
Garbage Collection Without Paging

Matthew Hertz, Yi Feng, and Emery D. Berger
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

{hertz, yifeng, emery}@cs.umass.edu

ABSTRACT
Garbage collection offers numerous software engineering advan-
tages, but it interacts poorly with virtual memory managers. Most
existing garbage collectors visit many more pages than the appli-
cation itself and touch pages without regard to which ones are in
memory, especially during full-heap garbage collection. The re-
sulting paging can cause throughput to plummet and pause times
to spike up to seconds or even minutes. We present a garbage col-
lector that avoids paging. Thisbookmarking collectorcooperates
with the virtual memory manager to guide its eviction decisions. It
records summary information (“bookmarks”) about evicted pages
that enables it to perform in-memory full-heap collections. In the
absence of memory pressure, the bookmarking collector matches
the throughput of the best collector we tested while running in
smaller heaps. In the face of memory pressure, it improves through-
put by up to a factor of five and reduces pause times by up to a fac-
tor of 45 over the next best collector. Compared to a collector that
consistently provides high throughput (generational mark-sweep),
the bookmarking collector reduces pause times by up to 218x and
improves throughput by up to 41x.

1. Introduction
Garbage collection is a primary reason for the popularity of lan-
guages like Java and C# [47, 54]. However, garbage collection
requires considerably more space than explicit memory manage-
ment [58, 32]. The result is that fewer garbage-collected appli-
cations can fit in a given amount of RAM. If even one garbage-
collected application does not fit in available physical memory,
the garbage collector will inducepaging, or traffic between main
memory and the disk. Because disk accesses are approximately six
orders of magnitude more expensive than main memory accesses,
paging significantly degrades performance. Paging can also lead to
pause times lasting for tens of seconds or minutes.

Even when an application’s working set fits in main memory, the
act of garbage collection may induce paging. During major (full-
heap) collections, most existing garbage collectors touch pages with-
out regard to which pages are resident in memory and visit many
more pages than those in the application’s working set. This action
also disrupts information about the reference history tracked by the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Submitted to PLDI 2005,Chicago, Illinois
Copyright 2005 ACM 1-11111-111-1/11/1111 ..$5.00

virtual memory manager.
While this phenomenon is widely known, previous work has at-

tacked it only indirectly. For example,generationalgarbage collec-
tors concentrate their collection efforts on short-lived objects [38,
51]. Because these objects have a low survival rate, generational
collection reduces the frequency of full heap garbage collections.
However, when a generational collector eventually performs a full-
heap collection, it triggers paging.

This problem has led to a number of workarounds. One standard
way to avoid paging is to size the heap so that it never exceeds the
size of available physical memory. However, choosing an appro-
priate size statically is impossible on a multiprogrammed system,
where the amount of available memory changes. Another possible
approach is to overprovision systems with memory, but high-speed,
high-density RAM remains expensive. It is often impractical to
require that users purchase more memory in order to run garbage-
collected applications. Even in an overprovisioned system, because
garbage collectors perform so poorly in the face of memory pres-
sure, just one unanticipated workload exceeding available memory
can render a system unresponsive. This performance hit has led
some to recommend that garbage collection not be used at all, ex-
cept for very small applications [48].

Contributions: This paper introducesbookmarking collection
(BC), a garbage collection algorithm that virtually eliminates gar-
bage collector-induced paging. Bookmarking collection records
summary information (“bookmarks”) about outgoing pointers from
pages that have been evicted to disk. Once a page is evicted from
memory, BC does not touch it unless the application itself makes
it resident. Instead of visiting evicted pages, BC uses bookmarks
to assist in garbage collection. These bookmarks, together with
BC’s heap organization and cooperation with the virtual memory
manager, allow BC to perform full-heap, compacting garbage col-
lection without paging, even when large portions of the heap have
been evicted.

We have implemented BC in Jikes RVM [7, 8] using the MMTk
toolkit [19]. The bookmarking collector relies on some additional
operating system support, which we have implemented as a mod-
est extension to the Linux virtual memory manager (approximately
six hundred lines of code). Without memory pressure, BC’s per-
formance matches that of generational mark-sweep (GenMS), a
collector that consistently provides high throughput [18]. Under
memory pressure, bookmarking collection outperforms the next
best garbage collector we tested by a factor of five, and reduces
pause times by a factor of 45. Compared to GenMS, bookmark-
ing collection yields up to a 218-fold reduction in pause times and
improves throughput by up to 41x. Bookmarking thus provides
greater utilization of available memory than other collectors.

The paper is organized as follows: Section 2 provides an overview

of bookmarking collection, and Section 3 describes the bookmark-
ing garbage collector in detail. Section 4 discusses the limits of
bookmarking collection and implications of our design decisions.
Section 5 presents some key implementation details, including our
extensions to the Linux virtual memory manager. Section 6 presents
empirical results comparing the performance of bookmarking col-
lection to a range of existing garbage collectors, both with and with-
out memory pressure. Section 7 discusses related work, Section 8
presents directions for future work, and Section 9 concludes.

2. Overview
The bookmarking collector was designed to meet three goals: low
space consumption, high throughput, and the elimination of all
GC-induced page faults. BC minimizes space consumption by us-
ing mark-sweep collection and performing compaction when under
memory pressure. It provides high throughput by using a nurs-
ery generation to manage short-lived objects. Finally, and most
importantly, it organizes the heap into groups of pages and reacts
to signals from the virtual memory manager whenever pages are
scheduled for eviction to disk or made resident in main memory.

The performance of existing garbage collectors suffers under
memory pressure because the collector visits all reachable objects,
including those on evicted pages. BC avoids this by scanning pages
prior to eviction and remembering their outgoing pointers by “book-
marking” targeted objects. When BC is notified of an impending
eviction and cannot shrink the heap or discard an empty page, BC
selects an appropriate victim page (with live data). BC scans each
object on the page, bookmarks the target of any references, and in-
crements a counter in the target superpage’s header. Once BC has
processed all of the objects, it informs the virtual memory manager
that the page can be evicted. Afterwards, BC will not visit this page
again and can continue to collect the heap without paging.

3. Bookmarking Collection
The bookmarking collector is a generational collector with a bump-
pointer nursery, a compacting mature space, and a page-based large
object space. BC divides the mature space intosuperpages, page-
aligned groups of four contiguous pages (16K). BC manages ma-
ture objects usingsegregated size classes[12, 13, 16, 37, 39, 44,
55]: objects of different sizes are allocated onto different super-
pages. Completely empty superpages can be reassigned to any size
class [16, 39].

BC uses size classes designed to minimize both internal and ex-
ternal fragmentation (which we bound at 25%). Each allocation
size up to 64 bytes has its own size class. Larger object sizes fall
into a range of 37 size classes; for all but the largest five, these have
a worst-case internal fragmentation of 15%. The five largest classes
have between 16% and 33% worst-case internal fragmentation; we
cannot do better without violating our bound on external fragmen-
tation. BC allocates objects larger than 8180 bytes (half the size of
a superpage minus metadata) into the large object space.

