
Whole Program Paths
James R. Larus
Microsoft Research
One Microsoft Way

Redmond, WA 98052

larus@microsoft.com

www.research.microsoft.com/-tat-us

Abstract
Whole program paths (WPP) are a new approach to capturing and
representing a program’s dynamic -actually executed--control
flow. Unlike other path profiling techniques, which record
intraprocedural or acyclic paths, WPPs produce a single, compact
description of a program’s entire control flow, including loop
iteration and interprocedural paths.

This paper explains how to collect and represent WPPs. It also
shows how to use WPPs to find hot subpaths, which are the
heavily executed sequences of code that should be the focus of
performance tuning and compiler optimization.

Keywords
dynamic program measurement, program tracing, path profiling,
program control flow, data compression

1. Introduction
A central challenge facing computer architects, compiler writers,
and mere mortal programmers is to understand a program’s
dynamic behavior. Events that occur while a program runs are
often elusive, but they provide a basis for understanding the
program’s behavior and improving its performance. Program
paths or traces-sequences of consecutively executed basic
blocks-offer one of the few clear windows into a program’s
dynamic behavior. Paths, unlike other techniques, such as block
or edge profiles, capture aspects of a program5 dynamic control
flow, not just its aggregate behavior.

Paths have long provided a unifying context for performance
tuning. Programmers have improved the performance of large,
complex systems, such as operating systems and databases, by
identifying heavily executed paths and streamlining them into
“fast paths” [20,24]. In compilers as well, trace scheduling and,
more recently, path-based compilation demonstrate that program
optimization can benefit from a focus on a program’s dynamic
control flow [2, 8, 11, 12, 141. Recently designed computer
architectures have also directly exploited traces to enhance
instruction caching and execution [I 5,25,26].

Paths are often identified by ad-hoc approaches; although recently
developed path profiling techniques can inexpensively identify

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGPLAN ‘99 (PLDI) 5/99 Atlanta, GA, USA
0 1999 ACM 1.58113.083.X/99/0004...$5.00

executed path segments and quantify their cost [2,6,7]. Previous
path profiling algorithms, however, captured acyclic paths, which
are short, disjoint snippets of execution that unfortunately end at
loop and procedure boundaries-two of the most interesting
points in a program’s execution [6] (this technique has been
extended to handle paths that cross procedure boundaries [191).

This paper describes a new approach to measuring a program’s
control flow that captures a complete picture of the program’s
dynamic behavior. The technique introduces whole program
paths (WPP), which are a complete, compact record of a
program’s entire control flow. A whole program path crosses
both loop and procedure boundaries, and so provides a practical
basis for interprocedural path profiling. This paper explains how
to record a WPP, describes its representation, shows that this
representation can be used to analyze program behavior, and
demonstrates the technique’s practicality on SPEC benchmarks
and commercial application programs.

1.1 Overview
Whole program paths are collected in two phases. The first
produces a trace of the acyclic paths executed by a program. The
second phase transforms the trace into a more compact and usable
form by finding its inherent regularity (i.e., repeated code). In
practice, compression can run concurrently with the instrumented
program, so only the compressed form need be stored. The
product of compression is a directed acyclic graph (DAG), which
is not only a compact and lossless representation of the programs
dynamic control flow, but is also a convenient representation for
analysis. This paper describes one such analysis, which identifies
heavily executed (hot) subpaths. Figure 1 illustrates the process
of recording a whole program path.

.

Section 2 briefly describes the trace instrumentation and resulting
sequence of acyclic paths. One novel contribution of this work is
the next phase (compression), which turns a stream of acyclic
paths into a context-free grammar. The compression technique is
based on Nevill-Manning and WittenS SEQUITUR hierarchical
compression algorithm [21, 221. This linear, on-line algorithm
builds a context-free grammar for a string. The resulting grammar
reflects its input’s hierarchical structure and is typically far more
compact than the original sequence. Section 3 describes Nevill-
Manning and Witten’s algorithm and a modification that enhances
its performance. The product of this algorithm is a grammar. The
DAG representation of this grammar, called a Whole-Program
Path (WPP), compactly and effectively records a program’s entire
control flow. Section 4 presents another contribution of this work,
which is an analysis technique for WPPs. Section 5 contains
measurements of the technique on SPEC benchmarks and
Microsoft’s SQL database and WinWord document processor.

As an example, consider the code in Figure 2. The loop executes
nineteen acyclic paths (labeled 1-5). The SEQUITUR algorithm

259

PP (Path Profiling Tool)

Whole
Program

Figure 1. Collecting a Whole Program Path. A path-profiling tool (PP) instruments a program to produce a trace of executed
wyclic paths. These paths are processed by another tool (PPCompress) into a Whole Program Path (WPP). Further tools analyze
WPPs to find performance bottlenecks or program errors.

processes the path trace and produces the grammar in the figure. mechanism originally used to terminate paths at loop backedges
The grammar’s DAG representation is the WPP data structure. and to cut paths to limit the size of path identifiers [6].

2. Producing an Acyclic Path Trace
The first step in this process is to instrument a program to record
the acyclic paths executed by the program. The instrumentation is
a slight variation of a previously published path-profiling
algorithm [6]. This algorithm adds code to increment an
accumulator by predetermined amounts along a select set of edges
in a routine’s control -flow graph. At the end of an acyclic path
(i.e., at a routine’s exit or a loop backedge), the value in this
accumulator uniquely identifies the executed path. The original
profiling algorithm used this path identifier to index a table of
metrics associated with the path. Whole program profiling instead
appends the identifier to a trace of executed paths.

