
Iterative Type Analysis and Extended Message Splitting:
Optimizing Dynamically-Typed Object-Oriented Programs

Craig Chambers
David Ungar

Computer Systems Laboratory, Stanford University
self@self.sfanford.edu

Abstract
Object-oriented languages have suffe=d from poor perfor-
mance caused by frequent and slow dynamically-bound pro-
cedure calls. The best way to speed up a procedure call is to
compile it out, but dynamic binding of object-oriented pro-
cedure calls without static receiver type information pre-
eludes inlining. Iterative type analysis and extended mes-
sage splitting are new compilation techniques that extract
much of the necessary type information and make it possible
to hoist run-time type tests out of loops.

Our system compiles code on-the-fly that is customized to
the actual data types used by a running program, The com-
piler constructs a control flow graph annotated with type in-
formation by simultaneously performing type analysis and
Wining. Extended message splitting preserves type infonna-
tion that would otherwise be lost by a control-flow merge by
duplicating all the code between the merge and the place that
uses the information. Iterative type analysis computes the
types of variables used in a loop by repeatedly recompiling
the loop until the computed types reach a fix-point. Together
these two techniques enable our SELF compiler to split off a
copy of an entire loop, optimized for the common-case
types.

By the time our SELF compiler generates code for the graph,
it has eliminated many dynamically-dispatched procedure
calls and type tests. The resulting machine code is twice as
fast as that generated by the p~vious SELF compiler, four
times faster than ParcPlace Systems SmalltalHO,* the fast-
est commercially available dynamically-typed object-orient-
ed language implementation, and nearly half the speed of op-
timized C. Iterative type analysis and extended message
splitting have cut the performance penalty for dynamically-
typed object-oriented languages in half.

l SmaLltaJk-80 is a trademark of ParcPlace Systems, Inc.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

01990 ACM 0-89791-364-7/90/0006/0150 $1.50

Proceedings of the ACM SIGPLAN’SO Conference on
Programming Language Design and Implementation.
White Plains, New York, June 20-22, 1990.

1 Introduction
Dynamically-typed object-oriented languages have histori-
cally been much slower in run-time perfomm~~ce than tradi-
tional languages like C and Fortran. Our measurements of
several Smalltalk systems on personal computers and work-
stations [ung89] indicate that their performance is between
5% and 20% of the performance of optimized C programs.
This disparity in performance is caused largely by the rela-
tively slow speed and high frequency of message passing
and the lack of static type information to reduce either of
these costs. This paper describes new techniques for extract-
ing and preserving static type information in dynamically-
typed object-oriented programs.

This work** continues our earlier work on the SELF pro-
gramming language [uS87, Lee88]. SELF is a new dynami-
cally-typed object-oriented language in the spirit of Small-
talk-80 [GR83], but is novel in its use of prototypes instead
of classes and its use of messages instead of variables to ac-
cess state. These features make SELF programs even harder
to run efficiently than other dynamically-typed object-ori-
ented languages, since SELF programs send many more
messages than equivalent Smalltalk programs.

As part of our earlier work we built an optimizing compiler
for SELF that pioneered the use of customization, type pre-
diction, and message splitting [CU89, CUL.891. These tech-
niques provided the compiler with much more static type in-
formation than was previously available, enabling it to ag-
gressively inline away many of the costly message sends
without sacrificing source-code compatibility. This SELF.
compiler achieved a performance of between 20% and 25%
of optimized C on the Stanford integer benchmarks @Ien88],
twice that of the fastest Smalltalk implementation on the
same machine.

While this performance is a clear improvement over compa-
rable systems, it is still not competitive with traditional lan-
guages. To narrow the gap even further, we have developed
and implemented iterative rype analysis and entended mes-
sage spkting in our new SELF compiler. These techniques
provide the compiler with more accurate static type informa-

** This work has been generously supported by a NSF Presidential
Young Investigator Grant # CCR-8657631, and by SUJI, IBM,
Apple, Tandem, NCR, TI, the Powell Foundation, and DEC.

150

tion and enable it to preserve this type information more ef-
fectively. These techniques are especially important when
optimizing loops and often lead to more than one version of
a loop being compiled, each version optimized for different
run-time types. Using these techniques, our new SELF com-
piler produces code that runs almost half as fast as optimized
C programs, without sacr&ing dynamic typing, overflow
and array bounds checking, user-defined control structures,
automatic garbage collection, and complete source-level de-
bugging of optimized code.

Traditional compilers can be divided into a front-end (pars-
er) and a backend (optimizer and code generator). To gen-
erate good code for a dynamically-typed object-oriented lan-
guage, we have inserted a new phase between the front-end
and the back-end. This phase performs type analysis, meth-
od inlining, and message splitting to construct the control
flow graph from abstract syntax trees of the source code. A
more traditional back-end performs data flow analysis, glo-
bal register allocation, and code generation from tbis control
flow graph

This paper describes the new intermediate phase of our com-
piler. ‘The next section presents our type system, and de-
scribes how type analysis works for straight-line code. Seo
tion 3 extends the type aDaly& to handle merges in the con-
trol flow graph, and describes extended message splitting.
Section 4 completes type analysis and message splitting by
describing iterative type analysis for loops, and presents a
simple example of compiling multiple versions of a loop.
Section 5 compares the performance of our new SELF sys-
tem against optimized C, the original SELF compiler, and
versions of the new SELF compiler with selected optimiza-
tions disabled Section 6 discusses related work.

2 Background
The new techniques presented in this paper build upon those
introduced in the previous SELF compiler, including cus-
tomization, type prediction, message splitting (called local
message splitting in this paper), message inlining, andprim-
dive inlining [CU89, CUL89].

9 Customized compilation. Existing compilers for
SmalltaJk-80 (as well as most other object-oriented
languages) compile a single machine code method for a
given source code method. Since many classes may
inherit the same method, the Smalltalk- compiler
cannot know the exact class of the receiver. Our SELF
compiler, on the other hand, compiles a different
machine code methodfor each type ofreceiver that runs
a given source method. The advantage of this approach
is that our SELF compiler can know the type of the
receiver of the message at compile-time.

.

.

.

3

Typeprediction. Sometimes the name of the message is
sufficient to predict the type of its receiver. For
example, several studies IIJng87] have shown that the
receiver of a + message is nine times more likely to be
a small integer than any other type. Our compiler inserts
type tests in these cases so that subsequent code may
exploit the type information in the common case.