When the heap fills, BC typically performs mark-sweep garbage
collection. We use mark-sweep for two reasons. First, it provides
good program throughput and short GC pauses. More importantly,
mark-sweep does not increase memory pressure by needing a copy
reserve of pages.1

3.1 Managing Remembered Sets

Like all generational collectors, BC needs a method of remember-
ing pointers from the older to the younger generation. It normally
stores these pointers in page-sized write buffers, which are fast to

1Usually this copy reserve is half the heap size, but Sachindran et al. present
copying collectors that allow the use of much smaller copy reserves [45,
46].

store and process but may demand unbounded amounts of space.
To limit this space overhead, BC processes buffers when they fill.
During this processing, it removes entries for pointers from the ma-
ture space and instead marks a card for the source object in the card
table used during the marking phase of garbage collection. BC be-
gins each nursery collection by reviewing these cards and scanning
objects whose cards are marked. After compacting the remaining
entries, the filtered slots then become available for future storage.
This filtering allows the bookmarking collector to use the fast pro-
cessing of write buffers but often consumes only a single page.

3.2 Compacting Collection

Because mark-sweep collection does not compact the heap, frag-
mentation can cause it to increase memory pressure. Using mark-
sweep, the bookmarking collector cannot reclaim a superpage if it
contains just one reachable object. Whenever a full garbage col-
lection does not free enough pages to satisfy the current allocation
request, BC performs a two-pass compacting collection.

BC begins this compacting collection with a marking phase. Each
time it marks an object, it also increments a counter for the object’s
size class. After marking, BC computes the minimum number of
superpages needed to hold the marked objects for each size class.
It then selects a minimum set of “target” superpages that contain
enough space to hold all of the marked objects (the target also in-
cludes pages with bookmarked objects). It then copies objects in a
single pass with a Cheney scan. BC checks if visited objects are on
target superpages. BC forwards objects not on target superpages,
while leaving those objects already on a target in place. After com-
paction, reachable objects are only on target superpages and the
bookmarking collector can therefore free all non-target (garbage)
superpages.

3.3 Interaction with the Virtual Memory Manager

The approach described so far allows BC to avoid increasing mem-
ory pressure during garbage collection. In the face of paging, BC
cooperates with the virtual memory manager to adapt to changing
memory pressure by reducing the size of the heap. It uses its knowl-
edge of the heap to make good paging decisions. We extend the
virtual memory manager so that it can cooperate with the collector;
we describe these extensions in Section 5.1. Communication with
the virtual memory manager occurs only under memory pressure.

The virtual memory manager notifies BC whenever a page is
scheduled for eviction or made resident. BC then updates a bit
array that records which pages are resident. Whenever BC allo-
cates a new superpage, it checks in the bit array if the pages are
already resident. If they are not, it increases its estimate of the cur-
rent footprint and records that these pages are now in-core. During
tracing, the collector uses the bit array to avoid following pointers
into pages that are not resident.

Discarding Empty Pages

When the virtual memory manager signals the pending eviction of
a page, BC scans the bit array for an empty, but resident, page. If
it can find such adiscardablepage, BC directs the virtual memory
manager to reclaim it. When a discardable page cannot be found,
BC triggers a collection and afterward directs the virtual memory
manager to discard one of the newly-emptied pages (if one exists).
This functionality already exists in most operating systems (e.g.,
Linux and Solaris) in the form of themadvise system call with
theMADVDONTNEEDflag.

Keeping the Heap Memory-Resident

The notification of a pending eviction also alerts BC that the cur-
rent heap footprint is slightly larger than available memory. Unlike

previous collectors, BC will not grow at the expense of paging, but
instead tries limiting the heap to its current footprint. If memory
pressure continues to increase, BC discards additional empty pages
and uses this new estimate as the target footprint. BC shrinks the
heap to keep it entirely in-core and thus avoid incurring the cost of a
page fault. Because BC cannot guarantee that growing the heap will
not cause more heap pages to be scheduled for eviction, it increases
the heap size only when needed for the program to complete.

Bookmarking

When a non-empty heap page must be evicted, BC first chooses an
appropriatevictimpage. The page proposed by the virtual memory
manager is usually an appropriate victim, since it is likely to be the
least-recently used page. However, BC will not select a page that it
knows will soon be used, such as pages in the nursery or containing
needed metadata (including superpage headers, which we discuss
below). BC touches such proposed victim pages to prevent their
eviction. This causes a different victim page to be scheduled for
eviction.

If a garbage collection does not create discardable pages, BC
scans the victim page for outgoing pointers andbookmarks the
target objects of these outgoing references. These bookmarks (a
single bit stolen from the status word in the object header) act as
a secondary set of roots, allowing full memory-resident collections
without accessing evicted pages and thus without causing any page
faults.

In addition to setting the bookmark bit for each target object on
a superpage, BC increments theincoming bookmark counter for
the targeted superpage. BC uses this counter (the number of evicted
pages pointing to objects on a given superpage) to release book-
marks when incoming pages become resident (we discuss book-
mark clearing in Section 3.3).

BC stores this superpage metadata directly in the superpage header,
which means that it must keep the superpage headers resident. This
metadata is needed for both allocation and GC, soO(1) access is
important. Storing it off to the side would create a large pool of un-
evictable pages, including information for superpages that do not
exist. While storing the metadata in the superpage header means
we cannot evict one-fourth of the pages, it simplifies memory lay-
out (and corresponding eviction/reloading code) and speeds access
to the metadata.

Since superpage headers are always resident, BC can increment
a superpage’s incoming bookmark counter without a page fault.
However, it cannot always bookmark every target, since these may
be on evicted pages. BC therefore conservatively bookmarksevery
object on a page before it is evicted.

After bookmarking is complete, the victim page can safely be
evicted. Having just been touched, however, the virtual memory
manager would not normally schedule it for eviction. BC thus
communicates with the virtual memory manager one more time, in-
forming it that this page should be evicted. The stock Linux virtual
memory manager does not provide support for this kind of oper-
ation, so we added avm relinquish() system call. This call
allows user processes to voluntarily surrender a list of pages. These
pages are placed at the end of the inactive queue and are quickly
swapped out.

Collection After Bookmarking

BC begins the marking phase of subsequent full-heap garbage col-
lections by scanning its superpages and large object space for memory-
resident bookmarked objects. While expensive, the cost of scan-
ning every object is often much smaller than the cost of even a
single page fault. BC further reduces the cost of this scanning by
scanning only the superpages whose incoming bookmark count is

nonzero. During this scan, BC marks and processes bookmarked
objects as if they were root-referenced. Once BC completes this
scan, it has remembered all the references on evicted objects and
can conservatively complete the collection without touching evicted
pages. BC now follows its usual marking phase, but ignores refer-
ences to evicted objects. Once marking completes, reachable ob-
jects are either marked or evicted. Finally, BC sweeps the memory-
resident pages to complete collection.

When compaction is triggered, only slightly more processing is
needed. After marking the heap, BC updates the marked counts to
reserve space for every possible object on evicted pages. When se-
lecting target superpages, BC first selects all superpages containing
bookmarked objects or evicted pages, and then selects other super-
pages, as needed.