Whole program profiling requires a slight redefinition of a path,
so edges leading into a basic block containing a procedure call
terminate acyclic paths. This change unfortunately reduces the
average path length, and so increases the size of a path trace.
However, it is necessary to ensure that the path leading to a call
site is recorded in the trace before any paths executed by the
callee. The path-profiling algorithm truncates paths with the

The path trace consists a sequence of byte code-operand pairs:

OpCode(Operand) Meaning

EnterRoutine (ID) Subsequent paths execute in routine
ID

LeaveRoutine Leave current routine and return to
previous one

NewPath(ID) Path ID executed

EnterThread Subsequent paths execute in thread
ID

The run-time instrumentation tracks non-local returns
(setjmp/longjmp and exceptions), to produce the correct number
of LeaveRoutine operations. Several variants of each
opcode-e.g., byte, short, and word-reduce the size of a trace.
More aggressive optimization, such as encoding the ID in an
opcode did little to reduce the trace, as the range of ID values is
larger than that found in instruction bytecodes. Nevertheless, the
trace is reasonably compact, as most paths require only three
bytes (an opcode and a short path ID). For example, MicrosotiS

for (i=O; i<9; it+)
bar(i);

int bar(int j) {
if (j < 5)

return j;
else

return 0;

'>l3ag'

4 5

Acyclic SEQUITUR
Path Trace Grarranar

14242424
25252525253

s + 14AAAcc3

A-+24

B+25

C+BB

WPP

Figure 2. Sample code, the paths through it, and the grammar and WPP produced by PPCompress.

260

while input is not empty do
c t next input character;
append c to start rule S;

while digram or utility property is violated do
// Restore digrsm uniqueness property:
if digram D occurs twice (no overlap) in any rules then

if one occurance of D is RHS of rule R then
replace the other occurance of D with LHS of R;

else
create new rule R' with RHS D;
replace both occurences of D by LHS of R';

endif

// Restore rule utility property:
if rule R is only referenced once then

replace single use of R by RHS of R;
delete R;

endif
od

od

Figure 3. The SEQUITUR algorithm. LHS is the left side (non-terminal) of a grammar production. RHS is the right side of the
woduction.

SQL database system running the TPC-C benchmark for 120
seconds produces 629 MB of trace (and the WPP for this run is
only 21 MB).

3. Producing a Whole Program Path
The next stage of whole program profiling employs a modified
version of the SEQUITUR algorithm to both compress the path
trace and uncover its regular structure. SEQUITUR is a string
compression algorithm that constructs a context-free grammar for
its input [21, 221. This algorithm has been used to find
hierarchical structures in a variety of sequences, ranging from
DNA sequences to genealogical databases. The insight
underlying the algorithm is that log N rules can generate N
occurrences of a subsequence. For example, the string:

abcabcabcabcabc
is produced by the grammar:

s -3 AAB
A -+ BB
B + abc

This grammar requires fewer symbols (11 versus 15), and, equally
important for our application, explicitly captures repetitions of the
pattern abc. This aspect becomes more apparent when the
grammars are represented as DAGs (Section 3.3).

Section 3.1 explains the original SEQUITUR algorithm. Section
3.2 describes a modification to the algorithm to improve its
performance. Section 3.3 explains how PPCompress uses the
SEQUITUR algorithm to compress an acyclic path trace.

3.1 SEQUITUR Algorithm
The SEQUITUR algorithm (Figure 3) is a linear-time, on-line
algorithm for producing a context-free grammar from an input
string [22]. The algorithm operates by appending symbols from
the input string, in order, to the end of the grammar’s start
production. After adding each symbol, SEQUITUR manipulates
the grammar productions to preserve two invariants:

1. Digram uniqueness properv. A digram is a pair of
consecutive symbols on the right side of a grammar
production. This property states that a digram occurs at most
once in the rules of the grammar. If adding a symbol
introduces a duplicate digram, SEQUITUR replaces both
(non-overlapping) occurrences of the digram with the non
terminal symbol for a rule (possibly already in existence) that
has the digram as its right side. For example, after adding
symbol b to a grammar:

S + abca
the digram ab now occurs twice. SEQUITUR replaces both
occurrences with a new non-terminal symbol A:

S + AcA
A + ab

2. Rule utility proper@. The second property is that all non-
terminal symbols in a grammar (except the start symbol)
must be referenced more than once by (other) rules.
SEQUITUR eliminates a rule referenced only once by
replacing the reference with the rule’s right side. Continuing
the example above by adding further symbols leads to:

S -+ BCBA
A + ab
B -+ AC
C + Ad

If the next symbol is d, SEQUITUR introduces a new rule:

S -+ DD

A -+ ab
B + AC
C + Ad
D + BC

At this point, non-terminals B and C are only used once and
SEQUITUR eliminates them.

Note that applying either rule may introduce new diagrams, which

261

S -P B3B4

A-+ 12

Figure 4. Grammar and WPP for the string 121213121214.

in turn require further transformation before the process
converges. Nevill-Manning and Witten proved that SEQUITUR
runs in time linear in the length of the input string [22].1 Note
that this time bound is independent of the size of the input
alphabet.

The algorithmh space requirement, for a grammar and auxiliary
data structures, is linear in the size of the grammar, which is O(log
N) in the best case, where N is the input length. The worst case, in
a sequence without repetition, is O(N).

In practice, time and space are reasonable. The largest
SPECINT95 benchmark is 0 99. go, whose 2GB trace was
processed in less than an hour in 300 MB of memory. The
grammars themselves are smaller; approximately 100 MB for this
benchmark, therefore analysis of a WPP requires less memory.

