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Abstract 
Object-oriented languages have suffe=d from poor perfor- 
mance caused by frequent and slow dynamically-bound pro- 
cedure calls. The best way to speed up a procedure call is to 
compile it out, but dynamic binding of object-oriented pro- 
cedure calls without static receiver type information pre- 
eludes inlining. Iterative type analysis and extended mes- 
sage splitting are new compilation techniques that extract 
much of the necessary type information and make it possible 
to hoist run-time type tests out of loops. 

Our system compiles code on-the-fly that is customized to 
the actual data types used by a running program, The com- 
piler constructs a control flow graph annotated with type in- 
formation by simultaneously performing type analysis and 
Wining. Extended message splitting preserves type infonna- 
tion that would otherwise be lost by a control-flow merge by 
duplicating all the code between the merge and the place that 
uses the information. Iterative type analysis computes the 
types of variables used in a loop by repeatedly recompiling 
the loop until the computed types reach a fix-point. Together 
these two techniques enable our SELF compiler to split off a 
copy of an entire loop, optimized for the common-case 
types. 

By the time our SELF compiler generates code for the graph, 
it has eliminated many dynamically-dispatched procedure 
calls and type tests. The resulting machine code is twice as 
fast as that generated by the p~vious SELF compiler, four 
times faster than ParcPlace Systems SmalltalHO,* the fast- 
est commercially available dynamically-typed object-orient- 
ed language implementation, and nearly half the speed of op- 
timized C. Iterative type analysis and extended message 
splitting have cut the performance penalty for dynamically- 
typed object-oriented languages in half. 

l SmaLltaJk-80 is a trademark of ParcPlace Systems, Inc. 
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1 Introduction 
Dynamically-typed object-oriented languages have histori- 
cally been much slower in run-time perfomm~~ce than tradi- 
tional languages like C and Fortran. Our measurements of 
several Smalltalk systems on personal computers and work- 
stations [ung89] indicate that their performance is between 
5% and 20% of the performance of optimized C programs. 
This disparity in performance is caused largely by the rela- 
tively slow speed and high frequency of message passing 
and the lack of static type information to reduce either of 
these costs. This paper describes new techniques for extract- 
ing and preserving static type information in dynamically- 
typed object-oriented programs. 

This work** continues our earlier work on the SELF pro- 
gramming language [uS87, Lee88]. SELF is a new dynami- 
cally-typed object-oriented language in the spirit of Small- 
talk-80 [GR83], but is novel in its use of prototypes instead 
of classes and its use of messages instead of variables to ac- 
cess state. These features make SELF programs even harder 
to run efficiently than other dynamically-typed object-ori- 
ented languages, since SELF programs send many more 
messages than equivalent Smalltalk programs. 

As part of our earlier work we built an optimizing compiler 
for SELF that pioneered the use of customization, type pre- 
diction, and message splitting [CU89, CUL.891. These tech- 
niques provided the compiler with much more static type in- 
formation than was previously available, enabling it to ag- 
gressively inline away many of the costly message sends 
without sacrificing source-code compatibility. This SELF. 
compiler achieved a performance of between 20% and 25% 
of optimized C on the Stanford integer benchmarks @Ien88], 
twice that of the fastest Smalltalk implementation on the 
same machine. 

While this performance is a clear improvement over compa- 
rable systems, it is still not competitive with traditional lan- 
guages. To narrow the gap even further, we have developed 
and implemented iterative rype analysis and entended mes- 
sage spkting in our new SELF compiler. These techniques 
provide the compiler with more accurate static type informa- 

** This work has been generously supported by a NSF Presidential 
Young Investigator Grant # CCR-8657631, and by SUJI, IBM, 
Apple, Tandem, NCR, TI, the Powell Foundation, and DEC. 
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tion and enable it to preserve this type information more ef- 
fectively. These techniques are especially important when 
optimizing loops and often lead to more than one version of 
a loop being compiled, each version optimized for different 
run-time types. Using these techniques, our new SELF com- 
piler produces code that runs almost half as fast as optimized 
C programs, without sacr&ing dynamic typing, overflow 
and array bounds checking, user-defined control structures, 
automatic garbage collection, and complete source-level de- 
bugging of optimized code. 

