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ABSTRACT
Java is becoming an important platform for memory-constrained con-
sumer devices such as PDAs and cellular phones, because it provides
safety and portability. Since Java uses garbage collection, efficient
garbage collectors that run in constrained memory are essential. Typ-
ical collection techniques used on these devices are mark-sweep and
mark-compact. Mark-sweep collectors can provide good throughput
and pause times but suffer from fragmentation. Mark-compact col-
lectors prevent fragmentation, have low space overheads, and provide
good throughput. However, they cannot be made fully incremental
and so can suffer from long pause times.

Copying collectors can provide higher throughput than either of
these techniques, but because of their high space overhead, they pre-
viously were unsuitable for memory-constrained devices. This paper
presents MC2 (Memory-Constrained Copying), a copying, genera-
tional garbage collector that meets the demands of memory-constrained
devices with soft real-time requirements. MC2 has low space over-
head and tight space bounds, prevents fragmentation, provides good
throughput, and yields short pause times. These qualities make MC2

also attractive for other environments, including desktop and server
systems.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory manage-
ment(garbage collection)

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Java, copying collector, generational collector, mark-copy, mark-sweep,
mark-compact, memory-constrained copying
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Handheld consumer devices such as cellular phones and PDAs are
becoming increasingly popular. These devices tend to have limited
amounts of memory. They also run on a tight power budget, and
the memory subsystem consumes a considerable fraction of the total
power. As a result, it is extremely important to be able to run applica-
tions in constrained memory, and to minimize memory consumption
during execution.

Java is becoming a popular platform for these handheld devices. It
allows developers to focus on writing applications, without having to
be concerned with the diverse and rapidly evolving hardware and op-
erating systems of these devices. Since Java uses garbage collection to
manage memory, efficient garbage collection in constrained memory
has become a necessity.

While a small memory footprint is an essential requirement, ap-
plications in the handheld space make other demands of the garbage
collector. Cellular phones now contain built-in digital cameras, and
run multimedia applications such as games and streaming audio and
video. PDAs run scaled-down versions of desktop applications such
as web browsers and e-mail clients. While all these applications re-
quire good throughput from the garbage collector, many interactive
and communications applications also require the collector to have
short pause times. For instance, cellular phones need to code, de-
code, and transmit voice data continuously without delay or distortion.
Hence, in order to meet the demands of applications on handheld de-
vices, modern garbage collectors must be able to satisfy all three of
these requirements: bounded and low space overhead; good through-
put; and reliably short pause times.

Java implementations on handheld devices [21, 27] typically use
mark-sweep (MS) [20, 24], mark-(sweep)-compact (MSC) [11], or
generational variants of these collectors [18, 28] to manage dynami-
cally allocated memory. MS collectors can provide excellent through-
put, and they can be made fully incremental (provide short pause times
consistently). However, they suffer from fragmentation, which affects
both space utilization and locality. MS collectors typically need to use
additional compaction techniques to lower the impact of these prob-
lems. MSC collectors can provide good throughput and their space
utilization is excellent. However, they tend to have long pauses mak-
ing them unsuitable for a range of applications that require good re-
sponse times.

We present in this paper a memory-constrained copying collec-
tor, MC2, that addresses the problems that the above collectors face.
MC2 provides good throughput and short pause times with low space
overheads. The collector is based on the mark-copy collection tech-
nique [23]. MC2 runs in bounded space, thus making it suitable for
devices with constrained memory. Since the collector regularly copies
data, it prevents fragmentation, minimizes memory requirements, and
yields good program locality. The collector also limits the amount of



data copied in every collection, thus obtaining short pause times.
We organize the remainder of this paper as follows. We first de-

scribe related work in Section 2. In Section 3, we describe the ba-
sic mark-copy technique and its limitations. We explain in Section 4
how the new collector overcomes these limitations, bounding space
utilization and providing short pause times. To explore the space of
collectors appropriate for memory-constrained environments, we built
a generational mark-compact collector. We describe the implementa-
tion of this collector, a generational mark-sweep collector, and MC2

in Section 5. We then compare the throughput and pause time charac-
teristics across the collectors and a range of benchmarks in Section 6,
and conclude in Section 7.

2. RELATED WORK
We categorize related work according to collector algorithm, discussing
in turn related work in mark-sweep, mark-(sweep)-compact, copying,
and generational collection.

2.1 Mark-Sweep
A number of incremental collection techniques use mark-sweep col-
lection. Examples of collectors in this category are the collector by
Dijkstra et al. [12] and Yuasa’s collector [30]. The problem with
mark-sweep collectors is that they suffer from fragmentation. John-
stone and Wilson [16] show that fragmentation is not a problem for
carefully designed allocators, for a range of C and C++ benchmarks.
However, our experience indicates that this is not necessarily true with
Java programs, and this property makes purely mark-sweep collectors
unsuitable for devices with constrained memory.

Researchers and implementors have also proposed mark-sweep col-
lectors that use copying or compaction techniques to combat fragmen-
tation. Ben-Yitzhak et al. [5] describe a scheme that incrementally
compacts small regions of the heap via copying. However, they re-
quire additional space during compaction to store remembered set en-
tries, and do not address the problem of large remembered sets. Fur-
ther, for a heap containingn regions, they requiren marking passes
over the heap in order to compact it completely. This can lead to poor
performance when the heap is highly fragmented. In order to com-
pact the heap completely our collector requires only a single round of
marking.

The only collector we are aware of that meets all the requirements
we lay out for handheld devices is the real-time collector proposed by
Bacon et al. [3]. They use mark-sweep collection and compact the
heap using an incremental copying technique that relies on a read bar-
rier. They demonstrate good throughput and utilization in constrained
memory. However, in order to make their read barrier efficient, they
require advanced compiler optimization techniques. Our collector
does not require compiler support beyond that generally available,
such as support for write barriers, and therefore is simpler to imple-
ment, especially in the absence of a significant compiler optimiza-
tion infrastructure. In addition, the extensive optimization that their
approach requires may not be suitable in the context of memory-
constrained devices, which generally perform little optimization of
Java bytecodes.