Message inlining. Once the type of a receiver is known,
the compiler can optimize away the message lookup by
performing it at compile-time, and then inline the code
invoked by the message.

Primitive inlining. SELF also includes primitive
operations such as integer addition. Rather than
compiling a call to an external routine, the compiler can
directly compile many primitives in line. If the
primitives include type tests, the compiler’s type
information may be used to eliminate them.

Simple Type Analysis
To compute the static type information necessary for mes-
sage inlining, the compiler builds a mapping from variable
names to types at each point in the progmm (i.e. between ev-
ery node in tire control flow graph). This mapping is comput-
ed from the nodes in the control flow graph, such as assign-
ment nodes, run-time type test nodes, and message send
nodes. The type of a variable describes all the information
the compiler knows about the current value of tbe variable,
and as such differs li-om the standard notion of data type in a
traditional statically-typed language.

3.1 The Type System
A type specifies a non-empty set of values. A variable of a
particular type is guaranteed to contain only values in the
type’s set of values at run-time. A type that specses a single
value (called a value type) acts as a compile-time constant.
The type that specifies ah possible values provides no infor-
mation to the compiler and is called the unknown type.

A’y~e that pe s cifies all values that are instances of some
class (called a clars type) provides the compiler with both
format and inheritance information for variables of the type,
much like a traditional data type. Messages sent to a variable
of class type can be looked-up at compile-time and inlined.
A type that specifies a subrange of the values in the integer
class type is called an integer subrunge type. The compiler
treats integer value types and the integer class type as ex-
treme forms of integer subrange types.

* Since SELF has no classes, our implementation introduces maps
transparently to the user to provide similar information and space
efficiency as classes. Thus in our system the class type becomes the
set of all values that share the same map.

151

Types In the SELF Compiler

type name
value

integer
subrange

crass

unknown

union

difference

set description
singleton set

set of sequential
integer values

set of all values
wl same class

set of all values

set union of types

set difference of types

static information
compile-time constant

integer ranges

format and inheritance

none

union

difference

source
literals, constant slots,
true and false type tests

arithmetic and comparison
primitives

self, results of primitives,
integer type tests

data slots, message results,
up-level assignments

results of primitive operations

failed type tests

A type may also specify the set union of several types or the
set difference of two types. The chart above summarizes the
kinds of types in our type system, the information they pro-
vide to the compiler, and how they are created.

3.2 Type Analysis Rules
At the start of the method, the type mapping contains bind-
ings for the receiver and each argument. Since our compiler
generates customized versions of a source method (see sec-
tion 2), the class of the receiver is known at compile-time for
the version being compiled. Therefore, the receiver is initial-
ly bound to the corresponding class type. Our system doesn’t
currently customize based on the types of arguments, and so
the arguments are initially bound to the unknown type.

3.2.1 Simple Node Analysis

A declaration of a local variable adds a new binding to the
type mapping. Since local variables in SELF are always ini-
tialized to compile-time constants, each binding will be to
some value type. For example, since most variables are (im-
plicitly) initialized to nil, their types at the start of their
scopes would be the nil value type.

Each node in the control flow graph may alter the type bind-
ings as type information propagates across the node. A local
assignment node simply changes the binding of the assigned
local variable to the type of the value being assigned. A
memory load node (e.g. implementing an instance variable
access) binds its result temporary name to the unknown type
(since the compiler doesn’t know the types of instance vari-
ables).

Our compiler computes the type of the result of integer arith-
metic nodes using integer subrunge analysis. For example,
the following rule is used to determine the result type for the
integer addition node:*

X: [%~~xhil, Y: [Ylo-~Yhd

4 ztx+y

z: [xio+ylommxhi+yhi] n [minht..maxht]

Integer compare-and-branch nodes also use integer subrange
analysis. However, instead of adding a binding for a result,
compare-and-branch nodes alter the type bindings of their
arguments on each outgoing branch. For example, the fol-
lowing rule is used to alter the argument type bindings for
the compare-less-than-and-branch node:**

x: [$,..min(xhi,yhi-l)] x: ~m~h,~yd.-xt,J

7-r
Y: Emaxh,+l ,YI&YI,J Y: iYio-~i~(~hi~Yhi)l

Run-time type test nodes are similar to compare-and-branch
nodes. Along the success branch of the test the tested vari-
able is rebound to the type of the test; along the failure
branch the variable is rebound to the set difference of the in-
coming type and the tested type. For example, the following
rule is used to alter the argument type binding for the integer
type test:

x: type

x int?

*
x: int x: type - int

3.2.2 Message Send Node Type Analysls, Type
Prediction, and lnllnlng

To propagate types across a message send node, the compiler
first attempts to inline the message. The compiler looks up
the type bound to the receiver of the message. If the type is
a class type (or a subset of a class type, such as a value type
or an integer subrange type), the compiler performs message

l This node is not the integer addition primitive, but just an add
instruction. Type checking and oveflow checking are performed
by other nodes surrounding the simple add instruction node.

** In all control flow graph diagrams, conditional branch nodes
have the true outgoing branch on the left, and the false
outgoing branch on the right.

lookup at compile-time, and replaces the message send node
with either a memory load node (for a data slot access), a
memory store node (for a data slot assignment), a compile-
time constant node (for a constant slot access), or the body
of a method (for a method slot invocation). If a method is in-
lined, new variables for its formals and locals are created and
added to the type mapping. The type of the result of a mes-
sage send node that is not inlined is the unknown type.

If the type of the receiver of the message is unknown (or
more general than a single class type), the compiler tries to
predict the type of the receiver from the name of the message
(such as pmdicting that the receiver of a + message is likely
to be an integer). Ifit can successfully predict the type of the
receiver, the compiler inserts a run-time type test before the
message to verify the guess, and uses local message splitting
to compile two versions of the predicted message.