Traditional compilers can be divided into a front-end (pars- 
er) and a backend (optimizer and code generator). To gen- 
erate good code for a dynamically-typed object-oriented lan- 
guage, we have inserted a new phase between the front-end 
and the back-end. This phase performs type analysis, meth- 
od inlining, and message splitting to construct the control 
flow graph from abstract syntax trees of the source code. A 
more traditional back-end performs data flow analysis, glo- 
bal register allocation, and code generation from tbis control 
flow graph 

This paper describes the new intermediate phase of our com- 
piler. ‘The next section presents our type system, and de- 
scribes how type analysis works for straight-line code. Seo 
tion 3 extends the type aDaly& to handle merges in the con- 
trol flow graph, and describes extended message splitting. 
Section 4 completes type analysis and message splitting by 
describing iterative type analysis for loops, and presents a 
simple example of compiling multiple versions of a loop. 
Section 5 compares the performance of our new SELF sys- 
tem against optimized C, the original SELF compiler, and 
versions of the new SELF compiler with selected optimiza- 
tions disabled Section 6 discusses related work. 

2 Background 
The new techniques presented in this paper build upon those 
introduced in the previous SELF compiler, including cus- 
tomization, type prediction, message splitting (called local 
message splitting in this paper), message inlining, andprim- 
dive inlining [CU89, CUL89]. 

9 Customized compilation. Existing compilers for 
SmalltaJk-80 (as well as most other object-oriented 
languages) compile a single machine code method for a 
given source code method. Since many classes may 
inherit the same method, the Smalltalk- compiler 
cannot know the exact class of the receiver. Our SELF 
compiler, on the other hand, compiles a different 
machine code methodfor each type ofreceiver that runs 
a given source method. The advantage of this approach 
is that our SELF compiler can know the type of the 
receiver of the message at compile-time. 

. 

. 

. 

3 

Typeprediction. Sometimes the name of the message is 
sufficient to predict the type of its receiver. For 
example, several studies IIJng87] have shown that the 
receiver of a + message is nine times more likely to be 
a small integer than any other type. Our compiler inserts 
type tests in these cases so that subsequent code may 
exploit the type information in the common case. 

Message inlining. Once the type of a receiver is known, 
the compiler can optimize away the message lookup by 
performing it at compile-time, and then inline the code 
invoked by the message. 

Primitive inlining. SELF also includes primitive 
operations such as integer addition. Rather than 
compiling a call to an external routine, the compiler can 
directly compile many primitives in line. If the 
primitives include type tests, the compiler’s type 
information may be used to eliminate them. 

Simple Type Analysis 
To compute the static type information necessary for mes- 
sage inlining, the compiler builds a mapping from variable 
names to types at each point in the progmm (i.e. between ev- 
ery node in tire control flow graph). This mapping is comput- 
ed from the nodes in the control flow graph, such as assign- 
ment nodes, run-time type test nodes, and message send 
nodes. The type of a variable describes all the information 
the compiler knows about the current value of tbe variable, 
and as such differs li-om the standard notion of data type in a 
traditional statically-typed language. 

3.1 The Type System 
A type specifies a non-empty set of values. A variable of a 
particular type is guaranteed to contain only values in the 
type’s set of values at run-time. A type that specses a single 
value (called a value type) acts as a compile-time constant. 
The type that specifies ah possible values provides no infor- 
mation to the compiler and is called the unknown type. 

A’y~e that pe s cifies all values that are instances of some 
class (called a clars type) provides the compiler with both 
format and inheritance information for variables of the type, 
much like a traditional data type. Messages sent to a variable 
of class type can be looked-up at compile-time and inlined. 
A type that specifies a subrange of the values in the integer 
class type is called an integer subrunge type. The compiler 
treats integer value types and the integer class type as ex- 
treme forms of integer subrange types. 