2.2 Mark-Compact
Mark-(sweep)-compact (MSC) collectors [11, 13, 17, 19] use bump
pointer allocation, and compact data during every collection. They
prevent fragmentation and typically preserve the order of allocation
of objects, thus yielding good locality. Compaction typically requires
two or more passes over the heap. However, since these heap traver-
sals exhibit good locality of reference they are efficient. MSC collec-
tors can provide good throughput and their space utilization is excel-
lent. They run efficiently in very small heaps. However, they cannot

be made fully incremental. While the mark phase of some MSC col-
lectors can be made incremental, the compaction phase is inherently
non-incremental.

MC2 is similar in many ways to MSC collection, but because its
copying is incremental it gains the added benefit of shorter pauses.

2.3 Copying
Purely copying techniques also have incremental versions. The most
well-known of these are Baker’s collector [4], Brooks’s collector [8],
and the Train collector [14]. Baker’s and Brooks’s techniques use
semi-space copying and hence have a minimum space requirement
equal to twice the live data size of a program. Also, they use a read
barrier, which is not very efficient. The Train collector can run with
very low space overheads. It can suffer from large remembered sets,
though there are proposals on limiting that space overhead. However,
our experiments with the Train collector show that it tends to copy
large amounts of data, especially when programs have large, cyclic
structures. In order to obtain good throughput, we found that the col-
lector typically requires space overheads of a factor of 3 or higher.
We conclude that the Train algorithm is not well-suited to memory-
constrained environments.

2.4 Generational collection
Generational collectors divide the heap into multiple regions called
generations. Generations segregate objects in the heap by age. A
two-generation collector divides the heap into two regions, an allo-
cation region called thenursery, and a promotion region called the
old generation. Generational collectors trigger a collection every time
the nursery fills up. During a nursery collection, they copy reachable
nursery objects into the old generation. When the space in the old
generation fills up, they perform afull collection and collect objects
in the old generation.

Generational collection is based on the hypothesis that for many ap-
plications, a large fraction of objects have very short lifetimes, while
a small fraction live much longer. The frequent nursery collections
weed out the short-lived objects, and less frequent older generation
collections reclaim the space occupied by dead long-lived objects.
While generational collectors can provide good throughput and short
average pause times, the collection technique used in the old genera-
tion determines the overall space requirements and pause time charac-
teristics of the collector (namely, fragmentation, minimum space over-
head being twice the maximum live size, and large maximum pause
time). The drawbacks of MS, copying, and MSC therefore carry over
to generational collection.

3. BACKGROUND
We introduced the basic mark-copy algorithm, MC, in a previous pa-
per [23]. In this section we summarize MC and describe its limita-
tions with respect to the requirements of memory-constrained envi-
ronments.

3.1 Mark-Copy
MC extends generational copying collection. It divides the heap into
two regions, a nursery, and an old generation. The nursery is identical
to a generational copying collector’s nursery. MC further divides the
old generation into a number of equal size subregions calledwindows.
Each window corresponds to the smallest increment that can be copied
in the old generation. The windows are numbered from 1 ton, with
lower numbered windows collected before higher numbered windows.

MC performs all allocation in the nursery, and promotes nursery
survivors into the old generation. When the old generation becomes
full (only one window remains empty), MC performs a full heap col-
lection, in two phases, amarkphase followed by acopyphase.
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(a) Heap layout before a nursery collection
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(b) Heap layout after a nursery collection
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(c) Heap layout after a full heap mark
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(d) Heap layout after one copy pass
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(e) Heap layout after two copy passes
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Figure 1: MC: Full collection example

During the mark phase, MC traverses live objects in the heap, and
marks them as reachable. It also performs two other tasks while mark-
ing. First, it counts the total volume of live data in each old generation
window. Second, it constructs remembered sets for each of the win-
dows. The remembered sets are unidirectional: they record slots in
higher numbered windows that point to objects in lower numbered
windows. The requirement is to record pointers whose target may
be copied (moved) before the source. An implication of using uni-
directional remembered sets is that the collector cannot change the
order of collection of windows once the mark phase starts. While MC
can overcome this limitation by using bidirectional remembered sets
(recording all cross-window pointers), this is not generally desirable
since bidirectional sets tend to occupy much more space.

Once the mark phase completes, the collector performs acopyphase.
The copy phase is broken down into a number ofpasses. Each pass
copies data out of a subset of the windows in the old generation. Since
the collector knows the exact amount of live data in each window, and
the total amount of free space in the heap, it can copy data out of mul-
tiple windows in each pass. After each copy pass, MC unmaps the
pages occupied by the windows evacuated in that pass, thus limiting
the total virtual memory mapped at any time during the collection. Af-
ter finishing all copy passes, the collector resumes nursery allocation
and collection.

Figure 1 offers an example of a full collection using MC. For this
example, we assume that all objects allocated in the heap have the
same size, and that the heap can accommodate at most 10 objects.
The heap consists of an old generation with 4 windows. Each of these
windows can hold exactly 2 objects. R1 and R2 are root pointers.
Figure 1(a) shows a nursery collection, which results in objects G and
H being copied into the old generation. (G is copied because it is
reachable from a root, and H is copied because it is reachable from
an object (E) in the old generation.) At this point, the old generation
is full (Figure 1(b)). MC then performs a full heap mark and finds
objects B, C, D, and G to be live. During the mark phase it builds a
unidirectional remembered set for each window. After the mark phase
(Figure 1(c)), the remembered set for the first window contains a sin-
gle entry (D→B). All other remembered sets are empty, since there
are no pointers into the windows from live objects in higher num-
bered windows. In the first copy pass, there is enough space to copy
two objects. Since the first window contains one live object (B) and
the second window contains two live objects (C, D), MC can copy
only the first window in this pass. It copies B to the next free window
and then unmaps the space occupied by the first window (Figure 1(d)).
It also adds a remembered set entry to the second window, to record
the pointer from B to D (since B is now in a higher numbered window
than D, and B needs to be updated when D is moved). The old gen-



eration now contains enough free space to copy 3 objects. In the next
copying pass, MC copies the other 3 live objects and then frees up the
space occupied by windows 2, 3, and 4 (Figure 1(e)).