3.2 SEQUITUR Enhancement
Given that SEQUITUR is an on-line algorithm with tight time and
space bounds, it is not surprising that the resulting grammars are
not minimal. Although they are quite compact, a small change to
the SEQUITUR algorithm improves some grammars by
identifying more repetition of a substring. To see the need for
these changes, consider the string: 111112 11111. SEQUITUR
follows the following steps:

Start Rule Action

s + 1111 create A + 11
s + AA1211 applyA + 11

’ The linearity proof assumes that a digram can be found from a
pair of input symbols in constant time by using a hash table. To
save space, PPCompress does not use a hash table, which must
be sparsely filled to achieve this behavior. Instead, PPCompress
associates, with every symbol, a map of the symbols that
immediately follow. This map, which is keyed on the second
symbol, returns the digram. These maps are implemented as
unbalanced binary trees, which typically run in time logarithmic
in the number of digrams in which a symbol occurs first. The
worst case behavior of this code is ON), which is unlikely to
occur in this application, as any path is followed by at most a
small number of other paths.

S + AA12Al
S -+ AB2BA

create B + Al

Although the input contains two occurrences of 11111, they are
represented differently in the grammar, because rules introduced
while processing the first occurrence change the sequence of
reductions applied to the second occurrence. Fortunately,
subsequent occurrences are reduced the second way.

A minor change fixes this problem by looking ahead a single
symbol before introducing a new rule to eliminate a duplicate
digram. Assume the rightmost symbols of the start rule, which
form a duplicate digram, are x and y and the look-ahead symbol is
1. If the look-ahead symbol forms a digram with the second
symbol of the duplicate digram and this digram, yZ, is the right
side of an existing rule, then do not introduce a new rule to
eliminate the duplicate digram. Instead, read the next symbol and
apply the existing rule. This algorithm is called SEQUITUR(l).
This change does not affect the time bound on the algorithm, and
in practice, seems to produce slightly smaller grammars.

Consider the example above. At the step that introduces the rule
B + the look-ahead character is 1. Since 11 (the second
character of the duplicate digram and the next character) is the
right side of A + 11, a new rule is not introduced. Instead,
SEQUITUR(1) applies the rule A + 11, resulting in the string:
S 3 AA12AA. The look-ahead character is again 1, but no
digram Al is known, so the algorithm introduces a new rule B
+ AA, which leads to the grammar:

s -3 c2c
A + 11
c -3 AA1

3.3 PPCompress
PPCompress uses the SEQUITUR algorithm to compress an
acyclic path trace. SEQUITUR operates on a string of symbols.
In PPCompress, a symbol is a unique identifier for an executed
acyclic path. As a previously unknown (routine id, path id) pair
appears in the input stream, it is assigned a unique identifier.
PPCompress imposes no limits on these symbols, beyond the
space needed to maintain a hash table that records this mapping.
In practice, programs execute relatively few paths (tens of
thousands at most), so the number of symbols and the size of their
identifiers remain manageable.

Grammars are typically represented as trees. However, WPPs are
directed acyclic graphs (DAGs) since forming a tree would
decompress a grammar into a string comparable in size to the path
trace. Interior nodes in the DAG represent grammar productions.
They are labeled with the non-terminal symbol from the left side
of the production. Exterior nodes are terminal symbols (acyclic
paths). An edge from node A to node B represents an occurrence
of rule B in the right hand side of rule A. A node% sue cessors are
ordered in the same manner as symbols in corresponding rule’s
right hand side.

The DAG representation is convenient to analyze. A sequence of
executed paths can be recovered by traversing the DAG.
Consider for example the string 12 12 13 12 14 (path 1 might be a
loop backedge, and other paths different traces through the loop
body). Figure 4 contains its grammar and WPP. Repetitions of an
acyclic path or sequence of acyclic paths appear in a WPP as
multiple DAG paths from a node containing a non-terminal to

262

Figure 5. The WPP and grammar for the string
kbbcabbcabbc. The numbers are execution frequencies.

Figure 6. A node in a WPP and its descendents.

mother DAG node. For example, node B corresponds to two
:xecutions of the path 12 followed by path 1.

Many interesting questions about a program’s behavior can be
answered directly from a WPP. For example, acyclic path p
executes before path q if there exists a common ancestor of both
nodes in which an inorder traversal reaches p before q. Another
useful analysis is the dynamic execution context of code, such as
its routine or loop iteration. This context is the paths that execute
before and after the code. These paths are neighbors along the
fringe of the DAG and are easily found by traversal.

The execution frequency of a sequence of acyclic paths is the
number of times that prefix of this sequence is executed
immediately before the suffix of the sequence. Sequences, such
as ab or abc in Figure 5, that have a least common ancestor
(LCA) in the WPP have the same execution frequency as this
node. The execution frequency of a node is the number of paths
in the DAG from the start symbol to the node (the numbers in the
figure). Other sequences, such as ca, do not have a LCA as they
arise from the repetition of a subsequence, in this case A (which
starts with a and ends with c). Their frequency can be computed
from the frequency of consecutive edges leading into the LCA of
the subsequence (node A).

Since WPPs represent all executions of an acyclic path as a single
terminal node, it is not possible to record distinct metrics for each
execution of a path. For example, a path trace could associate
metrics from hardware performance counters (e.g., cycles, stalls,
cache misses, etc. [l]) with each path. PPCompress cannot
directly maintain these metrics from different path executions, but
instead must summarize them by aggregating values into a path’s
terminal symbol. This aggregation is not always disadvantageous,
as it helps eliminate “noise” in performance data.