* Since SELF has no classes, our implementation introduces maps 
transparently to the user to provide similar information and space 
efficiency as classes. Thus in our system the class type becomes the 
set of all values that share the same map. 
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Types In the SELF Compiler 

type name 
value 

integer 
subrange 

crass 

unknown 

union 

difference 

set description 
singleton set 

set of sequential 
integer values 

set of all values 
wl same class 

set of all values 

set union of types 

set difference of types 

static information 
compile-time constant 

integer ranges 

format and inheritance 

none 

union 

difference 

source 
literals, constant slots, 
true and false type tests 

arithmetic and comparison 
primitives 

self, results of primitives, 
integer type tests 

data slots, message results, 
up-level assignments 

results of primitive operations 

failed type tests 

A type may also specify the set union of several types or the 
set difference of two types. The chart above summarizes the 
kinds of types in our type system, the information they pro- 
vide to the compiler, and how they are created. 

3.2 Type Analysis Rules 
At the start of the method, the type mapping contains bind- 
ings for the receiver and each argument. Since our compiler 
generates customized versions of a source method (see sec- 
tion 2), the class of the receiver is known at compile-time for 
the version being compiled. Therefore, the receiver is initial- 
ly bound to the corresponding class type. Our system doesn’t 
currently customize based on the types of arguments, and so 
the arguments are initially bound to the unknown type. 

3.2.1 Simple Node Analysis 

A declaration of a local variable adds a new binding to the 
type mapping. Since local variables in SELF are always ini- 
tialized to compile-time constants, each binding will be to 
some value type. For example, since most variables are (im- 
plicitly) initialized to nil, their types at the start of their 
scopes would be the nil value type. 

Each node in the control flow graph may alter the type bind- 
ings as type information propagates across the node. A local 
assignment node simply changes the binding of the assigned 
local variable to the type of the value being assigned. A 
memory load node (e.g. implementing an instance variable 
access) binds its result temporary name to the unknown type 
(since the compiler doesn’t know the types of instance vari- 
ables). 

Our compiler computes the type of the result of integer arith- 
metic nodes using integer subrunge analysis. For example, 
the following rule is used to determine the result type for the 
integer addition node:* 

X: [%~~xhil, Y: [Ylo-~Yhd 

4 ztx+y 

z: [xio+ylommxhi+yhi] n [minht..maxht] 

Integer compare-and-branch nodes also use integer subrange 
analysis. However, instead of adding a binding for a result, 
compare-and-branch nodes alter the type bindings of their 
arguments on each outgoing branch. For example, the fol- 
lowing rule is used to alter the argument type bindings for 
the compare-less-than-and-branch node:** 

x: [$,..min(xhi,yhi-l)] x: ~m~h,~yd.-xt,J 

7-r 
Y: Emaxh,+l ,YI&YI,J Y: iYio-~i~(~hi~Yhi)l 

Run-time type test nodes are similar to compare-and-branch 
nodes. Along the success branch of the test the tested vari- 
able is rebound to the type of the test; along the failure 
branch the variable is rebound to the set difference of the in- 
coming type and the tested type. For example, the following 
rule is used to alter the argument type binding for the integer 
type test: 

x: type 

x int? 

* 
x: int x: type - int 

3.2.2 Message Send Node Type Analysls, Type 
Prediction, and lnllnlng 

To propagate types across a message send node, the compiler 
first attempts to inline the message. The compiler looks up 
the type bound to the receiver of the message. If the type is 
a class type (or a subset of a class type, such as a value type 
or an integer subrange type), the compiler performs message 

l This node is not the integer addition primitive, but just an add 
instruction. Type checking and oveflow checking are performed 
by other nodes surrounding the simple add instruction node. 

** In all control flow graph diagrams, conditional branch nodes 
have the true outgoing branch on the left, and the false 
outgoing branch on the right. 



lookup at compile-time, and replaces the message send node 
with either a memory load node (for a data slot access), a 
memory store node (for a data slot assignment), a compile- 
time constant node (for a constant slot access), or the body 
of a method (for a method slot invocation). If a method is in- 
lined, new variables for its formals and locals are created and 
added to the type mapping. The type of the result of a mes- 
sage send node that is not inlined is the unknown type. 