3.2 Limitations of Mark-Copy
MC suffers from several limitations. First, it maps and unmaps pages
in windows while performing the copying phase. It thus depends on
the presence of virtual memory hardware, which may not always be
available on handheld devices. Second, the collector always copies
all live data in the old generation. This is clearly not efficient when
the old generation contains large amounts of long-lived data. Third,
and perhaps most significantly for many applications, the marking and
copying phases can be time-consuming, leading to large pauses. The
MC paper ([23]) describes techniques to make the collector incremen-
tal, but demonstrates only incremental copying. MC2 uses the same
basic algorithms, but makes several enhancements. Finally, although
the collector usually has low space overheads, it occasionally suffers
from large remembered sets. In the worst case, the remembered set
size can grow to be as large as the heap. The original paper describes
a technique that can be used to bound space overhead by using an ex-
tra word per object. However, it is not possible to make that technique
incremental.

4. MC2

The new collector,memory-constrained copying(MC2) uses the basic
MC technique to partition the heap: there is a nursery and an old
generation divided into a number of windows. A full collection marks
live objects in the heap, followed by a copy phase that copies and
compacts live data. However, MC2 overcomes the cited limitations of
MC. We describe in successive sections below features of the collector
that allow it to obtain high throughput and low pause times in bounded
space.

4.1 Old generation layout
As previously stated, MC2 divides the heap into equal size windows.
It requires that the address space within each window be contiguous.
However, the windows themselves need not occupy contiguous mem-
ory locations: MC2 maintains a free list of windows and assigns a new
window to the old generation whenever a previously assigned window
cannot accommodate an object about to be copied. Unlike MC, which
uses object addresses to determine the relative location of objects in
the heap, MC2 uses indirect addressing to determine this information,
in order to decouple actual addresses from logical window numbers.
It uses a byte array, indexed by high order bits of addresses, to indicate
the logical window number for each window.

While this indirection adds a small cost to the mark phase, it has
several advantages. First, it removes the need to map and unmap
memory every time MC2 evacuates a window, in order to maintain
MC2’s space bound. Second, the indirection removes the need to
copy data out of every window; we can assign the window a new
logical number and it will be as if the data had been copied. This is
important for programs with large amounts of long-lived data. Third,
it allows the collector to change the order of collection of windows
across multiple collections. We describe the details of these features
in Section 4.3.

4.2 Incremental marking
MC marks the heap when the free space drops down to a single win-
dow full. While this gives good throughput, it tends to be disruptive:
when MC performs a full collection, the pause caused by marking can
be long. In order to minimize the pauses caused by marking, MC2

triggers the mark phase sooner than MC, and spreads out the marking
work by interleaving it with nursery allocation.
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Figure 2: Example of an error during incremental marking

After every nursery collection, MC2 checks the occupancy of the
old generation. If the occupancy exceeds a predefined threshold (typ-
ically 80%), MC2 triggers a full collection and starts the mark phase.
It first allocates a bit map for each window currently in the old gener-
ation. Marking uses these bit maps to mark reachable objects, and to
check if an object has already been marked. Apart from the benefit to
marking locality, the bit maps also serve other purposes, described in
Section 4.3.

MC2 then assigns logical addresses to each of the windows. Mark-
ing uses these addresses to determine the relative positions of objects
in the old generation. MC2 marks data only in windows that are in
the old generation when a full collection is triggered. It considers any
data promoted into the old generation during the mark phase to be
live, and collects it only in the next full collection. After MC2 assigns
addresses to the windows, it cannot alter the order in which they will
be collected for the duration of the current collection. Finally, MC2

allocates a new window in the old generation, into which it performs
subsequent allocation.

After triggering the mark phase, MC2 allows nursery allocation to
resume. Every time a 32KB block in the nursery fills up, MC2 marks
a small portion of the heap.1 In order to compute the volume of data
that needs to be marked in each mark increment, MC2 maintains an
average of the nursery survival rate (NSR). It computes the mark in-
crement size using the following formulae:

numMarkIncrements= availSpace/(NSR∗nurserySize)
markIncrementSize= totalBytesToMark/numMarkIncrements
totalBytesToMark = totalBytesToMark−markIncrementSize

MC2 initializestotalBytesToMarkto the sum of the size of the win-
dows being marked, because in the worst case all the data in the win-
dows may be live. If the heap occupancy reaches a predefinedcopy
threshold(typically 95% occupancy) during the mark phase, MC2 will
perform all remaining marking work without allowing further alloca-
tion.

MC2 maintains the state of marking in a work queue, specifically
a list of the objects marked but not yet scanned. When it succeeds in
emptying that list, marking is complete.

1We chose 32KB as a good compromise in terms of interrupting mu-
tator work and allocation often enough, but not too often. This value
determines the incrementality of marking.



Write barrier
A problem with incremental marking is that the mutator modifies ob-
jects in the heap while the collector is marking them. This can lead to
a situation where the collector does not mark an object that is actually
reachable. Using the tri-color invariant [12], we can classify each ob-
ject in the heap aswhite (unmarked),gray (marked but not scanned),
or black(marked and scanned). The problem arises when the mutator
changes a black object to refer to a white object, destroys the original
pointer to the white object, and no other pointer to the white object
exists.

Figure 2 shows an example illustrating the problem. In Figure 2(a),
the collector has marked and scanned objects A and C, and it has
colored them black. The collector has not yet reached objects B and D.
At this point, the program swaps the pointers in A and B (Figure 2(b)).
When the collector resumes marking, it marks B (Figure 2(c)). Since
B points to C, and the collector has already processed C, the collector
wrongly concludes that the mark phase is complete, although it has
not marked a reachable object (D).

Two techniques exist to handle this problem, termed by Wilson [29]
assnapshot-at-the-beginningand incremental update. Snapshot col-
lectors tend to be more conservative. They consider any object that
is live at the start of the mark phase to be live for the duration of
the collection. They collect objects that die during the mark phase
only in a subsequent collection. Whenever a pointer is overwritten, a
snapshot collector records the original target and marks it gray, thus
ensuring that all reachable objects are marked. Incremental update
collectors are less conservative than snapshot collectors. When the
mutator creates a black-to-white pointer, they record either the source
or the new target of the mutation. Recording the source causes the
collector to rescan the black object, while recording the new target
causes the white object to be grayed, thus making it reachable.