Collective metrics-such as the number of instructions along a
path, the average number of cycles executed along the path, or the
average number of cache misses along the path-are suitable for
aggregation. Individual metrics, such as the number of cache
misses in a particular execution, cannot be captured in a WPP.
However, context-sensitive metrics similar to those collected by
Ammons, Ball, and Larus [l]-for example, the number of caches
misses in b after it executes path a-could be handled by
associating costs with interior nodes.

4. Analyzing Whole Program Paths
A WPP captures a program’s entire dynamic control in its DAG.
This structure can be analyzed in many ways. This paper focuses
on the important problem of finding hot paths. Previous path
profiling work found that a small collection of hot paths typically
dominate a program’s execution [6]. WPPs provide the
opportunity to find longer and more complete paths that cross
procedure and loop boundaries. WPPs can also be analyzed find
other dynamic program properties.

4.1 Subpaths
A whole program path encompasses a program’s entire execution.
Performance tuning and compiler optimizations generally focus
on heavily executed cock, in which small improvements yield
large performance gains. Finding this code in a WPP requires the
notion of a subpath-a consecutively executed sequence of
acyclic paths. A stringXis a subpath of a WPP grammar G ifXis
a substring of the string produced by G: crXp = L(G) where o$ E
Tp, L(G) is the string produced by G, and T is the set of terminals
(acyclic paths).

4.2 Hot Subpaths
A hot path is a path that incurs a substantial fraction of a
program’s execution cost. Ammons, Ball, and Larus defined hot
paths as acyclic paths that contribute more than 0.1-l .O% of some
execution metric [11. They showed that in the SPEC benchmarks,
relatively few hot paths (10-200) account for most of a program’s
execution cost (40-99%). Hot subpaths must be defined
differently. Since subpaths lack boundaries, they can grow to
encompass an arbitrary fraction of a program’s execution.

Intuitively, a hot subpath is a short sequence of acyclic paths that
is costly, either because the subpath is frequently executed or
because operations along it are disproportionately expensive.
Formally, a hot subpath is a sequence of L or fewer consecutively
executed acyclic paths that incur a cost of C or more. A subpath’s
cost is its execution frequency multiplied times the sum of its
constituent acyclic paths’ costs. A minimal hot subpath is the
shortest prefix of a subpath with cost of C or more. Minimal hot
subpaths are of interest, since longer hot subpaths are easily found
by adding acyclic paths to a minimal subpath.

263

void ReportHotSubPaths(Rule* rule, int mark) t
if (rule->Mark() != mark) i // First time visiting rule

rule->SetMark(mark);

rule->SetPrefix(new LLimitedString(MaxStringLength)); // Prefix of this rule
LLimitedString* subPath = new LLimitedString(MaxStringLength); // Subpath thru rule

// Iterate over successors in DAG (non-terminals on RHS of rule)
for (Symbol* sym = rule->RHS()->FirstSym(); !rule->RHS()->Done(sym); sym = sym->Next())

if (sym->IsTerminal())
appendTerminal(rule, subPath, sym); // Symbols are just appended to suhpath

else {
Rule* symRule = sym->InRule();
ReportHotSubPaths(symRule, mark); // Postorder: find suhpaths in successor

appendTerminalString(rule, subPath, symRule->Prefix());

if (!symRule->Prefix()-XoversNodeO)
*subPath = *symRule->Suffix(); // Node is wider than prefix, so change suffix

if (symRule->IncrNumPredecessors(-1) == 0) (
delete symRule->Prefix(); // Free strings after last use
delete symRule->Suffix();

1

1
rule->SetSuffix(subPath);

void appendTenainalString(Rule* rule, LLimitedString* subpath, LLimitedString' string) {
for (int i = 0; i < string->Length(); i += 1)

appendTerminal(pps, rule, subPath, (*string) [i]);
1

void appendTerminal(Rule* rule, LLimitedString* subPath, Symbol* sym) (
appendTerminalToRulePrefix(rule, sym);
appendTerminalToSubPath(rule, subPath, sym);

I

void appendTerminalToRulePrefix(Rule* rule, Symbol* sym) (
if (rule->Prefix()->Length() < MaxStringLength)

rule->Prefix()->Append(sym, this);
else

rule->Prefix()->SetCoversNode(false);

void appendTerminalToSubPath(Rule* rule, LLimitedString* subPath, Symbol* sym) (
subPath->Append(sym, this);
int expense = subPath->Cost()*Frequency(rule);
if (MinCost <= expense && MinStringLength <= subPath->Length()) (

print subPath;
subPath->Clear();
rule->Prefix()->Freeze(subPath->LengthO); // Stop before hot subpath

1
1

Figure 7. Algorithm for finding minimal hot subpaths whose length is between MinStringLength and MaxStringLength and cost
greater than MinCost.

Consider the example in Figure 5 (it might be part of a larger
WPP, as the rule utility property would otherwise eliminate
symbols B and C). Suppose that each acyclic path a, b, and c has
a cost of 1 and that we are looking for hot subpaths of length
greater than 1 and less than 4 whose cost is 6 or more. The WPP
contains four overlapping hot subpaths: ab, be, bb, and ca. The

The other two can be found by extending these two.