If the type of the receiver of the message is unknown (or 
more general than a single class type), the compiler tries to 
predict the type of the receiver from the name of the message 
(such as pmdicting that the receiver of a + message is likely 
to be an integer). Ifit can successfully predict the type of the 
receiver, the compiler inserts a run-time type test before the 
message to verify the guess, and uses local message splitting 
to compile two versions of the predicted message. 

3.2.3 Primltlve Operation Node Type Analysis, 
Range Analysls, and Mining 

Iu addition to sending messages, SELF programs may invoke 
primitive operations. These primitives include integer arith- 
metic, array accesses, object cloning, and basic graphics 
primitives. All primitive operations in SELF are robust: the 
types of arguments are checked at the beginning of the prim- 
itive and exceptional conditions such as overflow, divide-by- 
zero, and array-access-out-of-bounds are checked. A call to 
a primitive can optionally pass a user-defined failure block 
to invoke in case one of these exceptional conditions occurs; 
the result of the failure block is used as the result of the prim- 
itive operation. If the SELF programmer doesn’t provide an 
explicit failure block, a default failure block is passed that 
simply calls a standard error routine when invoked. 

To propagate types across a primitive operation no&, the 
compiler first attempts to constant-fold the primitive. If the 
primitive has no side-effects and the arguments are value 
types (i.e. compile-time constants), then the compiler exe- 
cutes the primitive at compile-time and replaces the primi- 
tive node with the compile-time constant result Sometimes 
the compiler can constant-fold a primitive even if the argu- 
ments aren’t compile-time constants. For example, if the ar- 
guments to an integer comparison primitive are integer sub- 
ranges that don’t overlap, then the compiler can execute the 
comparison primitive at compile-time based solely on sub- 
range information. 

If the compiler can’t constant-fold the primitive, and the 
primitive is small and commonly used (such as integer arith- 
metic and array accesses), then the compiler inlines the 
primitive, replacing the call to the primitive with lower-level 
nodes that implement the primitive. For example, the fol- 
lowing set of nodes implement the integer addition primi- 
tive: 

By analyzing the nodes that make up the primitive, the com- 
piler is frequently able to optimize away the initial type tests 
and even the overfiow check. For example, if the arguments 
to an integer arithmetic primitive am integer subranges that 
cannot cause an overflow, then the compiler can constant- 
fold away the initial type tests, the overflow check, and the 
failure block, leaving a single add instruction node. As it 
eliminates the type and overflow tests, the compiler comes 
closer and closer to its goal of eliminating the performance 
disadvantage of robust primitives. If all the tests can be elim- 
inated, the failure block can be eliminated, which saves 
space, but more importantly, eliminates subsequent type 
tests of the result of the primitive. 

The type of the result of an inlined primitive can be comput- 
ed by propagating types across the nodes implementing the 
primitive. Even if the primitive isn’t inlined, the compiler 
binds the result of the primitive to the result type stored in a 
table of primitive result types. The original SELF compiler 
could also constant-fold and inline primitive calls, except it 
did no range analysis and so couldn’t constant-fold a com- 
parison primitive based solely on integer subrange informa- 
tion or eliminate overflow checks and array bounds checks. 

4 Extended Message Splitting 
Both the original and the new SELF compilers use message 
splitting to take advantage of type information that other- 
wise would be lost to merges in the control flow graph (see 
[CU89, CuL89]). The original SELF compiler was only able 
to split messages that immediately followed a merge point; 
we call this local message splitting. Our new SELF compiler 
performs enough type analysis to detect ah splitting oppor- 
tunities, no matter how much code separates the message 
send from the merge point; we call this extended message 
splitting. 
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Before Extended Splitting 

After Extended Splitting 

After lnlinlng 

x:{tl,t2}1 

To propagate type information across a merge node, the 
compiler constructs the type mapping for the outgoing 
branch of the merge node from the type mappings for the in- 
coming branches. For each variable bound to a type in all in- 
coming branches, the compiler merges the incoming types. 
If ail incoming types are the same, then the outgoing type is 
the same as the incoming type. If the types are different, then 
the compiler constructs a new merge fype containing the in- 
coming types. A merge type is similar to a union type, except 
that the compiler knows that the dilution of type information 

was caused by a merge in the control flow graph. In addition, 
a merge type records the identities of its constituent types, 
rather than recording the result of the set union of the merged 
types. For example, the integer class type merged with the 
unknown type forms a merge type that contains both types 
as distinct elements, rather than reducing to just the un- 
known type as a set union would produce (recall that the un- 
known type specifies all possible values, and so contains the 
integer class type). 