BC also adds a scan to its copying phase to find and process
bookmarked objects. BC never moves evicted objects, since they
reside on target superpages. BC also will not copy bookmarked
objects and will not update (evicted) pointers to the object.

Clearing Bookmarks

BC largely eliminates page faults caused by the garbage collector,
but it cannot preventmutatorpage faults. BC protects evicted pages
so that it receives a signal whenever a heap page is faulted in. Be-
cause the notification arrives before the page can be accessed by
the mutator, BC can remove the bookmarks created when the page
was evicted.

When a page is brought back into main memory, BC scans each
object and decrements the incoming bookmark counter for refer-
enced objects’ superpages. Superpages whose bookmark counters
are reduced to zero no longer contain any objects referred to from
evicted objects. Since all references to the object can now be found
during collection, BC clears all the bookmarks on that superpage.
If the page just paged in also has a zero incoming bookmark count,
BC clears all of the page’s bookmarks, including those that were
conservatively set when the page was evicted.

Complications

So far, we have described page eviction as if the kernel schedules
evictions on a page-by-page basis and maintains a constant number
of pages in memory. In fact, the virtual memory manager sched-
ules pages for eviction in large batches in order to hide the latency
of disk accesses. As a result, the size of available memory can fluc-
tuate suddenly. The virtual memory manager also operates asyn-
chronously from the collector, meaning that it can run ahead of the
collector and evict a page before BC has a chance to process it.

To avoid this problem, BC maintains a reserve of empty pages
and begins a collection when these are the only discardable pages
left. If, during garbage collection, the virtual memory manager
schedules pages for eviction, BC discards pages from this reserve
while recording the pages actually scheduled for eviction. If the
collection does not free enough pages to replenish the cache of dis-
cardable pages, BC examines the pages previously scheduled for
eviction and, if they are not empty, processes and evicts them. This
preventive bookmarking ensures BC always keeps some pages in
memory in which to allocate objects and ensures BC has time to
process pages before their eviction.

4. Discussion
The key principle behind bookmarking collection is that the gar-
bage collector must avoid touching evicted pages. A natural ques-
tion is whether it is possible to performcompletegarbage collection
(reclaiming all unreachable objects) without paging inanyevicted
pages. The answer to this question is negative.

In general, it is impossible to perform complete garbage col-
lection without traversing non-resident objects. Consider the case
when we must evict a pageful of one-word objects that all point
to objects on other pages. A lossless summary of reachability in-
formation for this page requires as much memory as the objects
themselves, which we no longer have room for.

This limitation means that, in the absence of other information
about reachability, we must rely on conservative summaries of con-
nectivity information. Possible summaries include summarizing
pointers on a page-by-page basis, compressing pointers in mem-
ory, and maintaining reference counts. To minimize the space and
processing required for summaries, we chose the most parsimo-
nious summarization heuristic: a single bookmark bit, stolen from
the object’s header. If an object has this bit on, we know that it may
be the target of at least one pointer from an evicted page.

While this summary information is “free”, there is a potential
space cost to bookmarking. Because BC must target all superpages
containing bookmarked objects and evicted pages, compacting col-
lection cannot always minimize the size of the heap. BC also must
treat all bookmarked objects as reachable, even though they may be
garbage.

Despite these apparent costs, we have found that bookmarking
does not substantially increase the minimum heap size that BC re-
quires. We show in Section 6.3 that even in the face of megabytes
of evicted pages, BC continues to run in very tight heap sizes. Such
tight heaps mean that BC will perform more frequent garbage col-
lections, but the time needed for these collections is still far less
than the cost of the page faults that would otherwise occur.

In the event that the heap is exhausted, BC preserves complete-
ness by performing a full heap garbage collection (touching evicted
pages). Note that this worst-case situation for bookmarking collec-
tion (which we have yet to observe) is the common case for existing
garbage collectors. We show in Section 6 that BC’s approach ef-
fectively eliminates collector-induced paging.

5. Implementation Details
We implemented the bookmarking collector using MMTk [19] and
Jikes RVM version 2.3.2 [7, 8]. When implementing the BC al-
gorithm within MMTk and Jikes, we needed to make two minor
modifications. In Jikes, object headers for scalars are found at the
end of the object while object headers for arrays are placed at the
start of an object.2 This placement is useful for optimizing NULL
checks [7], but makes it difficult for BC to find object headers when
scanning pages. We solve this problem by further segmenting our
allocation to allow superpages to hold either only scalars or only
arrays. BC stores the type of objects contained in the superpage
within each superpage header. Using this type and size class infor-
mation in the superpage header (accessed by bit-masking), BC can
quickly locate all objects on each page.

BC does not employ two of the object layout optimizations in-
cluded in Jikes RVM. Jikes normally aligns objects along word (4-
byte) boundaries, but allocates objects or arrays containing longs or
doubles on an 8-byte boundary. Aligning data this way improves
performance, but requires BC to know an object’s type to find its
header. Another optimization allows Jikes RVM to compute an ob-
ject’s hash code based upon its address. While this provides many
benefits, address-based hashing also requires that copied objects
grow by one word, disrupting the size-class object counts that BC
maintains.

While we needed to remove these optimizations from BC builds,
we did not want to bias our results by removing them from builds

2In a just-released version of Jikes RVM, all headers start at the beginning
of the object.

that would benefit. We therefore include these optimizations for all
builds except BC.

5.1 Kernel Support

The bookmarking collector improves garbage collection paging per-
formance primarily by cooperating with the virtual memory man-
ager. We extended the Linux kernel to enable this cooperative gar-
bage collection. This extension consists of changes or additions to
approximately six hundred lines of code (excluding comments), as
measured by SLOCcount [53].

We implemented our modifications on the 2.4.20 Linux kernel.
This kernel uses an approximate global LRU replacement algo-
rithm. User pages are either kept in the active list (managed by
the clock algorithm) or the inactive list (a FIFO queue). Pages are
evicted from the end of the inactive list.

When the garbage collector begins, it registers itself with the op-
erating system so that it will receive notification of paging events.
The kernel will then notify the runtime system when a page is ini-
tially scheduled for eviction. The signal from the kernel includes
the address of the relevant page.

To maintain information about process ownership of pages, we
applied Scott Kaplan’s lightweight version of Rik van Riel’s reverse
mapping patch [35, 52]. This patch allows the kernel to determine
the owning process only of pages currently in physical memory.
We extended this reverse mapping to include pages on the swap
partition (evicted to disk), and extended themincore call to work
on heap pages. These extensions account for almost one-third of
the lines of code that we added to the kernel.

BC needs timely memory residency information from the vir-
tual memory manager. To ensure the timeliness of this commu-
nication, we implemented our notifications using Linux real-time
signals. Real-time signals in the Linux kernel are queueable. Un-
like other notification methods, we can use these signals without
worrying about signals lost due to other process activity.