3.2.3 Primltlve Operation Node Type Analysis,
Range Analysls, and Mining

Iu addition to sending messages, SELF programs may invoke
primitive operations. These primitives include integer arith-
metic, array accesses, object cloning, and basic graphics
primitives. All primitive operations in SELF are robust: the
types of arguments are checked at the beginning of the prim-
itive and exceptional conditions such as overflow, divide-by-
zero, and array-access-out-of-bounds are checked. A call to
a primitive can optionally pass a user-defined failure block
to invoke in case one of these exceptional conditions occurs;
the result of the failure block is used as the result of the prim-
itive operation. If the SELF programmer doesn’t provide an
explicit failure block, a default failure block is passed that
simply calls a standard error routine when invoked.

To propagate types across a primitive operation no&, the
compiler first attempts to constant-fold the primitive. If the
primitive has no side-effects and the arguments are value
types (i.e. compile-time constants), then the compiler exe-
cutes the primitive at compile-time and replaces the primi-
tive node with the compile-time constant result Sometimes
the compiler can constant-fold a primitive even if the argu-
ments aren’t compile-time constants. For example, if the ar-
guments to an integer comparison primitive are integer sub-
ranges that don’t overlap, then the compiler can execute the
comparison primitive at compile-time based solely on sub-
range information.

If the compiler can’t constant-fold the primitive, and the
primitive is small and commonly used (such as integer arith-
metic and array accesses), then the compiler inlines the
primitive, replacing the call to the primitive with lower-level
nodes that implement the primitive. For example, the fol-
lowing set of nodes implement the integer addition primi-
tive:

By analyzing the nodes that make up the primitive, the com-
piler is frequently able to optimize away the initial type tests
and even the overfiow check. For example, if the arguments
to an integer arithmetic primitive am integer subranges that
cannot cause an overflow, then the compiler can constant-
fold away the initial type tests, the overflow check, and the
failure block, leaving a single add instruction node. As it
eliminates the type and overflow tests, the compiler comes
closer and closer to its goal of eliminating the performance
disadvantage of robust primitives. If all the tests can be elim-
inated, the failure block can be eliminated, which saves
space, but more importantly, eliminates subsequent type
tests of the result of the primitive.

The type of the result of an inlined primitive can be comput-
ed by propagating types across the nodes implementing the
primitive. Even if the primitive isn’t inlined, the compiler
binds the result of the primitive to the result type stored in a
table of primitive result types. The original SELF compiler
could also constant-fold and inline primitive calls, except it
did no range analysis and so couldn’t constant-fold a com-
parison primitive based solely on integer subrange informa-
tion or eliminate overflow checks and array bounds checks.

4 Extended Message Splitting
Both the original and the new SELF compilers use message
splitting to take advantage of type information that other-
wise would be lost to merges in the control flow graph (see
[CU89, CuL89]). The original SELF compiler was only able
to split messages that immediately followed a merge point;
we call this local message splitting. Our new SELF compiler
performs enough type analysis to detect ah splitting oppor-
tunities, no matter how much code separates the message
send from the merge point; we call this extended message
splitting.

153

Before Extended Splitting

After Extended Splitting

After lnlinlng

x:{tl,t2}1

To propagate type information across a merge node, the
compiler constructs the type mapping for the outgoing
branch of the merge node from the type mappings for the in-
coming branches. For each variable bound to a type in all in-
coming branches, the compiler merges the incoming types.
If ail incoming types are the same, then the outgoing type is
the same as the incoming type. If the types are different, then
the compiler constructs a new merge fype containing the in-
coming types. A merge type is similar to a union type, except
that the compiler knows that the dilution of type information

was caused by a merge in the control flow graph. In addition,
a merge type records the identities of its constituent types,
rather than recording the result of the set union of the merged
types. For example, the integer class type merged with the
unknown type forms a merge type that contains both types
as distinct elements, rather than reducing to just the un-
known type as a set union would produce (recall that the un-
known type specifies all possible values, and so contains the
integer class type).

x: t1 x: t2

9

merge

x: {tl, t2)

The compiler takes advantage of merge types when propa-
gating type information across message send nodes. If the
type of the receiver of the message is a merge type, contain-
ing types of different classes, the compiler may elect to split
the message and all the intervening nodes back through the
control flow graph up to the merge point that diluted the type
information. This splitting creates two copies of the nodes in
the graph from the send node back to the merge point; the re-
ceiver of each copy of the split message send node now has
a more specific type, allowing the compiler to do normal
message inlining for each copy of the message separately;
without splitting, the original message send couldn’t be in-
lined.

Of course, uncontrolled extended message splitting could
lead to a large increase in the size of the graph and thus in
compiled code size and compile time. To limit the increase
in code size, our compiler only performs extended message
splitting when the number of copied nodes is below a lixed
threshold, and only copies nodes along the “common case”
branches of the control flow graph (i.e. along branches that
aren’t downstream of any failed primitives or type tests).

5 Type Analysis For Loops
Performing type analysis for loops presents a problem. The
loop head node is a kind of merge node, connecting the end
of the loop back to the beginning. Thus the type bindings at
the beginning of the loop body depend not only on the type
bindings before the loop, but also on the bindings at the end
of the loop, which depend on the bindings at the beginning.
This creates a circular dependency.

154

One solution to this circularity would be to construct a type
binding table for the loop head that is guaranteed to be com-
patible with whatever bindings are computed for the end of
the loop. This can be done by rebinding all locals assigned
within the loop to the most general possible type: the un-
known type. We call this strategy pessimistic type analysis.
However, it effectively disables the new SELF compiler’s
type analysis system, including range analysis, at precisely
the points that am most important to performance: the inner
loops of the program. Without mom accurate type informa-
tion, the compiler is forced to do type prediction and insert
run-time type tests to check for expected types of local vari-
ables. Since the original SELF compiler performed no type
analysis, local variables were always considered to be of un-
known type, and so the original SELF compiler could be
thought of as using pessimistic type analysis for loops.

Another solution to the circularity would be to use tmdition-
al iterative data flow techniques [ASU863 to determine the
type bindings for the loop before doing any inlining within
the loop. However, most locals changed within the loop
would be assigned the results of messages, and since these
message aren’t inlined yet, their result types are unknown,
and so most locals would end up being bound to the un-
known type by the end of the loop body. The net effect of
standard iterative data flow analysis for type information is
the same as for the pessimistic type analysis: assigned locals
end up bound to the unknown type.