Figure 7 presents an algorithm for finding hot subpaths in a WPP.
The algorithm performs a postorder traversal of the DAG, visiting
each node once. At each interior node, it examines each subpath
formed by concatenating the subpaths produced by two or more of
the node’s descendents. The algorithm examines only

algorithm in this paper identifies two hot subpaths (ab and bc). concatenated strings, as the hot subpaths produced solely by a

264

rable 1. Characteristics of benchmark programs. The first column lists their (uninstrumented) running time. The second colum
ists the size of the acyclic trace file. The third column is the rate at which this file is produced. The fourth column is the size of
extual representation of the WPP. The fifth column is the rate at which the WPP is produced. The sixth column is thl
:ompression ratio. The seventh column lists the number of threads run by each program. The next column is the number o
Icyclic paths executed by all thread. The following column is the number of rules needed to describe the control flow. The fins
:olumn is the number of rules per executed acyclic path.

lime Ttacesiae Tti \IIRpSize \I\Rw Tracel Nm Mm NrnRdes/

(=I em set we secvwn-weackAcydcPafhst?Alles~

~.go 90.1 21766 24.15 141.1 1.57 15.4 1 1732l 2$0,82u 158.4

124.- 3C 115.0 3833 0.3 0.10 Z8 1 1,169 7,927 6.8

12k.p 9q 254.3 2825 23.7 264 10.7 1 a739 489287 23.6

a 1 ;

descendent node are found by a recursive call.

Consider a node N (Figure 6). Viewed as a grammar, each of its
successors (i.e. rules) produces a string (consisting of acyclic
paths). Let Pi be the L-limited prefix of the string derived by
successor i and let Si be the L-limited suffix of the string. An L-
limited string is a string containing L or fewer symbols. A node’s
prefix is the first L symbols that it produces, and its suffix is the
last L symbols.

Note that a nodei prefix and suffix are independent of its parents.
In particular, the algorithm computes only once the prefix and
suffix of a node with multiple predecessors-including multiple
edges from the same nodewhich preserves the space and time
benefits of the DAG representation.

In the example, the L-limited subpaths for node N are found in the
strings: S,IIP2, $1 IP3, and possibly S,llPrIIPj (if the string
produced by the second successor is shorter thank symbols). The
operator 11 is string concatenation. Similarly, the L-limited prefix
and suffix of node N are the first and last L symbols examined
when looking for substrings at node N.

This approach finds non-minimal subpaths. For example, if the
suffix of a node ends with a hot subpath, it will be extended with
symbols from the prefix of the next node. Changing the definition
of a suffix corrects this problem. A node’s suffix is the maximal
suffix of the final L symbols that is not part of a hot subpath. The
algorithm clears the subpath string when a hot subpath is found,
so that this string (which becomes the nodeb suffix) only contains
symbols encountered after the last hot subpath. Similarly, a
node’s prefix subpath is maximal prefix of the first L symbols that
is not part of a hot subpath. The algorithm freezes a node’s prefix
string at the first subpath.

Since subpaths are limited to length L or less, the amount of work
performed at a node is proportional to the number of its
successors. The algorithm in Figure 7 traverses each edge in the
WPP once and performs at most L operations per edge, so its
running time is O(EL), where E is the number of edges in the
WPP. In the worst case, the space used by this algorithm could be
O(i?L), where N is the number of nodes in the WPP. However,

there is no need to retain prefix and suffix strings for nodes whose
predecessors have all been visited, and the code frees and reuses
this space. In this case, the space requirement is proportional to
the number of partially visited nodes in the DAG, which can be
far lower than O(N).

5. Performance
This section describes an implementation of whole program
profiling that demonstrates that the technique is practical, even for
large commercial applications. The application programs were
instrumented with a version of the PP path profiler [6] running on
MicrosoRS Vulcan tool. Vulcan is an executable instrumentation
system similar to ATOM and EEL [17, 271. Traces were
processed by PPCompress, which uses the techniques described in
this paper to produce and analyze a WPP.

The overhead of path profiling instrumentation and WPP
processing overhead are moderate (small integer slowdown and
tens of minutes of processing time). To facilitate
experimentation, path traces were written to a file, rather than
processed on line. Measurements were performed on a dual
processor, 200 MHz Pentium-Pro PC with 256 MB of memory
running Windows NT 4.0 Server (SP4).

This paper contains measurements of the SPECINT95
benchmarks and two Microsoft application programs. The first is
a relational database (Microsoft SQL 7.0) running the TPC-C
benchmark. TPC-C is an on-line transaction processing
benchmark that involves a mix of five concurrent transactions of
different types and complexity executed either on-line or queued
for deferred execution [131. The database is comprised of nine
types of records with a wide range of record and population sizes.
The benchmark runs for a fixed length of time, in this case a short
(non-standard) run of 120 seconds. Note that the instrumented
database accomplished far less in this interval than the original
code (136 and 2133 transactions, respectively). The second
example is a word processing program (Microsoft WinWord 9)
running a standard breadth test scenario, which exercises
approximately 20% of its code. On the system above, WinWord
runs the uninstrumented scenario in approximately 8 seconds.

265

Instrumented Time

+ Trace Size

1”“’ WPP Size

+ PPCompress Time

-O- Num Non-Terminals

1 10 100
Relative Input Size

1000 10000

Ggure 8. Whole Program Path performance running compress benchmark with various size input files.

5.1 Profile Size
Table 1 reports some overall characteristics of program traces and
WPPs. The column labeled Truce Size contains the size of the
binary file trace of acyclic paths (Section 2). FVZY Size contains
the size of the ASCII grammar produced by PPCompress (the
binary representation of a WPP can be two times smaller). The
ratio of these two files’ size is a rough measure of the
compression achieved by WPPs.