6. Results
We evaluated the performance of BC by comparing it to five gar-
bage collectors included with Jikes RVM: MarkSweep, SemiSpace,
GenCopy, GenMS (Appel-style generational collectors using bump-
pointer and mark-sweep mature spaces, respectively), and CopyMS
(a variant of GenMS which performs only whole heap garbage col-
lections). We intended to include MC2 [46] and GenRC (ulterior
reference counting [20]) in this study, but these collectors are not
stable on the current version of MMTk. We hope to report on these
collectors in the final version of this paper.

Benchmark statistics
Benchmark Total Bytes Alloc Min. Heap

SPECjvm98
201 compress 109,190,172 16,777,216
202 jess 267,602,628 12,582,912
205 raytrace 92,381,448 14,680,064
209 db 61,216,580 19,922,944
213 javac 181,468,984 19,922,944
228 jack 250,486,124 11,534,336

DaCapo
ipsixql 350,889,840 11,534,336
jython 770,632,824 11,534,336

SPECjbb2000
pseudoJBB 233,172,290 35,651,584

Table 1: Memory usage statistics for our benchmark suite.

Table 1 describes our benchmarks, which include the SPECjvm98
benchmark suite [28],pseudoJBB (a fixed-workload variant of
SPECjbb [27]), and two applications from the DaCapo benchmark
suite,ipsixql and jython. We compare execution and pause times
of thepseudoJBB benchmark on our extended Linux kernel. This
benchmark is widely considered to be the most representative of
a server workload (for example, Adl-Tabatabai et al.’s PLDI 2004
paper [5] also relies on it) and is the only one of our benchmarks
with a significant memory footprint.

6.1 Methodology

We performed all measurements on a 1.6GHz Pentium M Linux
machine with 1GB of RAM and 2GB of local swap space. This
processor includes a 32KB L1 data cache and a 1MB L2 cache. We
report the mean of five runs with the system in single-user mode
and the network disabled.

To duplicate the environment found in live servers, we compile
all of the code using the optimizing compiler. We did not want com-
pilation to affect our end results, however, as servers rarely spend
time compiling code. We follow Bacon et al. [13] and run two iter-
ations of each benchmark, but report results only from the second
iteration. The first iteration optimizes all of the code. Because com-
pilation allocates onto the heap, the heap size is allowed to change
during this iteration. After the first iteration is complete, we per-
form a full heap collection to remove compilation objects and data
remaining from the first run. We then measure the second iteration
of the benchmark. Using this “compile-and-reset” methodology,
we can compare the performance of collectors in an environment
similar to that found in a large server.

To examine the effects of memory pressure on garbage collection
paging behavior, we simulate increasing memory pressure caused
by another application starting up or requesting memory. We be-
gin these experiments by making available only enough memory
for Jikes to complete the compilation phase without any memory
pressure. We also use an external process we callsignalmem.
Jikes RVM notifiessignalmem when it completes the first itera-
tion of a benchmark. Once alerted,signalmem allocates a large
array usingmmapand begins to touch pages and then usesmlock
to pin them in-core. The initial amount of memory pinned, the total
amount of memorysignalmem pinned, and the rate at which this
memory is pinned are specified via command-line parameters. Us-
ing signalmem provides repeatable measurements under memory
pressure while reducing disruption due to CPU load. This approach
also allows us to compare the effects of different levels of memory
pressure and a variety of page evictions rates.

6.2 Performance Without Memory Pressure

While the key goal of bookmarking collection is to avoid paging, it
would not be practical if it did not provide competitive throughput
in the absence of memory pressure. Figure 1 summarizes the results
for the case when there is sufficient memory to run the benchmarks
without any paging. We present the geometric mean increase in
execution time relative to BC at each relative heap size for each
collector.

As expected, BC is closest in performance to GenMS, although
BC runs at smaller heap sizes. Both collectors perform nursery
collection and have a segregated-fit mark-sweep mature space, and
behave similarly at large heap sizes and without memory pressure.
At the largest heap size (where heap compaction is not needed) the
two collectors are virtually tied (BC runs 0.3% faster). However,
at smaller sizes, BC’s compaction allows it to run in smaller heaps.
For example, BC runs 4% faster at the 1.25x heap size.

The next best collector is GenCopy, which runs as fast as BC at
the largest heap sizes but averages 7% slower at heaps as large as

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 1 1.5 2 2.5 3 3.5 4

G
eo

m
et

ric
 M

ea
n

ov
er

 a
ll

B
en

ch
m

ar
ks

Relative Heap Size

Geometric Mean of Performance Relative to BC

BC
BC w/o Compaction

GenMS
GenCopy
CopyMS

MarkSweep
SemiSpace

Figure 1: Geometric mean of execution time relative to BC
absent memory pressure and across all benchmarks. At the
smaller sizes, heap compaction allows BC to require less space
while providing the best performance. Compaction is not
needed at larger heap sizes, but BC typically continues to pro-
vide high performance.

twice the minimum. The fact that GenCopy generally does not ex-
ceed BC’s performance suggests that BC’s segregated size classes
do not significantly impact locality. Unsurprisingly, BC’s perfor-
mance is much greater than the single-generation collectors. At the
largest heap size, MarkSweep averages a 20% and CopyMS a 29%
slowdown. No collector at any heap size performs better on aver-
age than BC, demonstrating that the BC provides high performance
when memory pressure is low.

6.3 Performance Under Memory Pressure

We evaluate the impact of memory pressure using three sets of
experiments. We first measure the effect ofsteady memory pres-
sure. Next, we measure the effect ofdynamically growing memory
pressure, as would be caused by the creation of another process or
a rapid increase in demand (e.g., the “Slashdot effect”). Finally,
we runmultiple JVMs simultaneously. We evaluate BC with the
pseudoJBB benchmark, which is the benchmark most represen-
tative of a server workload and one that has a significant memory
footprint.

Steady Memory Pressure

To examine the effects of running under steady memory pressure,
we measured the available memory needed at each heap size to
run all of the collectors without evicting a page. Starting with that
amount of available memory, we began the second iteration by hav-
ing signalmem remove memory equal to 60% of the heap size.
Results of these experiments are shown in Figure 2. Note that we
do not show results for MarkSweep in these graphs, because runs
with this collector takehoursto complete.

Figure 2 shows that under steady memory pressure, BC outper-
forms most of the other collectors (and all of the generational col-
lectors). Although SemiSpace outperforms BC at the 80-95MB
heap sizes, its execution time goes off the chart soon after. CopyMS
also outperforms BC in the same range of heap sizes but runs nearly
twice as slow as BC at the 130MB heap size. At this size, GenMS’s
average pause time is also 30 times longer (around 3 seconds). To
test CopyMS’s behavior under greater memory pressure, we mea-
sured the effect of removing memory equal to 70% of the heap
size. We found that it can take CopyMS over an hour to execute

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 60 70 80 90 100 110 120 130

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
s)

Heap Size

Total Execution Time for Pseudojbb While Paging

BC
BC w/ Resizing Only

GenCopy
GenMS

CopyMS
SemiSpace

(a) Execution time runningpseudoJBB.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 60 70 80 90 100 110 120 130

A
ve

ra
ge

 P
au

se
 T

im
e

(m
s)

Heap Size

Average Pause Time for Pseudojbb While Paging

BC
BC w/ Resizing Only

GenCopy
GenMS

CopyMS
SemiSpace

(b) Average GC pause time runningpseudoJBB.