x: t1 x: t2 

9 

merge 

x: {tl, t2) 

The compiler takes advantage of merge types when propa- 
gating type information across message send nodes. If the 
type of the receiver of the message is a merge type, contain- 
ing types of different classes, the compiler may elect to split 
the message and all the intervening nodes back through the 
control flow graph up to the merge point that diluted the type 
information. This splitting creates two copies of the nodes in 
the graph from the send node back to the merge point; the re- 
ceiver of each copy of the split message send node now has 
a more specific type, allowing the compiler to do normal 
message inlining for each copy of the message separately; 
without splitting, the original message send couldn’t be in- 
lined. 

Of course, uncontrolled extended message splitting could 
lead to a large increase in the size of the graph and thus in 
compiled code size and compile time. To limit the increase 
in code size, our compiler only performs extended message 
splitting when the number of copied nodes is below a lixed 
threshold, and only copies nodes along the “common case” 
branches of the control flow graph (i.e. along branches that 
aren’t downstream of any failed primitives or type tests). 

5 Type Analysis For Loops 
Performing type analysis for loops presents a problem. The 
loop head node is a kind of merge node, connecting the end 
of the loop back to the beginning. Thus the type bindings at 
the beginning of the loop body depend not only on the type 
bindings before the loop, but also on the bindings at the end 
of the loop, which depend on the bindings at the beginning. 
This creates a circular dependency. 
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One solution to this circularity would be to construct a type 
binding table for the loop head that is guaranteed to be com- 
patible with whatever bindings are computed for the end of 
the loop. This can be done by rebinding all locals assigned 
within the loop to the most general possible type: the un- 
known type. We call this strategy pessimistic type analysis. 
However, it effectively disables the new SELF compiler’s 
type analysis system, including range analysis, at precisely 
the points that am most important to performance: the inner 
loops of the program. Without mom accurate type informa- 
tion, the compiler is forced to do type prediction and insert 
run-time type tests to check for expected types of local vari- 
ables. Since the original SELF compiler performed no type 
analysis, local variables were always considered to be of un- 
known type, and so the original SELF compiler could be 
thought of as using pessimistic type analysis for loops. 

Another solution to the circularity would be to use tmdition- 
al iterative data flow techniques [ASU863 to determine the 
type bindings for the loop before doing any inlining within 
the loop. However, most locals changed within the loop 
would be assigned the results of messages, and since these 
message aren’t inlined yet, their result types are unknown, 
and so most locals would end up being bound to the un- 
known type by the end of the loop body. The net effect of 
standard iterative data flow analysis for type information is 
the same as for the pessimistic type analysis: assigned locals 
end up bound to the unknown type. 

5.1 Iterative Type Analysis 
The solution adopted in the new SELF compiler is called ir- 
erative type analysis. Our compiler first uses the type bind- 
ings at the head of the loop to compile the body of the loop, 
with as much inlining and constant-folding as possible based 
on those types. It then compares the type bindings for the end 
of the loop with the head of the loop. If they are the same, 
then the compiler has successfully compiled the loop and 
can go on to compile other parts of the program. If some 
types am different, then the compiler forms the appropriate 
merge types for those locals whose types am different, and 
recompiles the body of the loop with the more general type 
bindings. This process iterates until the fixed point is 
reached, where the type bindings of the head of the loop am 
compatible with the type bindings at the end of the loop. 