5.1 Iterative Type Analysis
The solution adopted in the new SELF compiler is called ir-
erative type analysis. Our compiler first uses the type bind-
ings at the head of the loop to compile the body of the loop,
with as much inlining and constant-folding as possible based
on those types. It then compares the type bindings for the end
of the loop with the head of the loop. If they are the same,
then the compiler has successfully compiled the loop and
can go on to compile other parts of the program. If some
types am different, then the compiler forms the appropriate
merge types for those locals whose types am different, and
recompiles the body of the loop with the more general type
bindings. This process iterates until the fixed point is
reached, where the type bindings of the head of the loop am
compatible with the type bindings at the end of the loop.

Iterative type analysis computes type bindings over a chang-
ing control flow graph, building the control flow graph as
part of the computation of the type binding information.
Standard data flow techniques, on the other hand, operate
over a fixed control flow graph. Iterative type analysis is im-
portant for dynamically-typed object-oriented languages,
where transformations of the control flow graph (such as in-
lining) are crucial to compute accurate type information.

first iteration:

{tl, t2} a tl

not comoatible

second iteration:

{tl, t2, t3) a {tl, t2}

not comDatible

last Iteration:

{tl , t2, t3) c {tl) i2, t3j

compatible

To reach the fixed point in the analysis quickly, loop head
merge nodes compute the type binding table in a slightly dif-
ferent way than normal merge nodes. If the loop head and the
loop tail produce different value or subrange types within the
same class type for a particular local, the loop head merge
node generalizes the individual values to the enclosing class
type (instead of forming a normal merge type). For example,
if the initial type of a local is the 0 value type, and the ending
type is the 1 value type (as it would be for a simple loop
counter initialized to zero), the loop head node rebinds the
local to the integer class type rather than the merge of the
two value types. Then the type automatically handles all fu-
ture integer values of the counter in one iteration. This sac-
rifices some precision in type analysis, but saves a great deal
of compile time and does not seem to hurt the quality of the
generated code.

155

5.2 Iterative Type Analysis and Extended
Message Splitting

The combination of extended message splitting and iterative
type analysis makes it possible to compile multiple versions
of loops. For example, consider a loop head that merges two
different types together, and so creates a merge type. The
compiler should be free to split the merged types apart to in-
line a message send inside the body of the loop, and so may
actually split the loop head node itself into two copies, each
with different type information. Each loop head thus starts
its own version of the loop, compiled for different type bind-
ings.

When the compiler finally reaches the loop tail node, after
compiling the body of the loop, there may be multiple loop
heads to choose from. The compiler first tries to find a loop
head that is compatible with the loop tail, and if it finds one
come&s the loop tail to the compatible loop head. If it
doesn’t find a compatible loop head, it tries to split the loop
tail node itself to create a copy of the loop tail that is com-
patible with one of the loop heads. If the type of a local at the
loop tail is a merge type, and one of the loop heads contains
a binding that is a subset of the merge type, then the loop tail
is split to generate a loop tail that only contains the matching
subset, and this copy is connected to its matching loop head.
The compiler then attempts to match and/or split the other
loop tail,

Only if a loop tail doesn’t match any of the available loop
heads does the compiler give up, throw away the existing
versions of the loop, and recompile it with mom general type
bindings. To compute the type bindings for the head of the
new loop, the compiler forms merge types from the bindings
for the old loop heads and the remaining unattached loop
tail.

Compatibility needs to be defined carefully to avoid losing
type information. A loop tail is compatible with (matches) a
loop head if for each type binding the type at the loop head
contains the type at the loop tail and the type at the loop head
does not sacrifice class type information present in the loop
tail. This means that the unknown type at the loop head is not
compatible with a class type at the loop tail. Instead, the type
analysis will iterate, forming a merge type of the unknown
type and the class type at the loop head. This has the advan-
tage that the body of the loop may split off the class type
branch from the unknown type branch, and generate better
code along the class type branch

Before Extended Splitting

x:tll/l___lx:t2
(loop head)

send msg to x

q

After Extended Splitting and Inlining

After Splitting Loop Tail

156

5.3 An Example
Consider a very simple SELF function that sums all the mte-
gers from 1 up to its argument n:

triangleNumber: n = (
I sum <- 0 I "declare and init sum"
1 upTo: n Do: [1 :i 1

"i is loop index"
sum : suxn+i. "increment sum"

I.
sum). "return sum"

This function uses the user-defined control structure
upTo : Do : to iterate through the numbers from 1 to n-l.
After inlining the control structum down to primitive opera-
tions, the compiler produces the following:

triangleNumber: n = (
1 sum <- 0. i <- 1. 1

loop:
if i C n then

sum : sum + i.
i: i + 1.
got0 loop

sum).

The compiler uses iterative type analysis to compile the
body of the loop. The first time through, SUICI is initially
bound to the 0 value type and i is initially bound to the 1
value type. Both + messages will get inlined down to integer
addition primitives and constant-folded. At the end of the
loop, surn is bound to the 1 value type and i is bound to the
2 value type. These types are incompatible with the con-
stants assumed at the head of the loop, and so type analysis
iterates.

The second iteration (shown at the top of the next column)
generalizes the types of both sum and i to the integer class
type (remember that loop head merge nodes intentionally
generalize their merge types to speed the analysis). After it-
erating once more (and assuming that the result type of a
failed primitive is the unknown type), the compiler generates
the control flow graph pictured at the top of the next col-
umn.* The type tests for sum and i a~ optimized away us-
ing the type information computed for the loop, and the
overflow check for the increment of i is optimized away us-
ing integer subrange analysis.

The portion of this version of the loop in the gray box is the
best one could expect a compiler to achieve.** Unfortunate-
ly, the loop tail still doesn’t match the loop head (e.g. sum:
(int, ?I Q int), and so type analysis must iterate. Without ex-
tended splitting, the compiler would have to compile a single
version of the loop that worked for all cases. This more
general version would need five run-time type tests before

* ? denotes the unla~own type.
l * The compiler can't eliminate the remaining ovefflow check,
since it is possible to pass in an n argument that would cause sum
to overflow (e.g. the largest possible integer).

Second Iteration of
TriangleNumber Example

~lT$inlnt+l ..maxlnt]

f I more
nodes

Y
-int, sum: ?, i: 7

t

n: {int, Tint}, sum: {int, ?}, i: (int, 7)

the < and + operations to test for integer arguments. With ex-
tended splitting, however, the compiler is able to ehminate
all run-time type tests from a common-case version of the
loop, generating exactly what’s in the gray box; another ver-
sion will be generated to handle overflows and a non-integer
n.