Figure 2: Steady memory pressure (increasing from left to right), where available memory is sufficient to hold only 40% of the heap.
As the heap becomes tighter, BC runs 7 to 8 times faster than GenMS and in less than half the time needed by CopyMS. Bookmarking
is faster and yields shorter pause times than simply resizing the heap.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 80 100 120 140 160 180 200 220

A
ve

ra
ge

 P
au

se
 T

im
e

(m
s)

Available Memory

Average Pause Time for Pseudojbb w/ 77MB Heap While Paging

BC
BC w/ Resizing Only

GenCopy
GenMS

CopyMS
SemiSpace

Figure 3: Dynamic memory pressure (increasing from left to
right): average GC pause time runningpseudoJBB . BC’s av-
erage pause times remain unaffected by increasing memory
pressure.

pseudoJBB, while BC’s performance remains largely unchanged.

Dynamic Memory Pressure

To simulate a spike in memory pressure, we invokedsignalmem so
that it initially allocates 30MB and then allocates additional mem-
ory at a rate of 1MB every 100ms until it reaches the desired level of
available memory. Figure 3 shows the average pause times and Fig-
ure 4 shows the average execution time forpseudoJBB as memory
pressure increases (i.e., as available memory shrinks).

Figures 3 and 4 show that under memory pressure, BC signifi-
cantly outperforms all of the other collectors both in total execu-
tion time and pause times. (As above, we do not present Mark-
Sweep here because each run takes hours to complete.) Because
the mark-sweep based collectors do not perform compaction, ob-
jects become spread out over a range of pages. Visiting these pages
during a collection can trigger a cascade of page faults that results
in the orders-of-magnitude increases in execution time for Mark-
Sweep and GenMS. For instance, at the largest heap size, GenMS’s
average garbage collectionpausetakes nearly 10 seconds — longer

than it needed to executepseudoJBB without memory pressure.
Even when collections are relatively rare, spreading objects across
a large number of pages can cause an increase in mutator faults.

Compacting objects onto fewer pages can reduce faults, but the
copying collectors also suffer from paging effects. For example,
the execution times for GenCopy shown in Figure 4(a) are an order
of magnitude larger than its times when not paging. Paging also in-
creases the average GenCopy pause to several seconds, while BC’s
pause times remain largely unchanged.

The collectors that come closest in execution time to BC in Fig-
ure 4 are SemiSpace and CopyMS, which perform well at low
to moderate memory pressure, although they perform far worse
both under no memory pressure and under severe memory pres-
sure. This is due topseudoJBB’s allocation behavior.pseudo-
JBB initially allocates a few immortal objects and then allocates
only short-lived objects. While these collectors reserve heap space
to copy the survivors of a collection, little of this space is used.
LRU ordering causes nursery pages filled with dead objects to be
evicted. While SemiSpace ultimately reuses these pages in sub-
sequent collections, CopyMS’s mark-sweep mature object space
allows better heap utilization and fewer collections. This delays
paging, but does not prevent it.

We next presentmutator utilizationcurves, following the method-
ology of Cheng and Blelloch [24]. They define mutator utilization
as the fraction of time that the mutator runs during a given time win-
dow. Rather than presentingminimum mutator utilization(MMU)
for each window, which can lead to a larger window size having a
lower utilization than a smaller one, we adopt the methodology of
Sachindran et al. and instead presentbounded mutator utilization,
or BMU [46]. The BMU for a given window size is the minimum
mutator utilization for all windows of that size or greater.

Figure 5 shows the BMU curves for the dynamic memory pres-
sure experiments. With moderate memory pressure (143MB avail-
able RAM), both variants of BC and MarkSweep do very well,
but all of the other collectors exhibit poorer utilization. In particu-
lar, GenMS requires window sizes orders of magnitude larger than
BC’s running time before the mutator makes any progress.

Under severe memory pressure (93MB available RAM), the full
bookmarking collector far outstrips the other collectors, achieving
almost 0.9 utilization over the 10 second window. At this win-
dow size, all of the other collectors have zero utilization. The non-

 0

 50000

 100000

 150000

 200000

 80 100 120 140 160 180 200 220

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
s)

Available Memory

Total Execution Time for Pseudojbb w/ 77MB Heap While Paging

BC
BC w/ Resizing only

GenCopy
GenMS

CopyMS
SemiSpace

(a) Execution time runningpseudoJBB

 0

 50000

 100000

 150000

 200000

 80 100 120 140 160 180 200 220

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
s)

Available Memory

Total Execution Time for Pseudojbb w/ 77MB Heap While Paging

BC
BC w/ Fixed Nursery

BC w/ Resizing Only w/ Fixed Nursery
GenCopy w/ Fixed Nursery

GenMS w/ Fixed Nursery

(b) Execution time runningpseudoJBB, fixed nurserycollectors

Figure 4: Dynamic memory pressure (increasing from left to right). BC runs up to 4x faster than the next best collector and up to
41x faster than GenMS. While shrinking the heap can help, BC runs up to 10x faster when also using bookmarks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

B
ou

nd
ed

 M
ut

at
or

 U
til

iz
at

io
n

Window Size (in ms)

BMU for pseudoJBB w/ 77 MB Heap and 143 MB Available

BC
BC w/ Resizing Only

GenCopy
GenMS

CopyMS
SemiSpace
MarkSweep

(a) 143MB available: BC is largely unaffected by moderate levels
of memory pressure.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

B
ou

nd
ed

 M
ut

at
or

 U
til

iz
at

io
n

Window Size (in ms)

BMU for pseudoJBB w/ 77 MB Heap and 93 MB Available

BC
BC w/ Resizing Only

GenCopy
GenMS

CopyMS
SemiSpace
MarkSweep

(b) 93MB available: under heavy memory pressure, bookmarks
become increasingly important.

Figure 5: Dynamically increasing memory pressure: bounded mutator utilization curves (curves to the left and higher are better). BC
consistently provides high mutator utilization over time. As memory pressure increases (available memory shrinks), the importance
of bookmarks to limit garbage collection pauses becomes more apparent.

bookmarking variant of BC (with resizing only) and CopyMS are
the next best collectors, but top out at around 0.5 mutator utiliza-
tion over a 40 second window. Interestingly, MarkSweep now has
the worst utilization, requiring a window size of almost 10minutes
before achieving 0.25 mutator utilization.

We also compared different variants of the bookmarking collec-
tor and the generational collectors to tease apart the impact of vari-
ous strategies on paging.

Fixed-size nurseries:While variable-sized nurseries achieve high
throughput, they are generally believed to incur higher paging costs.
Figure 4(b) presents execution times for variants of the generational
collectors with fixed-size nurseries (4MB). The graph shows that
the fixed-nursery variants of the other collectors do reduce paging,
but perform just as poorly as the variable-sized generational collec-
tors once their footprint exceeds available memory.