The SPEC benchmarks were run with their smallest input dataset
(test), except for 129.compress, which used the more reasonable
train dataset. 134.perl reports the larger of its two data sets
(jumble). In all cases, traces include the standard libraries.

The two commercial applications differ slightly. In both, only the
application code-not library code-was measured. WinWord
spends a substantial fraction of its time in library (DLL) and
kernel code, neither of which was captured in this experiment.
SQL, unlike the SPEC benchmarks, performs a substantial amount
of IO, which runs in the kernel. Another major difference is that
SQL executes many threads, while the SPEC benchmarks are
single threaded and WinWord executes almost entirely in one
thread. The current system distinguishes control flow in each
thread and constructs a separate WPP for each one.

The compression ratio ranged from 7.3-392.8. The highest
compression occurred in programs (l24.m88ksim, 13O.li,
147.vortex) whose control flow is not particularly simple.
However, all three programs are highly repetitive, and perform the
same task (instruction simulation, chess board search, object-
oriented database queries) many times. The programs with the
lowest compression (099.go, 126.gcc, 132.ijpeg, and WinWord)
have complex, non-iterative control flow. 132.ijpeg differs from
the other two SPEC benchmarks, as it executes few (1,637)
distinct paths, but requires a relatively large number of rules to
capture its control flow.

The application programs (WinWord and SQL) have far fewer
rules per acyclic path than the benchmarks. This difference may
arise from the structure and behavior of commercial applications,
or it may be a measurement artifact due to the absence of library
code. Nevertheless, he various compression ratios appear to be a

plausible measure of a program’s control -flow regularity, which
could possibly help isolate and study areas of regular and irregular
control flow.

Figure 8 examines the relationship between program running
time, file size, and processing time. This experiment used the
compress program from the SPEC95 benchmark suite. The size
of the file to be compressed ranged between 100-l ,OOO,OOO bytes.
The figure plots the relative performance of the instrumented and
uninstrumented program, the size of the trace and WPP file, and
the cost of running PPCompress. Note that the uninstrumented
program’s execution time does not increase linearly with the input
size. Although the compression algorithm is linear, the cost of
compressing small files is dominated by writing the program’s
output, which is independent of the input data. The instrumented
program does not share this behavior, since its execution is
dominated by writing the trace. Most important, the WPP’s size
grew at a slightly slower rate than uninstrumented execution time
or the trace file size. Unfortunately, the time to produce the WPP
grew significantly faster than the size of its input. This may
reflect the non-linear components of the algorithm or cache
effects.

5.2 Hot Subpaths
Figure 9 reports some hot subpaths found in the SPECINT95 and
commercial benchmarks. In this experiment, the cost function for
an acyclic path was the number of instructions along the path.
The figure graphs the maximum length of a hot subpath (in
acyclic paths) against the number of minimal hot subpaths with
cost ? 10,000 and 100,000, respectively. Because the
commercial benchmarks do not include paths through library
code, the absolute number of paths is not comparable between the
two sets of programs.

Comparing the two graphs show that the number of hot paths
discovered decreases sharply as the threshold increases. The
decrease ranges from 1.8 times (129.compress) to 13.9 (126.gcc).
As usual, 126.gcc differs from the other SPEC benchmarks,
except 132.ijpeg. gee’s decrease, however, was close to the
commercial applications (9.5 and 12.8 for WinWord and SQL,
respectively).

266

0 500 1000 15w 2ooo 0 500 loo0 1500 2ocm

Maximum Path Length Maximum Path Length

Figure 9. Number of minimal hot subpaths (with cost 2 10,000 and 100,000 instructions, respectively) found with different limits
,n the maximum length of a hot subpath (measured in acyclic paths). Subpaths are at least 10 acyclic paths long.

The shape of the curves is interesting as well. With a few
exceptions, most curves are very flat. This means that few new
hot subpaths were found by increasing the maximum path length
beyond its initial value of 100 acyclic paths. The hot subpaths, in
these benchmarks at least, are relatively short (? 100 acyclic
paths), heavily executed segments of code. This, of course, is the
best situation for compiler optimization, since compilers excel at
small improvements, which can produce large benefits in heavily
executed code. On the other hand, 126.gcc, 129.compress, and
the commercial applications find 2.5-3.0 times as many paths as
the length limit increases. This means that a substantial fract ion of
the hot subpaths in these programs is IOO-1,000 acyclic paths
long. This result suggests that compiler optimization with a larger
perspective might be useful for commercial applications.

6. Related Work
Ball and Larush original path profiling algorithm recorded the
execution frequency of intraprocedural, acyclic paths [6]. This
paper extends that work to paths that cross both procedure and
loop boundaries. Bala’s technique captured segments of
interprocedural paths by recording a bounded collection of branch
outcomes [5]. Unlike Bala’s paths, WPPs completely cover a
program’s execution and do not introduce approximations at path
boundaries. Moreover, the WPP representation is more compact
and easily analyzable than a collection of branches.

