon

7 Fph (Streaming)

2.4 Fph (95% uptime, Streaming)

Figure 10. Frame rates for a remote camera application are
shown over a 16-month trace, comparing Eon to two static
policies. Periods of time when the Eon camera disabled
streaming as well as periods of dead time for the static
policies are shown across the bottom.

rate of 7 frames per hour (Fph) and one that uses 2.4 Fph.
We then determined when each system had a dead battery,
and thus could not respond to any queries for old images,
and when the Eon system switched into its querying-only
mode. The resulting frame rates, dead times, and querying-
only times are shown in Figure 10. Note that the Eon system
experienced no dead time for the entire trace, so we only plot
dead time for the two static policies.

The results show that Eon can completely avoid dead bat-
tery times by adaptively switching into a query-only mode,
while simultaneously lowering its frame rate. Note that it
would be trivial to adjust this policy in Eon, e.g., to pre-



Energy Costs
Operation Energy Time
Path Init 0.6µJ 0.3ms

Edge 1.4µJ 0.8ms
Path Cleanup 5.4µJ 2.1ms
GPS Reading 1 − 100J 20 − 400s
Evaluate State 0.5 − 2.0mJ 50 − 100ms

Figure 11. Measurements of Eon overhead in comparison
to GPS readings.

fer higher frame rates over streaming. Without the ability
to adapt, a fixed frame rate system may remain completely
unavailable for months at a time. Eon is also able to scale
its frame rate in tune with the seasons and short periods of
cloudy weather.

6.4 System Overhead
In this section, we discuss the overhead incurred by using
Eon on our turtle/automobile monitoring node.

Since the focus of Eon is energy, the energy overhead of
the system must be kept to a minimum. Here, we measure
the energy costs of several operations performed by the
runtime system. We measure current draw using an Agilent
54621D oscilloscope, measuring the voltage drop across a 1-
Ohm sense resistor. We integrate the trace to determine the
energy cost of the operation. Figure 11 presents these energy
measurements.

Periodically reevaluating the energy state, which presents
the largest single energy cost, varies widely depending on
the structure of the application graph and the state of the
system. If, for example, the battery is low and little energy
is expected, the algorithm will quickly rule out higher power
states. More complex applications will also take longer than
simple applications since they have more flows to consider.

As Figure 11 shows, the turtle tracking application re-
quires up to 2.0mJ in the worst case to choose an energy
state. However, since state evaluation happens only once per
hour, this cost is easily amortized, resulting in an increase
of only 2µW in the average power of the device. There is
also a fixed overhead incurred every time a path is executed,
which is equal to (6.0 ∗ 1.4N)µ J where N is the number
of edges in the given path. In comparison with the cost of
taking a GPS reading, this overhead is insignificant, since it
is at least 6 orders of magnitude smaller.

6.5 Measurement Accuracy
The runtime system’s ability to accurately estimate the cost
of individual paths in the program graph is vital to being
able to make accurate adaptation decisions. We evaluate this
accuracy by comparing measured task costs with the sys-
tem’s corresponding estimate for tasks that consume differ-
ent amounts of energy. In this experiment we focus on small
tasks (e.g. transmit data, write to Flash, etc) that consume a
few mJ and large tasks (e.g. GPS readings) that incur a high
energy cost.
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Figure 12. Device dead time is shown for different battery
sizes for systems using one and three solar panels. Perfor-
mance using Eon’s EWMA predictor is compared with per-
fect energy prediction (Oracle). The benefit of better energy
prediction is most notable when using a very small battery
and the cost of prediction errors is greatest.