Bookmarking vs. resizing the heap: Initially, BC is able to
avoid paging by simply giving up discardable pages. When mem-
ory pressure is relatively low, discarding empty pages is sufficient.
As memory pressure increases, however, this approach requires
up to 10 times as long to execute as the full bookmarking collec-

tor, showing that bookmarking is far more effective than simply
shrinking the heap by discarding pages (shown as “BC with resiz-
ing only”). The results shown in Figures 2 and 3 demonstrate that
bookmarking achieves much higher throughput and lower pause
times than resizing the heap.

Multiple JVMs

Finally, we examine a scenario with two JVMs executing simulta-
neously. For this experiment, we start two instances of Jikes run-
ning thepseudoJBB benchmark and measure total elapsed time
and garbage collection pause times. We cannot employ the “compile-
and-reset” experimental methodology here because compiling the
entire application generates too much paging traffic and we cannot
“reset” the virtual memory manager’s history. Instead, we employ
the pseudoadaptivemethodology [33, 46], which optimizes only
the “hottest” methods (as determined from the mean of 5 runs).
This methodology minimizes the impact of the compiler as much
as possible, and does so deterministically rather than relying on
the standard sampling-based approach. Eeckhout et al. report that
all of the virtual machines they examined exhibit similar behavior

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 150 200 250 300 350 400 450 500

T
ot

al
 E

xe
cu

tio
n

T
im

e
fo

r
T

w
o

S
im

ul
ta

ne
ou

s
R

un
s

(m
s)

Available Memory

Total Execution Time for Two Simultaneous Runs of Pseudojbb w/ 77MB Heap While Paging

BC
GenCopy

GenMS
CopyMS

SemiSpace

(a) Execution time running two instances ofpseudoJBB

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 150 200 250 300 350 400 450 500

A
ve

ra
ge

 G
C

 P
au

se
 (

m
s)

Available Memory

Average GC Pause with Two Simultaneous Runs of Pseudojbb w/ 77MB Heap While Paging

BC
GenCopy

GenMS
CopyMS

SemiSpace

(b) Average GC pause time running two instances ofpseudoJBB

Figure 6: Execution time and pause times when running two instances ofpseudoJBB simultaneously. Note that the execution times
are somewhat misleading, because for the other collectors, paging effectively deactivates one of the instances. Under heavy memory
pressure, BC exhibits pause times around 7.5x lower than the next best collector.

for this benchmark, suggesting that the performance impact of the
pseudoadaptive compiler here should be minimal [30].

Figure 6 shows the results of executing two instances ofpseudo-
JBB, each with a 77MB heap. While BC performs the best, total
elapsed time can be misleading: for all of the other collectors, pag-
ing effectively deactivates one of the instances. This allows one of
the instances ofpseudoJBB to run to completion, at which point
the other begins. The average pause time numbers are more reveal-
ing. As available memory shrinks, bookmarking shows a gradual
increase in average pause times. At the lowest amount of available
memory, BC exhibits pause times averaging around 380ms, while
average pause times for CopyMS (the next best collector) reach 3
seconds, nearly an eightfold increase.

7. Related Work
Most previous garbage collectors ignore virtual memory altogether,
making themVM-oblivious . The literature on such collectors is
extensive; Wilson’s survey and Jones and Lins’ text provide excel-
lent overviews [34, 55].

VM-sensitive garbage collectors are designed to limit paging
in virtual memory environments. Such collectors either compact
memory to reduce the number of pages needed to hold an appli-
cation’s working set [14, 15, 21, 22, 23, 31], or divide the heap
into generations to reduce the need for full-heap collections [9,
17, 38, 40, 43, 51]. Bookmarking collection builds on both: it
employs compaction to reduce working set size and uses a nurs-
ery generation to improve throughput, but uses bookmarking to
avoid collector-induced paging. Bookmarking collection may be
thought of as a generalization of generational collection, where
the evicted pages comprise a distinct (and dynamically changing)
mature-space generation, and bookmarks act as remembered sets.

VM-cooperative garbage collectors receive information from or
send information to the virtual memory manager (or both). Moon’s
ephemeral collectorreceives signals from the virtual memory man-
ager whenever it evicts a page from main memory [40]. The collec-
tor then scans the page and records which generations it contains
references to. During GC, Moon’s collector then scans only those
evicted pages containing pointers to the generation being collected.
Unlike Moon’s collector, bookmarking collection does not revisit
anyevicted pages during nursery or full-heap collections.

Cooper et al.’s collector informs the VM of empty memory pages

that can be removed from main memory without being written back
to disk [26]. BC also identifies and discards empty pages, but as we
show in Section 6.3, BC’s ability to evict non-empty pages gives it
a significant advantage under memory pressure.

Another class of VM-cooperative collectors respond to memory
pressure by adjusting their heap size. Alonso and Appel present
a collector that consults with the virtual memory manager indi-
rectly (through an “advisor”) to shrink the heap after each garbage
collection based upon the current level of available memory [6].
MMTk [19] and BEA JRockit [3] can, in response to the live data
ratio or pause time, change their heap size using a set of pre-defined
ratios. HotSpot [1] can adjust heap size with respect to pause time,
throughput, and footprint limits specified as command line argu-
ments. Novell Netware Server 6 [2] polls the virtual memory man-
ager every 10 seconds, and shortens its GC invocation interval to
collect more frequently when memory pressure is high. None of
these approaches eliminate paging. Yang et al. report on an auto-
matic heap sizing algorithm that uses information from a simulated
virtual memory manager and a model of GC behavior to choose a
good heap size [57]. Like these systems, BC can shrink its heap
(by giving up discardable pages), but it does not need to wait until
a full heap garbage collection to do so. BC also eliminates paging
even when the size of live data exceeds available physical memory.

Researchers have leveraged virtual memory hardware to support
garbage collection in other ways. Appel, Ellis and Li use vir-
tual memory protection to improve the speed and concurrency of
Baker’s algorithm [10]. Appel and Li present a variety of ways
to use virtual memory to assist garbage collection, including pro-
viding an inexpensive means of synchronization, remembering in-
teresting pointers, or saving long-lived data to disk [11]. These
uses of virtual memory are orthogonal to this work and to the VM-
cooperative collectors described above, which use virtual memory
cooperation primarily to reduce paging.

Like bookmarking collection, distributed garbage collection al-
gorithms also treat certain references (those from remote systems)
assecondary roots.3 Distributed GC algorithms typically employ
either reference counting or listing. Unlike bookmarking, both of
these require substantial additional memory and updates on every

3See Abdullahi and Ringwood [4] and Plainfossé and Shapiro [42] for ex-
cellent recent surveys of this area.

pointer store, while BC only updates bookmarks when pages are
evicted or made resident (relatively rare events).

A number of researchers have focused on the problem of im-
proving application-levellocality of reference by using the gar-
bage collector to modify object layouts [5, 25, 29, 33, 36, 49, 50,
56]. These studies do not address the problem of paging caused by
garbage collection itself, which we identify as the primary culprit.
These approaches are orthogonal and complementary to the work
presented here.