Figure 4 shows pseudo-code for the write barrier that MC2 uses.
The write barrier serves two purposes. First, it records pointer stores
that point from outside the nursery to objects within the nursery (in
order to be able to locate live nursery objects during a nursery col-
lection). Second, it uses an incremental update technique to record
mutations to objects in the old generation. When an object muta-
tion occurs, and the target is an old generation object, the write bar-
rier checks if the source object is already recorded as mutated. If so,
MC2 ignores the pointer store. If not, it records the object as mutated.
When MC2 performs a mark increment, it first processes the mutated
objects, possibly adding additional objects to the list of those need-
ing to be scanned. After processing the mutated objects, it resumes
regular marking.

4.3 Incremental copying
When MC performs a full collection, it copies data out of all win-
dows, without allowing any allocation in between. While this is good

writeBarrier(sourceObject, sourceSlot, targetObject){
if (sourceObject not in nursery) {

if (targetObject in nursery)
record sourceSlot in nursery remset

else if (targetObject in old generation) {
if (sourceObject is not mutated) {

set mutated bit in sourceObject header
record sourceObject in mutated object list

}
}

}
}

Figure 4: MC2 write barrier

for throughput, the pause caused by copying can be long. MC2 over-
comes this problem by spreading the copying work over multiple nurs-
ery collections. (The MC paper ([23]) described and offered prelim-
inary results for a version of incremental copying. It did not offer
incremental marking, the bounded space guarantee, or the short pause
times of MC2.)

Grouping windows
At the end of the mark phase, MC2 knows the volume of data marked
in each window. At the start of the copy phase, MC2 uses this informa-
tion to classify the windows. MC2 uses amostly-copyingtechnique.
It classifies any window that has a large volume of marked data (e.g.,
> 95%) as ahigh occupancywindow, and does not copy data out
of the window. MC2 determines the threshold for this classification
based on the total space that the copy phase will reclaim. Once MC2

classifies a window as high occupancy, it discards the remembered set
for the window, since no slots pointing to that window will be updated
in the current collection.

After separating out the high occupancy windows, MC2 groups the
other windows based on the amount of data they contain. Eachgroup
consists of one or more old generation windows, with the condition
that the total amount of marked data in a group is less than or equal to
the size of a single old generation window. MC2 allows one to specify
a limit on the total number of remembered set entries in a group. If
the addition of a window to a group causes the group remembered set
size to exceed the limit, MC2 places the window in the next group.
MC2 also creates a separate group for each high occupancy window.

Copying data
After MC2 groups the marked windows, it resumes nursery allocation.
At every subsequent nursery collection, it piggybacks the processing
of one old generation window group. In order to pace old generation
collection, MC2 uses information it has about the total space that will
be reclaimed by the copy phase. The target for the copy phase is
to reduce the heap occupancy below the mark phase threshold. To
achieve this goal, MC2 resizes the nursery at every nursery collection,
based on the average survival rate of the nursery and the space that
will be reclaimed by compacting the old generation data.

When MC2 processes an old generation group, it first checks if the
group contains a single high occupancy window. If so, MC2 uses the
mark bit map for the window to locate marked objects within it. It
scans these objects to find slots that point into windows that have not
yet been copied, and adds the slots to remembered sets for those win-
dows. It then logically moves the window into to-space. In subsequent
collections, MC2 places these high occupancy windows at the end of
the list of windows to be collected. If they still contain large volumes
of live data, they do not even have to be scanned, and the copy phase
can terminate when it reaches these windows. This technique turns
out to be especially helpful for SPECjvm98 benchmarks such asdb
andpseudojbb, which allocate large amounts of permanent data.

If a window group contains objects that need to be copied, MC2

locates marked objects in the window by scanning the root set and
remembered set entries. It copies these objects into free windows us-
ing a regular Cheney scan [9]. While scanning objects copied into
to-space, MC2 adds slots that reference objects in uncopied windows
to the corresponding remembered set.

Write barrier
As in the mark phase, the write barrier keeps track of mutations to old
generation objects during the copy phase. It records mutated objects
at most once. At every copy phase collection, MC2 updates mutated
slots that reference objects in windows being copied, and adds mu-
tated slots that reference objects in uncopied windows to the corre-
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Figure 3: Stages in the copy phase for MC2

sponding remembered sets.
Figure 3 shows an example of the copy phase of the collector. Fig-

ure 3(a) shows the heap layout before the copy phase starts. The old
generation contains four marked windows (W0–W3). MC2 classifies
W1 and W3 as high occupancy and places them in separate groups,
since they contain 100% and 98% marked data respectively. It also
places W0 and W2 in separate groups because they are adjacent to
high occupancy windows. In the first copy pass (Figure 3(b)), MC2

copies data from the nursery and W0 into W4. It then adds W0 to
the list of free windows. In the second pass (Figure 3(c)), MC2 scans
objects in W1 and adds W1 to the end of to-space. It copies nursery
survivors into W4 and W0. In the third pass (Figure 3(d)), MC2 copies
objects out of the nursery and W2 into windows W0 and W5. It then
adds W2 to the list of free windows. At this point, the only remaining
window, W3, is high occupancy, so MC2 adds it to the end of to-space
and ends the copy phase.

4.4 Bounding space overhead
The remembered sets created during MC collection are typically small
(less than 5% of the heap space). However, they occasionally grow
to be large. There are two typical causes for such large remembered
sets: large arrays of pointers, andpopularobjects (objects heavily ref-
erenced in a program). MC2 uses two strategies to reduce the remem-

bered set overhead, both of which involve coarsening remembered set
entries.

Large reference arrays
MC2 divides large reference arrays (larger than 8 KB) into 512-byte
cards. Rather than store every array slot in the remembered sets, MC2

stores a card address (address with lower 9 bits zeroed out), similar
to the technique used by Printezis and Garthwaite [22]. While this
technique reduces space overhead significantly, it may increase the
remembered set scanning time.

Large remembered sets
MC2 sets a limit on the total amount of space that remembered sets
can occupy. When the space overhead is close to the limit, it coarsens
remembered sets starting from the largest, until the space overhead
is less than or equal to 95% of the limit. Also, when the size of a
single remembered set exceeds a predefined limit, MC2 coarsens that
particular remembered set. This coarsening involves converting the
remembered set representation from a sequential store buffer (SSB)
to a card table. (Our usual representation for a remembered set for a
window W is a sequential list of addresses of slots containing pointers
into W. Whenever we detect a reference into W that needs recording,
we simply add it to the end of this list. The list may contain duplicates
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Figure 5: An example of a card table. Each window is broken down into two cards.

as well as stale entries (slots that used to point into W but no longer
do). The physical representation of the list is a chain of fixed sized
chunks of memory, where each chunk is an array of slot addresses.)