To restart the type analysis, the compiler builds a new loop
ini- with the types resulting from the previous itera-
tion. Analysis then proceeds similarly as before, except that
when analyzing the c and + messages, the compiler splits off
the integer receiver and argument cases from the non-integer
cases, splitting the loop head in the process.*** When the
loop tail is reached, the compiler splits it into two tails, and
connects each to its corresponding loop head. The final con-
trol flow graph is pictured on the top of the next page.

The combination of extended splitting and iterative type
analysis has allowed the compiler to optimize all type tests
from the common case. A compiler for a statically-typed,
non-object-oriented language could do no better.

l ** ‘IXe actual workings of the compiler, and the final control flow
graph, are a bit more complex than those presented here. We have
chosen to simplify the exposition of the ideas by glossing over
some of these messy details.

157

Final Results of TriangleNumber Example

.--I- “-
n: ?, sum: int, i: int

22 n int?
n: int n: ?-int

5.4 Discussion

Combining extended message splitting with iterative type
analysis has several beneficial effects. Our compiler can
generate multiple versions of loops, each version assuming
different type bindings and therefore optimized for different
cases at run-time. This is especially important to isolate the
negative effects of primitive failure from the normal case of
primitive success. For example, a loop that performs a&h-
metic on locals in the body might get two versions compiled:
one that knows all the locals am integers, and a second that
handles locals of any type. The first version will branch to
the second version only if a primitive fails; if no primitives
fail (the common case) control will remain in the fast integer
version of the loop. Robustness of integer arithmetic primi-
tives has been implemented at the cost of only au overflow
check; no extra type tests are needed if the failure never hap
pe**
Extended message splitting also may “hoist” type tests out of
a loop, as it did with the n integer type test in the above
triangleNumber: eXaI@e. Iftheinitialtypesofsome
variables am unknown (such as for method arguments), and
the body of a loop does arithmetic on the variables, our com-
piler will compile a version of the loop for the unknown
types, and embed type tests to check for integer values at
run-time. If the values turn out to be integers, the second it-
eration of the loop will branch to another version that was

compiled assuming integer types for the locals. Control will
remain in the second version of the loop as long as the locals
remain integers (e.g. until an overflow occurs). The first ver-
sion of the loop contains the type tests, while the second ver-
sion contains none. If the normal case is to have integer val-
ues, then the type tests effectively have been hoisted out of
the integer version into the unknown version, which is exe-
cuted only on the first loop iteration.

Extended message splitting and iterative type analysis have
been carefully designed to automatically compile multiple
versions of loops. No additional implementation techniques
or special algorithms are needed. No special treatment of in-
tegers or loop control variables is needed, nor is any special
work performed to hoist type tests out of loops. The compil-
er just uses type prediction and message splitting to create
and preserve the type information needed to inline messages
and avoid type tests and sometimes ends up creating multi-
ple versions of a loop.

Of course, extended message splitting exacts a price in com-
pile time and compiled code space, However, compiling an
additional specialized version of most loops is probably not
too costly. This is because the specialized version tends to be
much smaller than the more general version of the loop that
is littered with type tests, message sends, and failure blocks.
Unfortunately, our current implementation sometimes com-
piles more than just two versions of a loop; we plan to work
on minimizing the number of extra versions of loops that get
compiled

6 Performance Measurements
We measured the performance of the compiled code, the
compiled code size, and compile time. All measurements
were taken on a Sun-4/260 SPARC-based workstation. Our
measurements am summarized for four sets of benchmatks:

l Stanford is the set of eight integer benchmarks from
the Stanford benchmark suite. These benchmarks
typically measure the speed of accessing and iterating
t.hough fixed-length arrays of integers.

9 Stanford-00 consists of the same eight benchmarks
rewritten in an object-oriented style. The changes are
chiefly to redirect the target of messages from the
benchmark object to the date structures manipulated by
the benchmark (such as the array being sorted); none of
the underlying algorithms were changed, nor were any
source-level optimizations performed as part of the
rewrite. The puzzle benchmark was not rewritten, but
is included in this group anyway in the interest of
fairness.

l small is a group of “micro-benchmarks” used as an
initial test suite when implementing the new techniques.

l richards is a larger, operating system simulation
benchmark, written in about 400 lines of SELF source
co&.

158

Speed of Compiled Code (as a percentage of optimized C)
median (mln - max)

small stanford stanford-oo rlchards

ST-80 10% (5%-10%) 9% (5%-53%) 9% (5%-80%) 9%

old SELF-89 19% (lo%-48%) 28% (13%-56%) 26%

old SELF-90 11% (7%--12%) 14% (9%-41%) 19%(9%-69%) 17%

new SELF 24% (21%-53%) 25% (19%-47%) 42% (19%-91%) 21%

Compile Time and Code Size
median / 75%~lie / max

small stanford+stanford-oo puzzle richards

compile time (in seconds of CPU time)

optimized C 3-o/3.4/3.9 9.1 13.4

old SELF-90 0.3/0.3/0.4 0.7/0.8/1.1 6.9 2.1

new SELF 5.2/5.7/6.4 21.1/31.9/123.3 362.3 35.6

compiled code size (in kilobytes)

optimized C 2.7/2.9/3.3 5.0 6.1

old SELF-90 2.6/2.9/5.3 11.6/13.2/18.5 81.3 34.3

new SELF 1.5/l-6/1.8 7.7/10.2/16.2 41.3 25.5

The benchmm were run with five compilers:

optimized C is the C compiler supplied with SunOS
4.0 and invoked with the -02 flag.For richards,
which is written in C++, the C version includes the
effect of the AT&T cfront 1.2.1 preprocessor.
ST-80 refers to the ParcPlace Systems Version 2.4
Smalltalk- implementation. This system uses
dynamic compilation [DS84], and is tied with Version
2.5 for the distinction of being the fastest commercially
available Smalltalk system.
old SELF-89 refers to the measurements taken for the
old SELF compiler in early 1989 and published in
[CU89]. This was a well-tuned SELF system with a
simpler compiler based on expression trees,
customization, and local splitting.
old SELF-90 is our current, production SELF system
which uses the old SELF compiler. This system includes
more elaborate semantics for message lookup and
blocks, and is not as highly tuned as it was a year ago.
For these *asons, the performance has worsened from
last year’s numbers. However, comparing its
performance to that of the new SELF compiler allows us
to isolate the effects of the improvements in the new
compiler.