Iterative type analysis computes type bindings over a chang- 
ing control flow graph, building the control flow graph as 
part of the computation of the type binding information. 
Standard data flow techniques, on the other hand, operate 
over a fixed control flow graph. Iterative type analysis is im- 
portant for dynamically-typed object-oriented languages, 
where transformations of the control flow graph (such as in- 
lining) are crucial to compute accurate type information. 

first iteration: 

{tl, t2} a tl 

not comoatible 

second iteration: 

{tl, t2, t3) a {tl, t2} 

not comDatible 

last Iteration: 

{tl , t2, t3) c {tl ) i2, t3j 

compatible 

To reach the fixed point in the analysis quickly, loop head 
merge nodes compute the type binding table in a slightly dif- 
ferent way than normal merge nodes. If the loop head and the 
loop tail produce different value or subrange types within the 
same class type for a particular local, the loop head merge 
node generalizes the individual values to the enclosing class 
type (instead of forming a normal merge type). For example, 
if the initial type of a local is the 0 value type, and the ending 
type is the 1 value type (as it would be for a simple loop 
counter initialized to zero), the loop head node rebinds the 
local to the integer class type rather than the merge of the 
two value types. Then the type automatically handles all fu- 
ture integer values of the counter in one iteration. This sac- 
rifices some precision in type analysis, but saves a great deal 
of compile time and does not seem to hurt the quality of the 
generated code. 
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5.2 Iterative Type Analysis and Extended 
Message Splitting 

The combination of extended message splitting and iterative 
type analysis makes it possible to compile multiple versions 
of loops. For example, consider a loop head that merges two 
different types together, and so creates a merge type. The 
compiler should be free to split the merged types apart to in- 
line a message send inside the body of the loop, and so may 
actually split the loop head node itself into two copies, each 
with different type information. Each loop head thus starts 
its own version of the loop, compiled for different type bind- 
ings. 

When the compiler finally reaches the loop tail node, after 
compiling the body of the loop, there may be multiple loop 
heads to choose from. The compiler first tries to find a loop 
head that is compatible with the loop tail, and if it finds one 
come&s the loop tail to the compatible loop head. If it 
doesn’t find a compatible loop head, it tries to split the loop 
tail node itself to create a copy of the loop tail that is com- 
patible with one of the loop heads. If the type of a local at the 
loop tail is a merge type, and one of the loop heads contains 
a binding that is a subset of the merge type, then the loop tail 
is split to generate a loop tail that only contains the matching 
subset, and this copy is connected to its matching loop head. 
The compiler then attempts to match and/or split the other 
loop tail, 

Only if a loop tail doesn’t match any of the available loop 
heads does the compiler give up, throw away the existing 
versions of the loop, and recompile it with mom general type 
bindings. To compute the type bindings for the head of the 
new loop, the compiler forms merge types from the bindings 
for the old loop heads and the remaining unattached loop 
tail. 

Compatibility needs to be defined carefully to avoid losing 
type information. A loop tail is compatible with (matches) a 
loop head if for each type binding the type at the loop head 
contains the type at the loop tail and the type at the loop head 
does not sacrifice class type information present in the loop 
tail. This means that the unknown type at the loop head is not 
compatible with a class type at the loop tail. Instead, the type 
analysis will iterate, forming a merge type of the unknown 
type and the class type at the loop head. This has the advan- 
tage that the body of the loop may split off the class type 
branch from the unknown type branch, and generate better 
code along the class type branch 

Before Extended Splitting 

x:tll/l___lx:t2 
( loop head ) 

send msg to x 

q 

After Extended Splitting and Inlining 

After Splitting Loop Tail 
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5.3 An Example 
Consider a very simple SELF function that sums all the mte- 
gers from 1 up to its argument n: 

triangleNumber: n = ( 
I sum <- 0 I "declare and init sum" 
1 upTo: n Do: [ 1 :i 1 

"i is loop index" 
sum : suxn+i. "increment sum" 

I. 
sum ). "return sum" 

This function uses the user-defined control structure 
upTo : Do : to iterate through the numbers from 1 to n-l. 
After inlining the control structum down to primitive opera- 
tions, the compiler produces the following: 

triangleNumber: n = ( 
1 sum <- 0. i <- 1. 1 

loop: 
if i C n then 

sum : sum + i. 
i: i + 1. 
got0 loop 

sum ). 

The compiler uses iterative type analysis to compile the 
body of the loop. The first time through, SUICI is initially 
bound to the 0 value type and i is initially bound to the 1 
value type. Both + messages will get inlined down to integer 
addition primitives and constant-folded. At the end of the 
loop, surn is bound to the 1 value type and i is bound to the 
2 value type. These types are incompatible with the con- 
stants assumed at the head of the loop, and so type analysis 
iterates. 