MC2 divides every window into cards of size 256 bytes. The card
table for a target window T is an array of bit maps, one for every other
window that contains a reference into T. A bit map in the table corre-
sponding to source window S contains a bit for each card in S. MC2

sets a bit in the bit map if any object thatstarts in the corresponding
card contains a reference into T.

Figure 5 shows an example of a card table. In the example, each
window can contain four objects. Each window is divided into two
cards and each card can hold two objects. Figure 5(b) shows the card
table for window W0. The table contains four entries, one for each
window in the heap. The entry for W0 is empty since we do not
record intra- window references, and the entry for W3 is empty since
W3 contains no references into W0. The bit maps for W1 and W2
contain two entries, one for each card in the windows. Since one
object in each card of W1 contains a reference into W0, both bits are
set in the bit map for W1. The bit map for W2 has only the first bit
set, since no objects in the second card contain a reference into W0.

The process of converting the remembered set representation is
straightforward. MC2 scans the SSB sequentially, and for every recorded
slot, it checks if the contents still refer to an object in the target win-
dow. If so, it finds the source window and card corresponding to the
object that contains the slot. If the card table for the target window
does not contain an entry for the source window, it allocates space in
the table. It then marks a bit in the table corresponding to the source
window card.

With a card size of 256 bytes, the size of the card table for a single
window is at most1/(8×256) times the window size, i.e., 0.05% of
the total heap space. The collector allows a maximum of 100 win-
dows, thus making the worst case remembered set overhead100×
0.05 = 5% of the total heap space. The bounded space overhead
comes at a run-time cost. Marking a bit in a card table is more ex-
pensive than inserting into a sequential store buffer. Also, scanning a
card table and objects in a card to identify slots that point into a target
window is more expensive than simply traversing a buffer sequen-
tially.2 However, large remembered sets are relatively rare, and when
MC2 creates a large remembered set, we use a technique described

2While our platform (Jikes RVM) uses an object format that precludes
sequential scanning of a region by simple examination of its contents,
we use the mark bit map to find (marked) objects within a card. Only
the marked objects are relevant.

below to prevent the situation from recurring.

Popular objects
Very often, large remembered sets arise because of a few very highly
referenced objects. For example, injavac, occasionally a large re-
membered set occurs when a small number of objects (representing
basic types and identifiers of Java) appear in the same window. These
objects can account for over 90% of all references in a remembered
set of size 600KB. MC2 identifies popular objects during the process
of converting an SSB to a card table. It uses a byte array to maintain a
count of the number of references to each object in the window. (Since
the collector always reserves at least one window worth of free space,
there is always enough space for the byte array without exceeding our
space budget.) As MC2 scans the SSB, it calculates the offset of each
referenced object, and increments the corresponding entry in the byte
array. When the count for any object exceeds 100, MC2 marks it as
popular.

During the copy phase, MC2 copies popular objects into a special
window. It treats objects in this window as immortal and does not
maintain a remembered set for this window in subsequent collections.
However, if the occupancy of the window grows to be high, MC2 can
add it back to the list of collected windows. So, if popular objects
exist, MC2 will take a slight hit on pause time occasionally. However,
it ensures that these objects are isolated and do not cause another dis-
ruption. MC2 cannot avoid this problem completely. To be able to
do so, it would have to know in advance (at the point when a popular
object is copied out of the nursery), that a large number of references
will be created to the object.

5. METHODOLOGY
In order to evaluate garbage collection for memory-constrained en-
vironments, we needed to implement garbage collectors described in
the literature that are appropriate to that environment. In this section,
we describe the implementation of these collectors, followed by our
experimental setup.

5.1 Implementation Details
We used the Jikes RVM Java virtual machine [1, 2], release 2.2.3,
to implement and evaluate the collectors. We used the Java memory
management toolkit (JMTk [6]), standard with Jikes RVM 2.2.3, as
the base collector framework. JMTk includes a generational mark-
sweep collector, and it provided us with most of the generic function-
ality required for a copying collector. While none of the collectors
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Figure 6: An example of pointer threading performed by the Mark-Compact collector

requiresvirtual memory mapping support, they happen to use map-
ping because the JMTk framework uses it. This support speeds up
the performance of all collectors by allowing a faster write barrier (no
indirection in mapping addresses to logical regions).

JMTk divides the available virtual address space into a number of
regions. The region with the lowest addresses stores the virtual ma-
chine “boot image”. The region adjacent to the boot region stores im-
mortal objects—objects never considered for collection. The immor-
tal region uses bump pointer allocation and maps memory on demand
in blocks of size 32KB. JMTk allocates all system objects created at
run time in the immortal region. It also allocates type information
block (TIB) objects, which include virtual method dispatch vectors,
etc., in immortal space. Additionally, we allocate all type objects and
reference offset arrays for class objects into immortal space, since the
mark-compact collector requires that these objects not move during
collection.

Next to the immortal region is the region that stores large objects.
All collectors allocate objects larger than 8KB into this region. JMTk
rounds up the size of large objects to whole pages (4 KB), and al-
locates and frees them in page-grained units. The remainder of the
address space can be used by the collectors to manage regular objects
allocated in the heap.

All collectors we evaluate in this paper are generational collectors.
We implement the collectors with abounded nursery:the nursery is
bounded by a maximum and minimum size. When the size of the
nursery reaches the upper bound, even if there is free space available,
we trigger a nursery collection, and if the nursery shrinks to the min-
imum size, we trigger a full heap collection. The unusual aspect is
the upper bound, because it triggers collection earlier than necessary
on grounds of available space. This early triggering is important in
bounding pause time. It is important to realize that we consider here
only the bounded nursery variants of each of the collectors we com-
pare.