Finally, bookmarking collection’s use of segregated size classes
for compaction is similar to the organization used by Bacon et al.’s
Metronome collector [12, 13]. Unlike the Metronome, BC uses
segregated size classes for mature objects only. BC’s copying pass
is also quite different. The Metronome sorts pages by occupancy,
forwards objects by marching linearly through the pages and con-
tinues until reaching a pre-determined size, forwarding pointers
later. BC instead copies objects by first marking target pages and
then forwarding objects as they are discovered in a Cheney scan.
This approach obviates the need for further passes and immediately
brings memory consumption to the minimum level.

8. Future Work
While our results show that BC already yields significant perfor-
mance improvements and robustness under memory pressure, there
are several directions in which we would like to advance this work.
First, because our modifications to the operating system kernel are
straightforward, we would like to incorporate these in other operat-
ing systems to verify its generality and expand our range of bench-
mark applications. We are also interested in applying the book-
marking collection approach to incremental garbage collectors.

The bookmarking collector currently focuses on finding a heap
size in which it can run that does not significantly increase memory
pressure. We are exploring extensions to the virtual memory man-
ager that will allow BC to cheaply determine when it is appropriate
to grow the resident heap [57].

We are considering alternate strategies for selecting victim pages.
First, we can prefer to evict pages with no pointers, because these
pages cannot create false garbage. For some types of objects, e.g.,
arrays of doubles, we do not even need to scan the pages to deter-
mine that they are free of pointers. We could also prefer to evict
pages with as few non-NULL pointers as possible. We have not
yet explored these possibilities because we cannot predict the ef-
fect on the application of evicting a page that is not the last on the
LRU queue (i.e., the one chosen by the virtual memory manager).
Choosing to evict such a victim page may lead to more page faults
in the application. We are currently developing a more advanced
virtual memory manager that will enable us to predict the effect of
selecting different victim pages and thus explore the tradeoffs of
using more sophisticated eviction strategies. Finally, we are inves-
tigating the use of static analyses to provide connectivity or lifetime
information to the garbage collector in order to reduce the reliance
on pointer summaries.

9. Conclusion
The increasing latency gap between disk and main memory means
that paging is now intolerable. Garbage collection’s reference be-
havior can cause catastrophic paging. We present bookmarking col-
lection, an algorithm that leverages cooperation between the gar-
bage collector and virtual memory manager to eliminate nearly all
paging caused by the garbage collector. When memory pressure
is low, the bookmarking collector provides performance that gen-
erally matches or slightly exceeds that of the highest throughput
collector we tested (GenMS). In the face of memory pressure, BC
improves program performance by up to 5x over the next best gar-

bage collector and reduces pause times by 45x, improving even
more dramatically over GenMS. BC thus provides greater mem-
ory utilization and more robust performance than previous garbage
collectors.

Acknowledgements
Emery Berger was supported by NSF CAREER Award number
CNS-0347339. Thanks to Sam Guyer, Kathryn McKinley, Eliot
Moss, Pritesh Sharma, Yannis Smaragdakis, and Ben Zorn for their
comments on drafts of this paper. We are grateful to Scott Ka-
plan for his assistance in the implementation of our modified Linux
memory manager. We are also grateful to IBM Research for mak-
ing the Jikes RVM system available under open source terms. The
MMTk memory management toolkit was particularly helpful.

10. References
[1] J2SE 1.5.0 Documentation - Garbage Collector Ergonomics.

Available athttp://java.sun.com/j2se/1.5.0/docs/
guide/vm/gc-ergonomics.html .

[2] Novell Documentation: NetWare 6 - Optimizing Garbage Collection.
Available athttp:
//www.novell.com/documentation/index.html .

[3] Technical white paper - BEA weblogic jrockit: Java for the
enterprise. Available athttp://www.bea.com/content/
news_events/white_papers/BEA_JRockit_wp.pdf .

[4] S. E. Abdullahi and G. A. Ringwood. Garbage collecting the
Internet: a survey of distributed garbage collection.ACM Computing
Surveys, 30(3):330–373, Sept. 1998.

[5] A.-R. Adl-Tabatabai, R. L. Hudson, M. J. Serrano, and
S. Subramoney. Prefetch injection based on hardware monitoring and
object metadata. InProceedings of the 2004 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI). ACM, June 2004.

[6] R. Alonso and A. W. Appel. Advisor for flexible working sets. In
Proceedings of the 1990 ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, pages 153–162,
Boulder, CO, May 1990.

[7] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo,
J. J. Barton, S. F. Hummel, J. C. Shepherd, and M. Mergen.
Implementing Jalapẽno in Java. InProceedings of the ACM
Conference on Object-Oriented Systems, Languages and
Applications, volume 34(10), pages 314–324, Denver, CO, Oct. 1999.

[8] B. Alpern, D. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D.
Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. Mergen, T. Ngo, J. R. Russell, V. Sarkar,
M. J. Serrano, J. Shepherd, S. Smith, V. C. Sreedhar, H. Srinivasan,
and J. Whaley. The Jalapeño virtual machine.IBM Systems Journal,
39(1), Feb. 2000.

[9] A. W. Appel. Simple generational garbage collection and fast
allocation.Software Practice and Experience, 19(2):171–183, 1989.

[10] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection
on stock multiprocessors.ACM SIGPLAN Notices, 23(7):11–20,
1988.

[11] A. W. Appel and K. Li. Virtual memory primitives for user programs.
ACM SIGPLAN Notices, 26(4):96–107, 1991.

[12] D. F. Bacon, P. Cheng, and V. Rajan. Controlling fragmentation and
space consumption in the Metronome, a real-time garbage collector
for Java. InACM SIGPLAN 2003 Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES’2003), pages
81–92, San Diego, CA, June 2003. ACM Press.

[13] D. F. Bacon, P. Cheng, and V. Rajan. A real-time garbage collecor
with low overhead and consistent utilization. InConference Record
of the Thirtieth Annual ACM Symposium on Principles of
Programming Languages, ACM SIGPLAN Notices, New Orleans,
LA, Jan. 2003. ACM Press.

[14] H. D. Baecker. Garbage collection for virtual memory computer
systems.Communications of the ACM, 15(11):981–986, Nov. 1972.

[15] H. G. Baker. List processing in real-time on a serial computer.
Communications of the ACM, 21(4):280–94, 1978.

[16] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson.
Hoard: A scalable memory allocator for multithreaded applications.

In ASPLOS-IX: Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
117–128, Cambridge, MA, Nov. 2000.

[17] P. B. Bishop.Computer Systems with a Very Large Address Space
and Garbage Collection. PhD thesis, MIT Laboratory for Computer
Science, May 1977.

[18] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and reality:
The performance impact of garbage collection. InSigmetrics -
Performance 2004, Joint International Conference on Measurement
and Modeling of Computer Systems, New York, NY, June 2004.

[19] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and water? High
performance garbage collection in Java with MMTk. InICSE 2004,
26th International Conference on Software Engineering, Edinburgh,
May 2004.

[20] S. M. Blackburn and K. S. McKinley. Ulterior reference counting:
Fast garbage collection without a long wait. In OOPSLA [41].