Ammons, Ball, and Lams extended acyclic path profiling in two
directions [11. First, they associated hardware metrics other than
execution frequency with paths. Second, they introduced a run-
time data structure (the calling context tree) to approximate
interprocedural paths by connecting a path at a call site with a
path in the callee. In practice, these linkages were imprecise, as
more than one path can reach a call site. Moreover, calling
context trees do not connect paths across loop iterations. Overall,
WPPs are more accurate, compact, and analyzable than calling
context trees and capture cyclic paths that span loop boundaries.
However, WPPs require more intermediate storage and post-
processing.
Melski and Reps describe an interprocedural extension of Ball and
Larus’s acyclic path profiling technique [18, 191. Instead of
labeling edges in an interprocedural supergraph with integer
values, their technique labels edges with functions, which are used

to capture the calling context of a procedure. Their approach
shares some of the limitations of the original Ball-Lams
technique. First, the paths in this technique do not cross loop (or
recursive call) boundaries. Second, interprocedural paths are
assigned a unique name statically. Since the number of potential
paths through a program is huge, a pathh run -time representation
must be an unbounded integer, or potential paths will need to be
truncated to limit the size of path identifiers. In some sense, a
WPP is an identifier-though not a minimal one-that uniquely
identifies the path that a program took. Finally, their analysis
presumes a complete call graph, and introduces ad-hoc techniques
to handle exceptions and indirect calls. WPPs, which start with a
run-time trace, easily handles cyclic and indirect control flow, as
well as complications such as multiple threads. An interesting
alternative is to use Melski and Rep’s technique in conjunction
with the techniques in this paper. Their algorithm produces a
different vocabulary of longer paths, which might lead to smaller
grammars.

Several researchers have investigated techniques to compress
program traces. For example, Lams described Abstract
Execution, in which a small amount of run-time data guides the
re-execution of the address-generating slice of a program [16].
Pleszkun developed a two-pass trace compression scheme, which
used a variable-length encoding of a basic block’s dynamic
control successors and compact representation of linear address
patterns to compress address traces to a fraction of bit per
reference [23]. These techniques produce impressively small
files, but require considerable post-processing to regenerate an
address trace, which is a far less compact and analyzable entity
than a WPP.

Chen et al. hypothesized that data compression provides an upper
limit on the performance of correlated branch prediction [9]. This
paper provides evidence to further this connection, as this type of
branch prediction performs well because of programs’strong path
locality [28], which also underlies the high compression achieved
by the SEQUITUR algorithm.

The hot subpath algorithm in Section 4.2 is similar to Baker’s
technique for finding repeated code in a program [4]. Baker’s
algorithm uses a suffix tree of a program text. This structure is
impractical for program traces, as it uncompresses the trace.
WPP’s DAG representation is far more compact, yet still

267

analyzable. Baker’s technique, moreover, finds all repetitions,
regardless of length. In this application, repetition is only
valuable when costly, but Baker’s approach does not support a
cost metric.

7. Conclusion and Future Work
Whole program paths are a new representation for dynamic
program analysis that capture a program’s complete control flow
in a compact, tractable form. A WPP is a DAG representation of
a context-free grammar that generates a program’s acyclic path
trace. A two-step process produces a WPP. First, the acyclic paths
that a program executes are recorded. Next, this trace is
processed with the SEQUITUR compression algorithm, which
builds a context-free grammar to represent its input string. A
grammar’s DAG representation is a WPP, which is a compact and
easily analyzed representation of a program5 control flow. This
paper shows how to find hot subpaths in a WPP and demonstrates
that the SPEC benchmarks and commercial applications contain a
significant number of these paths.

WPPs have many potential uses. This paper concentrated on their
application to performance tuning, in which WPPs identify
heavily executed code sequences. Programmers or compilers
could collect and analyze these WPPs to find hot subpaths to
optimize or tune. Because WPPs span procedure and loop
boundaries, they expose large-scale optimization opportunities
that cross procedure and module abstractions. Without automatic
tools to identify expensive interprocedural paths, large-scale
performance tuning will remain difficult, costly, and limited to
high value software, such as OSs and DBs. Moreover, the long
paths identified by WPPs are valuable adjuncts to the global and
interprocedural optimization that is becoming necessary to
support highly speculative or VLIW microprocessors.

Another, more novel application of WPPs is to detect program
errors that do not manifest themselves as erroneous output.
Consider the problem of data structure initialization. A program
may run correctly when it allocates an uninitialized structure in
zeroed memory, but fail when it puts the structure into recycled
memory. A similar error is accessing shared structures without
acquiring the proper synchronization. This error too may manifest
itself only under certain conditions. In some cases, these errors
are detectable by examining a programb control flow. The idea
has been used in predicate path expressions to specify
synchronization constraints [3]. However, temporal logic, as used
in model checking [lo], offers a better language for expressing
control-flow properties to validate.

Moreover, it seems likely that the same compression technique
and data representation can be use to capture and analyze
programs’data -reference patterns, as well as their control flow.

Acknowledgements
Christopher Fraser pointed out the SEQUITUR algorithm. Julian
Burger, Vinod Grover, David Melski, and Tom Reps provided
many helpful comments. The anonymous referees also provided
unusually detailed and helpful feedback.

References
[l] G. Ammons, T. Ball, and J. R. Lams, “Exploiting Hardware

Performance Counters with Flow and Context Sensitive
Profiling,” in Proceedings of the SIGPLAN ‘97 Conference
on Programming Language Design and Implementation. Las
Vegas, NV, 1997, pp. 85-96.

PI

[31

[41

PI

[61

[71

PI

191

G. Ammons and J. R. Lams, “Improving Data-flow Analysis
with Path Profiles,” in Proceedings of the SIGPLAN ‘98
Conference on Programming Language Design and
Implementation. Montreal, Canada, 1998, pp. 72 -84.

S. Andler, “Predicate Path Expressions,” in Proceedings of
the Sixth Annual ACM Symposium on Principles of
Programming Languages. San Antonio, Texas, 1979, pp.
226-236.

B. S. Baker, “Parameterized Duplication in Strings:
Algorithms and an Application to Software Maintenance,”
SIAMJournal of Computing, vol. 26, pp. 1343-1362, 1995.