5.1.1 Generational mark-sweep
The JMTk MS collector divides the heap space into two regions. The
region with lower addresses contains the old generation, and the re-
gion with higher addresses contains the nursery. The write barrier
records, in a remembered set, pointers that point from outside the
nursery into the nursery. The write barrier is partially inlined [7]: the
code that tests for a store of an interesting pointer is inlined, while the
code that inserts interesting pointers into the remembered set is out
of line. The nursery uses bump pointer allocation, and the collector
copies nursery survivors into an old generation managed by mark-
sweep collection.

The mark-sweep collector uses segregated free lists to manage the
heap memory. The collector divides the entire heap into a pool of
blocks, each of which can be assigned to a free list for any of the size
classes. An object is allocated in the free list for the smallest size class

that can accommodate it. After garbage collection, if a block becomes
empty, the collector returns it to the pool of free blocks.

5.1.2 Generational mark-compact
We implemented a threaded mark-compact generational collector (MSC),
based on the algorithm described by Martin [19]. Threaded com-
paction does not require any additional space in the heap, except when
handling internal pointers. While this is not a problem for Java ob-
jects, since Java does not allow internal pointers, Jikes RVM allocates
code on the heap, which contains internal code pointers. However,
the space requirement for these pointers is not very high, since there
is only one code pointer per stack frame. MSC also requires a bit
map (space overhead of 3%) in Jikes RVM, because the object layout
(scalars and arrays in opposite directions) does not allow a sequential
heap scan. MSC divides the heap into nursery, old generation, and
bit map regions. It uses the same write barrier as MS. Its compaction
operates in two phases. During themark phase, the collector marks
reachable objects. At the same time it identifies pointers that point
from higher to lower addresses. These pointers are chained to their
target object starting from the status word of the target. For internal
pointers, we use extra space to store an additional offset into the target
object.

Figure 6 shows an example illustrating how MSC performs thread-
ing during the first phase. A, B, and C are three objects in the heap.
A contains a self-referential pointer (considered a backward pointer),
and B and C contain one pointer each to A. The collector creates a
linked list starting from the status word for A. The status (which is
distinguished by having its low bits non-zero) is stored in the slot at
the end of the linked list.

At the end of the mark phase, the collector has identified all live
objects. Also, it has chained to each object all backward pointers to
that object, and they can be reached by traversing a linked list start-
ing from the object header. During the second phase, MSC performs
the actual compaction. As it moves an object, it updates all point-
ers referring to the object. Also, it chains all (forward) pointers from
the object to target objects not yet moved, so that it will update these
pointers when it moves the target object later in the phase.

5.1.3 MC2

MC2 divides the heap into a nursery and an old generation. It further
divides the virtual address space for the old generation into a num-
ber of fixed sizeframes. A frame is the largest contiguous chunk of
memory into which MC2 performs allocation. MC2 uses a frame size
of 8MB. Each frame accommodates one old generation window. The
portion of the address space within a frame that is not occupied by
a window is left unused (unmapped). The frames are power-of-two
aligned, so we need to perform only a single shift to find the physical
window number for an old generation object during GC; we use the
physical window number as an index into a byte array to obtain the



Benchmark Description Maximum Total
Live size (MB) Allocation (MB)

202 jess a Java expert system shell 6 319
209 db a small data management program 12 93
213 javac a Java compiler 13 280
227 mtrt a dual-threaded ray tracer 12 163
228 jack a parser generator 6 279

pseudojbb SPECjbb2000 with a fixed number of transactions 30 384

Table 1: Description of the benchmarks used in the experiments

logical window number, as previously described. Each window has
an associated remembered set, implemented using a sequential store
buffer.

The write barrier is partially inlined. The inlined portion checks
if the source of a pointer store is outside the nursery, and the target
lies beyond the immortal region (this subsumes a null test, since the
immortal region begins at address greater than 0). If so, the out-of-
line code is invoked, which performs two tests. First, if the target is
a nursery object, it stores the source slot in the nursery remembered
set. Second, it checks a bit in the source object’s header, to see if
the object has been mutated since the last time it was scanned. If the
object has not been mutated, it sets the bit and adds the object to a
mutated-object remembered set.

During a nursery collection, MC2 processes the nursery remem-
bered set first. It then scans mutated objects, and records pointers
from the immortal region into the old generation window remembered
sets. It also calculates the survival rate of objects in the nursery, and
uses it to maintain an average nursery survival rate. After a nursery
collection, if the space occupied by the old generation exceeds a pre-
definedmark threshold, MC2 triggers a full collection and the mark
phase begins. MC2 maintains a per-window bit map. This is useful for
more than marking objects during the mark phase: the collector uses
it during the copy phase to locate objects in cards and to locate live
objects in high occupancy windows. As described earlier, MC2 per-
forms marking in small increments during allocation. The increment
size depends on the available space and nursery survival rate.

MC2 initially creates remembered sets using SSBs. It tags each re-
membered set entry to indicate whether the entry belongs to a scalar
object or an array (this information is required to locate the object con-
taining a slot while converting remembered set representations). If the
overall metadata size grows close to 5% of the heap, MC2 converts the
largest remembered sets to card tables. In our current implementation,
we do not coarsen boot image and immortal slots since the number of
entries is small and limited. When the mark phase completes, the copy
phase commences. MC2 performs increments of old generation copy-
ing along with nursery collection. The size of the nursery grows and
shrinks based on the nursery survival rate and the amount of space re-
claimed so far in the copy phase. The goal is to finish the copy phase
before the heap grows larger than the mark threshold (i.e., it is time to
start the next full collection).

5.2 Experimental Setup
Jikes RVM compiles all bytecode to native code before execution. It
has two compilers, a baseline compiler that essentially macro-expands
each bytecode into non-optimized machine code, and an optimizing
compiler. It also has an adaptive run-time system that first baseline
compiles all methods and later optimizes methods that execute fre-
quently. It optimizes methods at three different levels depending on
the execution frequency. However, the adaptive system does not pro-
duce reproducible results, because it uses timers and may optimize
different methods in different runs.

We used apseudo-adaptiveconfiguration to run our experiments
with reproducible results. We first ran each benchmark 7 times with
the adaptive run-time system, logging the names of methods that were
optimized and their optimization levels. We then determined the meth-
ods that were optimized in a majority of the runs, and the highest level
to which each of these methods was optimized in a majority of runs.
We ran our experiments with exactly these methods optimized (to that
optimization level) and all other methods baseline compiled. The re-
sulting system behavior is repeatable, and does very nearly the same
total allocation as a typical adaptive system run.