9 new SELF is our new SELF compiler as described in
this paper, but without compiling multiple versions of
loops. At the time of this writing, the part of the new
compiler that recomputes the type information within a
loop after splitting a loop head is broken. The results we
have observed in the past for compiling multiple
versions of loops leads us to expect even better
performance when this part of the compiler is repaired

The rest of this section summarizes the results. Raw data for
individual benchmarks are given in the appendices.

6.1 Speed of Compiled Code
These results in the above table show that the new SW
compiler is around 40% the speed of optimized C for the
Stanford-co benchmarks. This perfo~~~~~~ce is four times
faster than Smalltalk- and more than twice as fast as the
current SELF-90 version of the original compiler. Some of
this improvement over the original SELF compiler results
from better register allocation and delay slot Wing. Much of
the rest can be credited to better type analysis and especially
the inclusion of range analysis.

The richards benchmark is worthy of further mention. Its
performance is not as good as some of the other benchmarks,
and we have traced this problem to a single bottleneck the

159

call site that runs the next task on the task queue. This calI is
polymorphic (since different tasks handle the run message
differently), and by invoking a different procedure almost
every call defeats the traditional inline-caching optimization
[DS84] intended to speed monomorphic call sites. The result
is that the overhead to handle this single call site is the same
as the total optimized C time of the benchmark. We think we
could nearly eliminate this overhead by generating call-site-
specific inline-cache miss handlers. If implemented, this
would probably increase the performance of the richards
benchmark to 25%.

6.2 Compile Time
We have not yet optimized compile time in the new compiler
and the measurements suggest we will need to. Almost all of
benchmarks take from 15 to 35 seconds to compile with the
new compiler. We expect that these numbers can be reduced
quite substantially because the old SELF compiler compiles
most of the programs in less than a second. By contrast, the
C compile takes about three seconds for most of these pro-
grams. We suspect that new SELF compiler contains a few
exponential algorithms for data flow analysis and register al-
location, and we hope to improve them.

6.3 Code Space
The new compiler’s generated code size is about four times
larger than for the optimized C programs. However, the dif-
ference cannot be blamed solely on our new techniques. In
fact, the original SELF compiler uses even more space than
the new SELF compiler. A substantial part of the space over-
head can be attributed to the large inline caches for dynami-
tally-bound procedure caIls and to code handling primitive
failures like overflow checking and array bounds checking.
We have done only rudimentary work on conserving com-
piled code space, and expect to be able to reduce this space
overhead.

Even with the current compiled code sixes, large SELF appli-
cations can be executed without an exorbitant amount of
code space. For example, our prototype graphical user inter-
face and its supporting data structures am written in 7000
lines of SELF source code and compile to less than a mega-
byte of machine code (more space is currently used to store
debugging and relocation information for the compiled
code). In addition, since SELF compiles code dynamically, it
need only maintain a working set of code in memory; unused
compiled code is flushed from the code cache to be recom-
piled when next needed. Although final proof must await
larger SELF programs, we believe that extra code space will
not be a problem.

7 Related Work
Other systems perform type analysis over programs without
external type declarations. ML -901 is a statically-
typed function-oriented language in which the compiler is
able to infer the types of all procedures and expressions and
do static type checking with virtually no type declarations,
Researchers have attempted to extend ML-style type infer-
ence to object-oriented languages, with some success
[Wan87, Wan89,OB89. h4it89]. However, most of these ap-
proaches use type systems that describe an object’s interface
or protocol, rather than the object’s representation or method
dictionary. While this higher-level view of an object’s type
is best for flexible polymorphic type-checking, it provides
little information for an optimizing compiler to speed pro-
grams.

A different approach is taken by the Typed SmaIltalk project
[Joh86, JGZ88]. Their type system is based on sets of class-
es, and a variable’s type specifies the possible object classes
(not superclasses) that objects stored in the variable may
have. If the number of possible classes associated with a
variable is small, then messages sent to the variable can be
inlined (after an appropriate series of run-time type tests).

The Typed Smalltalk system includes a type inferencer that
infers the types of most methods and local variables based on
the user-declared types of instance variables, class variables,
global variables, and primitives [Gra89, GJ90]. The type in-
femncer is based on abstract interpretation of the program in
the type domain, and an expression is type-correct if and
only if the abstract interpretation of the expression in the
context of the current class hierarchy is successfuI. The type
of a method is determined by partially evaluating the ab-
stract interpretation of the body of the method, and as such
frequently cannot be completely determined to a simple
type, but may contain unresolved constraints on the types of
the method’s arguments. These constraints must be checked
at each call site.

This type-checking and type inference system is very pow-
erful and should be able to type-check much existing SmalI-
talk-80 code. It is also suitable for optimizing compilation,
since the types of variables and expressions describe their
possible representations and method dictionaries. Unfortu-
nately, their system could take a long time to infer the type
of au expression, since an arbitrarily large portion of the en-
tire system wilI be abstract-evaluated to compute the type of
the expression.

None of these statically-typed systems handles dynamicahy-
typed languages like SELF (the Typed Smalltalk systems dis-
allows SmaIhallc programs that cannot be statically type-

160

checked). Our type analysis system is designed to compute
as much exact type information about the receivers of mes-
sages as possible, while still handling uncertain and un-
known types gracefully. It operates with a limited amount of
initial type information (just the type of the receiver and the
types of constant slots), and so attempts to extract and pre-
serve as much new type information as it can.

Range analysis is performed in many traditional optimizing
compilers. However, Fortran compilers typically determine
subrange information by looking at the bounds specified in
do loops. This approach doesn’t work in languages with
user-defined control structures like SELF, Smalltalk, and
Scheme mC86], since the compiler has no fixed do con-
struct to look for loop index ranges. Our approach of com-
puting range information based on primitive arithmetic and
comparison operators rather than high-level statements lets
our compiler perform range-based optimizations (like elim-
inating overflow checks and array bounds checks) in the
context of user-defined control structures.