V. Bala, “Low Overhead Path Profiling,” Hewlett Packard
Labs 1996.

T. Ball and J. R. Lams, “Efficient Path Profiling,” in
Proceedings of the 29th Annual IEEE/ACM International
Symposium on Microarchitecture. Paris, France, 1996, pp.
46-57.

T. Ball, P. Mataga, and M. Sagiv, “Edge Profiling Versus
Path Profiling: the Showdown,” in Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. San Diego, CA, 1998, pp. 134-
148.

R. Bodik, R. Gupta, and M. L. Soffa, “Refining Data Flow
Information using Infeasible Paths,” in Proceedings of the
ACM SIGSOFT Ftjih Symposium on the Foundations of
Sofiare Engineering. Zurich, Switzerland, 1997.

I.-C. K. Chen, J. T. Coffey, and T. N. Mudge, “Analysis of
Branch Prediction via Data Compression,” in Proceedings of
the Seventh International Conference on Architectural
Support for Programming Languages and Operating
Systems. Cambridge, MA, 1996, pp. 128-137.

[lo] E. N. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic
Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications,” ACM Transactions on
Programming Languages and Systems, vol. 8, pp. 244-263,
1986.

[l l] J. A. Fisher, “Trace Scheduling: A Technique for Global
Microcode Compaction,” IEEE Transactions on Computers,
vol. C-30, pp. 478490, 1981.

[12] J. A. Fisher, J. R. Ellis, J. C. Ruttenber g, and A. Nicolau,
“Parallel Processing: A Smart Compiler and a Dumb
Machine,” in Proceedings of the ACM SIGPLAN ‘84
Symposium on Compiler Construction. Montreal, Canada,
1984, pp. 37-47.

[131 J. Gray, “The Benchmark Handbook for Database and
Transaction Processing Systems,” in The Morgan Kaufmann
Series in Data Management Systems, J. Gray, Ed., second ed.
San Francisco: Morgan Kaufmann, 1993.

[141 R. Gupta, D. A. Berson, and J. Z. Fang, “Path Proftle Guided
Partial Dead Code Elimination Using Predication,” in
Proceedings of the International Conference on Parallel
Architecture and Compilation Techniques (PACT). San
Francisco, CA, 1997.

[15] Q. Jacobson, E. Rotenberg, and J. E. Smith, “Path -Based
Next Trace Prediction,” in Proceedings of the 30th Annual
IEEWACM International Symposium on Microarchitecture.
Research Triangle Park, NC, 1997.

268

[161 J. R. Larus, “Abstract Execution: A Technique for Efficiently
Tracing Programs,” Software--Practice and Experience, vol.
20, pp. 1241-1258, 1990.

[171 J. R. Larus and E. Schnarr, “EEL: Machine-Independent
Executable Editing,” in Proceedings of the SIGPLAN ‘95
Conference on Programming Language Design and
Implementation. La Jolla, CA, 1995, pp. 291-300.

[18] D. Melski and T. Reps, “Interprocedural Path Profiling,”
Computer Sciences Department, University of Wisconsin
Madison, Technical Report TR-1382, September 1998.

[191 D. Melski and T. Reps, “Interprocedural Path Profiling,” in
Proceedings of CC ‘99: 8th International Conference on
Compiler Construction. Amsterdam, The Netherlands, 1999.

[20] D. Mosberger and L. L. Peterson, “Making Paths Explicit in
the Scout Operating System,” in Proceedings of the Second
USENIX Symposium on Operating Systems Design and
Implementation (OSDI). Seattle, WA, 1996, pp. 153 - 167.

[21] C. G. Nevill-Manning and I. H. Witten, “‘Compression and
explanation using hierarchical grammars,” The Computer
Journal, vol. 40, pp. 103-l 16, 1997.

[22] C. G. Nevill-Manning and I. H. Witten, “Linear-time,
incremental hierarchy inference for compression,” in
Proceedings of the Data Compression Conference (DCC
‘97). Snowbird, UT: IEEE Computer Society, 1997, pp. 3-l 1.

[23] A. R. Pleszkun, “Techniques for Compressing Program
Address Traces,” in Proceedings of the 27th AnnuaI

IEEE/ACM International Symposium on Microarchitecture,
1994, pp. 32-40.

[24] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye,
L. Kethana, J. Walpole, and K. Zhang, “Optimistic
Incremental Specialization: Streamlining a Commercial
Operating System,” in Proceedings of the Fifteenth ACM
Symposium on Operating System Principles. Copper
Mountaint Resort, CO, 1995, pp. 3 14-324.

[25] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace Cache: a
Low Latency Approach to High Bandwidth Instruction
Fetching,” in Proceedings of the 29th Annual IEEE/ACM
International Symposium on Microarchitecture. Paris,
France, 1996, pp. 24-34.

[26] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace
Processors,” in Proceedings of the 30th Annual IEEE/ACM
International Symposium on Microarchitecture. Research
Triangle Park, NC, 1997, pp. 138-148.

[27] A. Srivastava and A. Eustace, “ATOM A System for
Building Customized Program Analysis Tools,” in
Proceedings of the SIGPLAN ‘94 Conference on
Programming Language Design and Implementation.
Orlando, FL, 1994, pp. 196-205.

[28] C. Young, N. Gloy, and M. D. Smith, “A Comparative
Analysis of Schemes for Correlated Branch Prediction,” in
Proceedings of the 22nd Annual International Symposium on
Computer Architecture, 1995, pp. 276-286.

269