[21] D. G. Bobrow and D. L. Murphy. Structure of a LISP system using
two-level storage.Communications of the ACM, 10(3):155–159, Mar.
1967.

[22] D. G. Bobrow and D. L. Murphy. A note on the efficiency of a LISP
computation in a paged machine.Communications of the ACM,
11(8):558–560, Aug. 1968.

[23] C. J. Cheney. A non-recursive list compacting algorithm.
Communications of the ACM, 13(11):677–8, Nov. 1970.

[24] P. Cheng and G. Belloch. A parallel, real-time garbage collector. In
Proceedings of SIGPLAN 2001 Conference on Programming
Languages Design and Implementation, ACM SIGPLAN Notices,
pages 125–136, Snowbird, Utah, June 2001. ACM Press.

[25] T. M. Chilimbi and J. R. Larus. Using generational garbage collection
to implement cache-conscious data placement. InProceedings of the
First International Symposium on Memory Management, volume
34(3), pages 37–48, Vancouver, BC, Canada, Oct. 1998.

[26] E. Cooper, S. Nettles, and I. Subramanian. Improving the
performance of SML garbage collection using application-specific
virtual memory management. InConference Record of the 1992
ACM Symposium on Lisp and Functional Programming, pages
43–52, San Francisco, CA, June 1992. ACM Press.

[27] S. P. E. Corporation. Specjbb2000. Available athttp:
//www.spec.org/jbb2000/docs/userguide.html .

[28] S. P. E. Corporation. Specjvm98 documentation, Mar. 1999.
[29] R. Courts. Improving locality of reference in a garbage-collecting

memory management-system.Communications of the ACM,
31(9):1128–1138, 1988.

[30] L. Eeckhout, A. Georges, and K. D. Bosschere. How Java programs
interact with virtual machines at the microarchitectural level. In
OOPSLA [41], pages 169–186.

[31] R. R. Fenichel and J. C. Yochelson. A Lisp garbage collector for
virtual memory computer systems.Communications of the ACM,
12(11):611–612, Nov. 1969.

[32] M. Hertz and E. D. Berger. Automatic vs. explicit memory
management: Settling the performance debate. Technical report,
University of Massachusetts, Mar. 2004.

[33] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng. The garbage collection advantage: Improving program
locality. In Proceeding of the ACM Conference on Object-Oriented
Systems, Languages and Applications, Vancouver, BC, Canada, Oct.
2004.

[34] R. E. Jones and R. Lins.Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. Wiley, Chichester, July
1996.

[35] S. F. Kaplan. In-kernel RIG: Downloads. Available at
http://www.cs.amherst.edu/˜sfkaplan/research/
rig/download .

[36] M. S. Lam, P. R. Wilson, and T. G. Moher. Object type directed
garbage collection to improve locality. InProceedings of
International Workshop on Memory Management, volume 637 of
Lecture Notes in Computer Science, St Malo, France, 16–18 Sept.
1992. Springer-Verlag.

[37] D. Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html, 1997. Available at
http://gee.cs.oswego.edu/dl/html/malloc.html .

[38] H. Lieberman and C. E. Hewitt. A real-time garbage collector based
on the lifetimes of objects.Communications of the ACM,
26(6):419–429, 1983.

[39] T. F. Lim, P. Pardyak, and B. N. Bershad. A memory-efficient
real-time non-copying garbage collector. InProceedings of the First
International Symposium on Memory Management, volume 34(3),
pages 118–129, Vancouver, BC, Canada, Oct. 1998.

[40] D. A. Moon. Garbage collection in a large LISP system. In G. L.
Steele, editor,Conference Record of the 1984 ACM Symposium on
Lisp and Functional Programming, pages 235–245, Austin, TX,
Aug. 1984. ACM Press.

[41] OOPSLA’03 ACM Conference on Object-Oriented Systems,
Languages and Applications, ACM SIGPLAN Notices, Anaheim,
CA, Nov. 2003. ACM Press.

[42] D. Plainfosśe and M. Shapiro. A survey of distributed garbage
collection techniques. InProceedings of the International Workshop
on Memory Management, volume 986 ofLecture Notes in Computer
Science, Kinross, Scotland, Sept. 1995. Springer-Verlag.

[43] J. H. Reppy. A high-performance garbage collector for Standard ML.
Technical memorandum, AT&T Bell Laboratories, Murray Hill, NJ,
Dec. 1993.

[44] D. T. Ross. The AED free storage package.Communications of the
ACM, 10(8):481–492, Aug. 1967.

[45] N. Sachindran and J. E. B. Moss. MarkCopy: Fast copying GC with
less space overhead. InProceedings of the ACM Conference on
Object-Oriented Systems, Languages and Applications, Anaheim,
CA, Nov. 2003.

[46] N. Sachindran, J. E. B. Moss, and E. D. Berger. MC2:
High-performance garbage collection for memory-constrained
environments. InProceedings of the ACM Conference on
Object-Oriented Systems, Languages and Applications, Vancouver,
BC, Canada, Oct. 2004.

[47] P. Savola. LBNL traceroute heap corruption vulnerability.
http://www.securityfocus.com/bid/1739 .

[48] Software Verification, Ltd. Memory Validator - Garbage Collectors.
Available athttp://softwareverify.com/
memoryValidator/garbageCollectors.html .

[49] D. Stefanovíc, K. S. McKinley, and J. E. B. Moss. Age-based
garbage collection. InProceedings of the ACM Conference on
Object-Oriented Systems, Languages and Applications, volume
34(10), pages 370–381, Denver, CO, Oct. 1999.

[50] G. Tong and M. J. O’Donnell. Leveled garbage collection.Journal of
Functional and Logic Programming, 2001(5):1–22, May 2001.

[51] D. M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. InProceedings of the
ACM/SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, volume 19(5), pages
157–167, Apr. 1984.

[52] R. van Riel. rmap VM patch for the Linux kernel. Available at
http://www.surriel.com/patches/ .

[53] D. A. Wheeler. SLOCcount. Available at
http://www.dwheeler.com/sloccount .

[54] P. R. Wilson. Uniprocessor garbage collection techniques. In
Proceedings of the International Workshop on Memory Management,
volume 637 ofLecture Notes in Computer Science, St Malo, France,
16–18 Sept. 1992. Springer-Verlag.

[55] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic
storage allocation: A survey and critical review. InProceedings of
the International Workshop on Memory Management, volume 986 of
Lecture Notes in Computer Science, pages 1–116, Kinross, Scotland,
Sept. 1995. Springer-Verlag.

[56] P. R. Wilson, M. S. Lam, and T. G. Moher. Effective static-graph
reorganization to improve locality in garbage collected systems.
ACM SIGPLAN Notices, 26(6):177–191, 1991.

[57] T. Yang, E. D. Berger, M. Hertz, S. F. Kaplan, and J. E. B. Moss.
Automatic heap sizing: Taking real memory into account. In
Proceedings of the 2004 ACM SIGPLAN International Symposium
on Memory Management, Nov. 2004.

[58] B. Zorn. The measured cost of conservative garbage collection.
Software Practice and Experience, 23:733–756, 1993.