A useful extension to this scheme would be to record the m-
suits of comparisons with non-constant integer values, in
case the same comparison is performed again. This would
help eliminate many array bounds checks where the exact
size of the array is unknown, but the index is still always less
than the array length, and so the array bounds check can be
eliminated. Our current range analysis cannot eliminate
these bounds checks, since the integer subrange of the array
index overlaps the integer subrange for the array length, On

the other hand, the TS compiler for Typed Smalltalk [3GZ88,
McC89, Hei90] is able to optimize many of these bounds
checks away, since it uses simple theorem proving to propa-
gate the results of conditional expressions and thus avoid re-
peated tests, such as that the index is less than the array
length. However, their implementation only uses a single
premise at a time to evaluate conditional expressions, where-
as our integer subrange types can represent the combined ef-
fects of several comparisons. More work is needed to ex-
plore these approaches.

The TS compiler for Typed Smalltalk performs an optimiza-
tion similar to message splitting. A basic block with multiple
predecessors may be copied and some of its predecessors re-
routed to the copy if a conditional expression in the basic
block may be eliminated for a subset of the original block’s
predecessors; this is similar to local message splitting. An
extension is proposed that could also copy blocks that inter-
vened between the block containing the conditional and the
predecessor(s) that would enable eliminating the condition-
al, similarly to extended message splitting. However, these
techniques only apply to eliminating conditional expres-
sions, and is performed after type analysis and message in-
lining has been completed. Our extended message splitting
is performed at type arialysis time as part of message inlin-
ing, and additionally can be used to split branches of the con-

trol flow graph based on any other information available at
type analysis time, such as splitting for available values
[ASU86] in order to perform more common subexpression
elimination.

Extended message splitting with iterative type analysis may
lead to more than one version of a loop being compiled, each
for different initial type bindings. This is similar to an opti-
mization in some parallelizing Fortran compilers called rwo-
version loops [pW86], If a loop could be parallelized if cer-
tain run-tune conditions held (e.g. that some variable was
positive), then a compiler could insert a run-time test for the
desired conditions before the loop, and branch to either a
parallelized version or a sequential version.

Our type analysis is also similar to partial evaluation [SSSS].
Type analysis is a form of abstract interpretation of the nodes
in the control flow graph using compile-time types instead of
nm-time values. Our system partially-evaluates methods
with respect to the customized receiver type to produce au
optimized version of the method spec3ic to that receiver
type. Within the method, type analysis propagates type in-
formation in a similar manner as partial evaluators propagate
constant information. However, our compiler terminates
over all input programs, while partial evaluators traditional-
ly have been allowed to go into infinite loops if the input pro-
gram contains an infinite loop. Partial evaluators also sup-
port more complex descriptions of their input data, and gen-
erate specialized versions of residual (non-inlined) function
calls to propagate type information across procedure calls;
our SELF compiler performs no interprocedural analysis or
type propagation across non-inlined message sends.

8 Conclusions
Static type analysis is feasible even in a dynamically-typed
object-oriented language like SELF. Our type analysis sys-
tem computes enough static information to eliminate many
costly message sends and run-time type tests. Value types
serve to propagate constants throughout the control flow
graph, while integer subrauge types computed from arith-
metic and comparison primitives are used to avoid overflow
checks and array bounds checks in a language with no built-
in control structures. Iterative type analysis with mcompila-
tion serves to compute accurate type information for vari-
ables used within loops.

Type information lost by control flow merges can be re-
gained using extended message splitting. Extended message
splitting is especially important within loops, and may lead
to more than one version of a loop being generated. This is
accomplished simply by allowing loop heads and tails to be
split like other nodes; no extra implementation effort is
needed to implement multi-version loops. Typically, one
version of a loop wiJl work for the common case types (e.g.
integers and arrays), and contain no type tests and few over-
flow checks. Another version of the loop will be more

161

general and contain more type tests and error checks, but
will only be executed for unusual run-time type conditions.

Iterative type analysis, integer subrange analysis, and ex-
tended message splitting are powerful new techniques that
have nearly doubled the performance of our SELF compiler.
SELF now IUIE at nearly half the speed of optimized C, with-
out sacrificing dynamic typing, user-defined control struc-
tures, automatic garbage collection, or source-level debug-
ging. We feel that this new-found level of performance is
making dynamically-typed object-oriented languages practi-
cal, and we hope they will become more widely accepted

Acknowledgments
Urs Htilzle provided invaluable assistance collecting perfor-
mance data. He and Bay-Wei Chang helped proof-read the
paper, and improved its visual appearance significantly.

References
[ASU86] AJfmd V. Aho, Ravi Sethi, and Jeffrey D. Ullmau. Com-

pilers: Principles, Techniques, and Tools. Addison-Wes-
ley, Reading, MA, 1986.

[CU89] Craig Chambers and David Ungar. Customization: Opti-
mizing Compiler Tedmology for SELF, a Dynamically-
Typed Object-Oriented Programming Language. In Pro-
ceedings of the SiGPLM ‘89 Conference on Program-
ming Language Design and Implementation, Portland,
OR, June, 1989. Published as SIGPL,AN Notices 24(7),
July, 1989.

[CUL89] Craig Chambers, David Ungar, and Elgin Lee. An Effi-
cient Implementation of SELF, a Dynamically-Typed
Object-Oriented Language Based on Prototypes. In
OOPSLA ‘89 Conference Proceedings, pp. 49-70, New
Orleans, LA, 1989. Published as SIGPIAN Notices
24(10), October, 1989.

DS84] L. Peter Deutsch and Allan M. Schiffman. Efficient Jm-
plementation of the SmalRaJk-80 System. In Proceedings
of the 11 th Annual ACM Symposium on the Principles of
Programming Languages, pp, 297-302, Salt Lake City,
UT, 1984.

[GR83] Adele Goldberg and David Robson. SmalltalkBO: The
Language and Its Implementation. Addison-Wesley,
Reading, MA, 1983.

[Gra89] Justin Owen Graver. Type-Checking and Type-Inference
for Object-Oriented Programming Languages. Ph.D.
thesis, University of Illinois at Urbana-Champaign,
1989.

[GJ90] Justin 0. Graver and Ralph E Johnson. A Type System
for Smalltalk. In Conference Record of the 17th Annual
ACM Symposium on Principles of Programming Lan-
guages, pp. 136150, San Francisco, CA, January, 1990.