Jikes RVM is itself written in Java, and some system classes can be
compiled either at run time or at system build time. We compiled all
the system classes at build time to avoid any non-application compila-
tion at run time. The system classes appear in a region called theboot
image, that is separate from the program heap.

6. RESULTS
We compare GC times, total execution times, space overheads, and
pause times for the three collectors (MC2, MS, and MSC) across six
benchmarks. Five of these come from from the SPECjvm98 suite [25],
and the sixth ispseudojbb, a modified version of the SPECjbb2000
benchmark [26].pseudojbb executes a fixed number of transactions
(70000), which allows better comparison of the performance of the
different collectors. We ran all SPEC benchmarks using the default
parameters (size 100), and ignoring explicit GC requests. Table 1
describes each of the benchmarks we used.

We ran our experiments on a system with a Pentium P4 1.7 GHz
processor, 8KB on-chip L1 cache, 12KB on-chip ETC (instruction
cache), 256KB on-chip unified L2 cache, and 512 MB of memory,
running RedHat Linux 2.4.7-10. We performed our experiments with
the machine in single user mode to maximize repeatability.

6.1 Execution times and pause times
Figure 7 shows GC times for the three collectors relative to the best
GC time. Figure 8 shows total execution times for the collectors rela-
tive to the best execution time. The x-axis on all graphs represents the
heap size relative to the maximum live size, and the y-axis represents
the relative times. Table 2 shows the maximum pause times for the
three collectors and the execution times for MS and MSC in a heap
that is 1.8 times the program’s maximum live size. All results are for
configurations using a nursery with a maximum size of 1MB and a
minimum size of 64KB. MC2 uses 40 windows in the old generation.

We look first at the relative execution times of the collectors. The
general trend we see in the graphs is that the copying collectors out-
perform MS in small heaps. Apart fromjavac, MSC usually performs
better than MS in heaps that are smaller than twice the program live
size. MC2 generally performs better than MS in small heaps for all
benchmarks other thanjavac anddb.

The GC plots forjess, jack, andpseudojbb show that MC2 and
MSC have lower GC costs in small heaps. Apart from the bitmap,
MC2 has a space overhead bounded by 7.5% (2.5% for copying with
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Figure 7: GC time relative to best GC time for MS, MSC, and MC2

40 windows and 5% for remembered sets), and it is usually under 5%.
The fragmentation for MS often exceeds that, and this has a larger
effect in the small heaps. The copying collectors also compact data
which can yield better locality and improve mutator time. In moderate
and large heaps, the copying collectors usually perform better than MS

for mtrt, jack, andpseudojbb, while MS performs better forjess and
javac.

When we compare MC2 and MSC, we see that their performance
for jess, mtrt, andpseudojbb is very close. MC2 outperforms MSC
for jack andjavac, while MSC performs better fordb.
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Figure 8: Total execution time relative to best total execution time for MS, MSC, and MC2

Both db andpseudojbb contain significant amounts of permanent
data, which is advantageous to MC2. Since it uses a mostly-copying
technique, it does not have to copy large portions of the heap. It com-
pacts a smaller portion of the heap, which contains transient data. In
spite of not copying much data, MC2 has only slightly lower GC times

than MSC, because mark-compact collectors have the same property.
They also do not repeatedly copy permanent data, since permanent
data flows toward the lower end of the heap, and the compactor does
not move any live data at the start of the heap.db is a benchmark that
is especially sensitive to cache locality effects. Our experience shows



MC2 MPT MS MPT MS/MC2 ET MSC MPT MSC/MC2 ET
Benchmark (ms) (ms) (ms)
jess 15.91 197.69 1.07 220.87 1.02
db 20.44 276.89 0.98 362.19 0.87
javac 38.85 318.07 0.94 471.54 1.07
mtrt 24.68 315.53 1.04 422.47 1.01
jack 18.13 211.96 1.09 252.56 1.05
pseudojbb 46.49 323.01 1.08 474.32 1.02

Table 2: Maximum Pause Times (MPT) and relative Execution Times (ET) for MC2, MS, and MSC, in a heap that is 1.8 times the
maximum live size. All collectors use a 1MB nursery and MC2 uses 40 windows.

that small changes in GC triggering points and object locations tend
to have significant effects on the overall performance ofdb. MSC out-
performs both MC2 and MS for this benchmark. It is possible that the
order-preserving property of MSC helps it obtain better locality.

Table 2 shows that, for all benchmarks, the maximum pause time
for MC2 is significantly lower than for the other two collectors, even in
a tight heap. When compared with MSC, the maximum pause time for
MC2 is 10–17 times lower. When compared with MS, the pause times
for MC2 are about 7–13 times lower. The throughput for MC2 is at
least as good as that of the other two collectors for most benchmarks.
For javac, execution time of MC2 is about 6% higher than MS, and
for db, MC2 has a 13% higher execution time than MSC.

Summary: The results show that MC2 can obtain low pause times
and good throughput in constrained heaps. The pause times for MC2

are 10–17 times lower than MSC and 7–13 times lower than MS in
a heap that is 1.8 times the program live size. Although we do not
show maximum pause times for every heap size, these results hold for
larger heap sizes in which MSC and MS perform at least one full heap
collection. Importantly, the execution times for MC2 are comparable
to those of both non-incremental collectors.

6.2 Pause time distribution
Figure 9 shows the distribution of MC2 pause times for the six bench-
marks in a heap that is 1.8 times the benchmark’s maximum live size.
The figure contains three plots for each benchmark: the first contains
all pauses, the second only mark phase pauses, and the third only
copy phase (nursery and old generation window copying) pauses. The
graphs also shows the durations of the median pause, and of the 90th
and 95th percentile pauses. The x-axis on all graphs shows the actual
pause times and the y-axis shows the frequency of occurrence of each
pause time. The y-axis is on alogarithmic scale, allowing one to see
clearly the less frequently-occurring longer pauses.

For all benchmarks, a majority of the pauses are 10ms or less. 76%
of all pauses forjavac are 10ms or less, and 89% of pauses forpseu-
dojbb are in the 0–10ms range. (Forjess, db, mtrt andjack, pauses that
are 10ms or less account for 96%, 96%, 91% and 92% of all pauses).