For small tasks (<100 mJ) the course grained averaging
of our energy measurement board results in large errors in
individual estimates (we observed up to 80%); however, av-
eraging six consecutive estimates consistently yields an es-
timate within 10% of the measured value. For larger tasks
(1-10 J) the Eon runtime system estimates the per-task en-
ergy cost to within 10% for individual task executions, and
six consecutive estimates consistently results the measured
cost to within 0.5%. The Eon runtime system benefits from
this trend of increased accuracy for high-energy tasks. The
penalty for mispredicting a small task is also small, and as
these tasks are performed more frequently the system’s cost
estimate becomes more accurate. Mispredictions of large
tasks, on the other hand, can have significant consequences
on system lifetime, and cost estimates must be more accu-
rate. Since large tasks are often performed infrequently, it
is important to be able to provide accurate estimates with a
small number of executions.

6.6 Impact of Battery Capacity
Our final experiment examines the impact that battery capac-
ity has on Eon’s ability to adapt, and on the cost of prediction
errors. This experiment is set up as described in Section 6.2,
except that we vary the size of the battery and the number of
solar panels used.

The results of this experiment, shown in Figure 12,
demonstrate how prediction errors are magnified as battery
size decreases. While a 250mAhr battery is able to miti-
gate prediction errors, those prediction errors translate into
large amounts of dead time when a 50mAhr battery is used.
Applications that require a very small battery due to size
and weight restrictions should use either more accurate or
consistently conservative energy predictors.



We note that an additional benefit of Eon’s automatically-
generated simulators is the ability to use them to determine
what size battery or solar panel to choose for a given deploy-
ment.

7. Related Work
Eon derives from a large body of work on energy adaptation
in operating systems, as well as dataflow and coordination
languages.

Languages: To our knowledge, Eon is the first system
that specifically targets energy adaptation at the program-
ming language level. Eon’s energy adaptation features are
built on a dataflow-based, coordination language [9, 22].
Eon uses this dataflow abstraction to expose just enough
structure to make building an adaptive runtime system pos-
sible. However, in contrast with many dataflow languages,
Eon’s goal is to simplify writing energy-adaptive programs,
rather than expressing concurrency or real-time ordering
constraints [2, 11].

Coordination languages have also been proposed in or-
der to simplify the programming of embedded sensors.
SNACK [10] provides language constructs that combine
components written in NesC [8], in order to simplify and
encourage code reuse. The Flask language [19] has been
developed concurrently with Eon [29], and both languages
share many properties: both are coordination languages that
combine nesC modules together in an acyclic graph. How-
ever, unlike Eon, Flask does not provide support for energy
adaptation. In addition, Flask is a macroprogramming sys-
tem, while Eon programs run on a single node. We view the
use of dataflow-based coordination languages for embed-
ded sensors as a natural response to the difficulty of writing
event-based code without sacrificing the growing base of
NesC and TinyOS modules.

Energy Application Adaptation: There has been a
wealth of research on building systems that adapt to current
conditions, including energy. Odyssey provided the sem-
inal work in application-aware adaptation [23], and later
work extended it to account for energy [7]. The Ecosystem
project uses application adaptation to share energy fairly
between applications, and governs that system’s consump-
tion rate [33]. In each case, energy-aware adaptation trades
fidelity for energy savings to target a particular device life-
time. Eon builds on this concept by targeting perpetual op-
eration, while expressing the adaptation policy as part of
the program. This provides a much tighter integration of
resources, programming language, and runtime system.

8. Future Work and Conclusions
We plan to build on this work in several areas. To date we
have focused on balancing energy for a single device. We are
now working on using Eon to manage energy in a network
of devices—including a full-scale deployment on turtles this
summer—which introduces new challenges and allows us to
better understand how local adaptation decisions impact the
network as a whole.

We also hope to improve Eon to incorporate the needs of
new applications. For instance, timer sources take very little
power, but receiving packets that are later discarded wastes
energy. By turning off sources in low-power modes, we can
avoid these costs completely.

In conclusion, we have presented Eon: a new language
and runtime system for self-adapting perpetual systems. De-
signed to be both expressive and simple, Eon eases the bur-
den of building energy-adaptive applications. The Eon run-
time system effectively manages changing energy availabil-
ity and demands, while hiding most of the complexity.
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