[Hei Richards Louis Heintz, Jr. Low Level Gptimizations for
an Object-Oriented Programming Language. Master’s
thesis, University of Jlhnois at Urbana-Champaign,
1990.

[Hen881 John Hennessy. Stanford integer benchmarks. Personal
communication, June, 1988.

[Joh86] Ralph E. Johnson. Type-Checking Smalltalk. In OOPS-
LA ‘86 Conference Proceedings, pp. 315-321, Portland,
OR, 1986. Published as SIGPLAN Notices 21(11), No-
vember, 1986.

[JGZ88] Ralph E. Johnson, Justin 0. Graver, and Lawrence W.
Zurawski. TS: An Optkizing Compiler for Smalltalk. In
OOPSLA ‘88 Conference Proceedings, pp. 18-26, San
Diego, CA, 1988. Published asSIGPLANNotices 23(11),
November, 1988.

b88] Elgin Lee. Object Storage and Inheritance for SELF, a
Prototype-Based Object-Oriented Programming Lan-
guage. Engineer’s thesis, Stanford University, 1988.

[McC89] Carl D. McConneU The Design of the RlZ System. Mas-
ter’s thesis, University of Illinois at Urbana-Champaign,
1989.

[Mit89] John Mitchell. Personal communication, November,
1989.

[MTH9O]Robin Milner, Mads Tofte, and Robert Harper. The Def-
inition of Stamiard ML MlT Press, Cambridge, MA,
1990.

[OB89] Atsushi Ohori and Peter Bunemsn. Static Type Inference
for Parametric Classes. In OOPSLA ‘89 Cor$erence Pro-
ceedings, pp. 445-456, New Orleans, LA, 1989. Pub-
lished as SIGPLAN Notices 24(10), October, 1989.

[pw86] David A. Padua and Michael J. Wolfe. Advanced Com-
piler Optimizations for Supercomputers. 3.n Communica-
tions of the ACM. pp. 1184- 1201, December, 1986.

mC86] Jonathan Rees and William Clinger, editors. Revised
Report OR the Algorithmic Language Scheme. 1986.

[SSSS] Peter Se&oft and Harald Sondergaard. A Bibliography
on Partial Evaluation. b SIGPLANNotices 23(2), pp. 19-
27, February, 1988.

[ung87] David Ungar. The Design and EvaIuation ofa High Per-
formance Smalltalk System. MIT Press, Cambridge, MA,
1987.

[ung89] David Ungar. A Performance Comparison of C, SELF,
and Smalhalk Jmplementations. Unpublished msnu-
script, March, 1989.

[US871 David Ungar and Randall B. Smith. SELF: The Power of
Simplicity. In OOPSLA ‘87 Conference Proceedings, pp.
227-241, Orlando, FL, 1987. Published as SIGPLANNo-
tices 22(12), December, 1987.

[wan871 M. Wand. Complete Type Inference for Simple Objects.
ln Proceedings of the 2nd IEEE Symposium on Logic in
Computer Science, pp. 37-44, 1987.

[wan891 M. Wand. Type Inference for Record Concatenation and
Multiple Inheritance. In Proceedings of the 4th IEEE
Symposium on Logic in Computer Science, pp. 92-97,
1989.

162

Appendix A Performance Data

Compiled Code Speed (as a percentage of optimized C)
benchmark

stanf ord

pen-n
pen-n-00

towers
towers-00

queens
queens-oo

intxnm
intmm-00

puzzle

quick
quick-00

bubble
bubble-00

tree
tree-00

small

sieve

sumTo
sumFromTo
surnToConst

atAllPut

richards**

ST-80

7%
8%

8%
19%

9%
10%

10%
6%

5%

9%
10%

6%
7%

53%
80%

5%

10%
10%
10%

6%

9%

old SELF-89

18%
28%

21%
34%

19%

34%

16%
*

13%

19%
21%

10%
14%

48%
56%

22%

26%

aid SELF-90

13%
20%

16%
21%

14%

16%

19%
22%

9%

14%
17%

9%
9%

41%
69%

7%

11%
10%
11%

12%

17%

new SELF

24%
56%

23%

43%

26%

35%

35%
40%

19%

28%
40%

22%
63%

47%
91%

23%

24%
21%
33%

53%

21%

*Empty entriesintheperfonnanee tablesindicateunavailable~ormation.

**Seesection6.1foradiscussionoftheperfonnancemults for richards.

163

Appendix 6 Code Space and Compile Time
Compiled Code Size (In kllobytes)

benchmark
at-ford

P-m
perm-00
towers
towers-00
queen.9
queens-00

intm
intmm- 00
puzzle
quick
quick-00
bubble
bubble-00
tree
tree2

mUl1
sieve
awnTo
8umPromTo
8umToConst
PtAllPUt

riahrrdm 6.1 34.3 25.5

Optimized C old SELF-90 new SELF

2.4

3.1

2.5

2.5

5.0

2.8

2.1

3.3
.

7.5 5.8
10.1 7.1

12.1 16.2
7.0 7.4

11.7 12.0
9.1 8.0

11.2 5.1
18.5 8.3

a1.3 41.3

14.1 11.9
16.2 10.2
11.5 6.7

a.0 5.9

13.2 9.5
12.1 7.2

0.5 5.3 1.5

2.6 1.6
2.9 1.8
2.6 0.8

2.2 0.9

benchmark
atmford

pem
penn-00
towers
towers-00
queens
queens-00
intmm
into-00
puzzle
quick
quick-00

bubble
bubble-00
tree
tree-00

SInell
sieve
sumTo
8umPromTo
8umToConst
atAllPut

richrtdm 13.4 2.1 35.6

Compile Tlme (in seconds of CPU time)
Optlmlzed C old SELF-90 new SELF

2.0

3.7

3.1

2.9

9.1
3.0

2.9

3.9

0.58 11.8
0.85 19.8

0.73 31.9
0.37 7.6

0.71 65.4
0.62 25.2

0.84 20.7
1.1 30.1

6.9 362.3

0.70 122.9
0.90 123.3

0.63 15.9
0.55 21.5

0.56 10.2
0.74 7.0

1.6 0.40 6.4

0.31 5.2
0.29 5.7
0.32 2.9

0.20 1.4

164