Most of these pauses are caused by the mark phase, which performs
small amounts of marking interleaved with allocation. These pauses
cause the median pause time value to be low. The graphs containing
mark-only pauses show that the maximum duration of a mark pause
is 7ms, and this occurs forjavac. jess, db, andpseudojbb have mark
pauses that are 3ms or less. All mark pauses formtrt and jack are at
most 6ms long.

The less frequent, longer pauses that are in the 10–50ms range typ-
ically result from nursery collections and collection of old generation
windows. Of these, purely nursery collections are usually at the lower
end of the pause time range. The pauses at the higher end usually re-
sult from collections during the copy phase. These collections copy
objects out of both the nursery and a subset of the old generation win-
dows. The average copy phase collection time forjavac is 20ms, and

the average copy phase pause time forpseudojbb is 15.33ms. The
longest copy pause time for the benchmarks is 47ms, and 99% of all
copy pauses are shorter than 30ms in duration.

One possible technique we could use to reduce copy phase pause
times further is to collect the nursery and old generation windows sep-
arately. We call this asplit phasetechnique. Using split-phase, MC2

would alternate between nursery collections and old generation win-
dow copying, with data from the windows copied when the nursery
is half full. However, this technique adds a cost to the write barrier,
to keep track of pointers from the nursery into the next set of old
generation windows being copied. We have not yet implemented and
evaluated this technique for MC2.

javac occasionally causes the creation of a large remembered set (it
does not happen at this particular heap size). This happens when a few
highly referenced types and identifiers appear in the same window.
The remembered set corresponding to the window containing these
objects can grow to approximately 600KB. When this happens, MC2

coarsens the remembered set and converts it to a card table. The re-
ferring objects in this case do not all lie close together, and are spread
over a significant portion of the heap. When the collector scans the
card table to copy objects out of this window, the pause is approxi-
mately 60ms, which is somewhat longer than any other pause for the
benchmark. However, MC2 isolates the popular objects residing in the
window, and the long pause does not recur. MC2 did not have to con-
vert remembered set representation for any of the other benchmarks
since the remembered set overhead was low.

6.3 Bounded mutator utilization
We now look at the pause time characteristics of the collectors. We
consider more than just the maximum pause times that occurred, since
these do not indicate how the collection pauses are distributed over
the running of the program. For example, a collector might cause a
series of short pauses whose effect is similar to a long pause, which
cannot be detected by looking only at the maximum pause time of the
collector (or the distributions).

We presentmutator utilizationcurves for the collectors, following
the methodology of Cheng and Blelloch [10]. They define theutiliza-
tion for any time window to be the fraction of the time that the mutator
(the program, as opposed to the collector) executes within the win-
dow. The minimum utilization across all windows of the same size is
called theminimum mutator utilization(MMU) for that window size.
An interesting property of this definition is that a larger window can
actually havelower utilization than a smaller one. To avoid this, we
extend the definition of MMU to what we call thebounded minimum
mutator utilization(BMU). The BMU for a given window size is the
minimum mutator utilization for all windows of that sizeor greater.

Figure 10 shows BMU curves for the six benchmarks for a heap
size equal to 1.8 times the benchmark live size. The x-intercept of
the curves indicates the maximum pause time, and the asymptotic y-
value indicates the fraction of the total time used for mutator execution
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Figure 9: MC2 pause time distributions, in a heap that is 1.8 times the program live size. The first column shows all pauses. Mark pauses
(second column) are always 7ms or less. Copy phase pauses (third column) are longer (5–47ms).



(average mutator utilization).
Since it is difficult to factor out the write barrier cost, the curves

actually represent utilization inclusive of the write barrier. The real
mutator utilization will be a little lower. These graphs also do not
show the effects of locality on the overall performance. For instance,
for db, MC2 and MS have lower throughput. However, since this is
caused by higher mutator times (possibly because of locality effects),
and not because of higher GC times, the BMU curves do not reflect
the consequences. However,db is the only benchmark for which these
graphs hide any loss in throughput for MC2.

The three curves in each graph are for MC2, MS, and MSC. The
curve with the smallest x-intercept is for MC2. MSC has the curve
with the largest x-intercept; the MS curve has an x-intercept in be-
tween the other two.

For all benchmarks, MC2 allows some mutator utilization in the
worst case even for very small windows. This is because of the low
pause times for the collector. For most benchmarks, the mutator can
execute for up to 10–25% of the total time in the worst case, for time
windows that are about 50ms long. The non-incremental collectors,
on the other hand, allow non-zero utilization in the worst case only for
much larger windows, since they have large maximum pause times.

MC2 can provide significantly higher utilization than the other two
collectors in windows of time that are one second or smaller. Beyond
that point, the utilization provided by MC2 is usually higher or about
the same, and the asymptotic y-values for the curves are very close.
Only for javac does MC2 provide (slightly) lower overall utilization.
For db, as we mentioned earlier, the locality effects are not evident in
the graph. MC2 and MS provide lower overall utilization than MSC
for the benchmark.

Summary: The mutator utilization curves for the collectors show
that MC2 not only provides shorter pause times, it also provides higher
mutator utilization for small windows of time, even in the worst case,
i.e., it spreads its pauses out well. This holds even for windows of
time that are significantly larger than the maximum pause times for
the non-incremental collectors. In windows of time that are larger
than one second, the utilization provided by all collectors tends to
be the same. The overall throughput of the collectors is close. The
performance of MC2 is a bit lower than MS for large windows of time
for javac. MC2 and MS provide lower utilization than MSC fordb.

7. CONCLUSIONS
We have presented an incremental copying garbage collector, MC2

(Memory-Constrained Copying), that runs in constrained memory and
provides both good throughput and short pause times. These prop-
erties make the collector suitable for applications running on hand-
held devices that have soft real-time requirements. It is also attrac-
tive for desktop and server environments, where its smaller and more
predictable footprint makes better use of available memory. We com-
pared the performance of MC2 with a non-incremental generational
mark-sweep (MS) collector and a generational mark-compact (MSC)
collector, and showed that MC2 provides throughput comparable to
that of both of those collectors. We also showed that the pause times
of MC2 are 10–17 times lower than those for MSC, and 7–13 times
lower than those of MS in constrained memory.
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