The second iteration (shown at the top of the next column) 
generalizes the types of both sum and i to the integer class 
type (remember that loop head merge nodes intentionally 
generalize their merge types to speed the analysis). After it- 
erating once more (and assuming that the result type of a 
failed primitive is the unknown type), the compiler generates 
the control flow graph pictured at the top of the next col- 
umn.* The type tests for sum and i a~ optimized away us- 
ing the type information computed for the loop, and the 
overflow check for the increment of i is optimized away us- 
ing integer subrange analysis. 

The portion of this version of the loop in the gray box is the 
best one could expect a compiler to achieve.** Unfortunate- 
ly, the loop tail still doesn’t match the loop head (e.g. sum: 
(int, ?I Q int), and so type analysis must iterate. Without ex- 
tended splitting, the compiler would have to compile a single 
version of the loop that worked for all cases. This more 
general version would need five run-time type tests before 

* ? denotes the unla~own type. 
l * The compiler can't eliminate the remaining ovefflow check, 
since it is possible to pass in an n argument that would cause sum 
to overflow (e.g. the largest possible integer). 

Second Iteration of 
TriangleNumber Example 

~lT$inlnt+l ..maxlnt] 

f I more 
nodes 

Y 
-int, sum: ?, i: 7 

t 

n: {int, Tint}, sum: {int, ?}, i: (int, 7) 

the < and + operations to test for integer arguments. With ex- 
tended splitting, however, the compiler is able to ehminate 
all run-time type tests from a common-case version of the 
loop, generating exactly what’s in the gray box; another ver- 
sion will be generated to handle overflows and a non-integer 
n. 

To restart the type analysis, the compiler builds a new loop 
ini- with the types resulting from the previous itera- 
tion. Analysis then proceeds similarly as before, except that 
when analyzing the c and + messages, the compiler splits off 
the integer receiver and argument cases from the non-integer 
cases, splitting the loop head in the process.*** When the 
loop tail is reached, the compiler splits it into two tails, and 
connects each to its corresponding loop head. The final con- 
trol flow graph is pictured on the top of the next page. 

The combination of extended splitting and iterative type 
analysis has allowed the compiler to optimize all type tests 
from the common case. A compiler for a statically-typed, 
non-object-oriented language could do no better. 

l ** ‘IXe actual workings of the compiler, and the final control flow 
graph, are a bit more complex than those presented here. We have 
chosen to simplify the exposition of the ideas by glossing over 
some of these messy details. 
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Final Results of TriangleNumber Example 

.--I- “- 
n: ?, sum: int, i: int 

22 n int? 
n: int n: ?-int 

5.4 Discussion 

Combining extended message splitting with iterative type 
analysis has several beneficial effects. Our compiler can 
generate multiple versions of loops, each version assuming 
different type bindings and therefore optimized for different 
cases at run-time. This is especially important to isolate the 
negative effects of primitive failure from the normal case of 
primitive success. For example, a loop that performs a&h- 
metic on locals in the body might get two versions compiled: 
one that knows all the locals am integers, and a second that 
handles locals of any type. The first version will branch to 
the second version only if a primitive fails; if no primitives 
fail (the common case) control will remain in the fast integer 
version of the loop. Robustness of integer arithmetic primi- 
tives has been implemented at the cost of only au overflow 
check; no extra type tests are needed if the failure never hap 
pe** 
Extended message splitting also may “hoist” type tests out of 
a loop, as it did with the n integer type test in the above 
triangleNumber: eXaI@e. Iftheinitialtypesofsome 
variables am unknown (such as for method arguments), and 
the body of a loop does arithmetic on the variables, our com- 
piler will compile a version of the loop for the unknown 
types, and embed type tests to check for integer values at 
run-time. If the values turn out to be integers, the second it- 
eration of the loop will branch to another version that was 

compiled assuming integer types for the locals. Control will 
remain in the second version of the loop as long as the locals 
remain integers (e.g. until an overflow occurs). The first ver- 
sion of the loop contains the type tests, while the second ver- 
sion contains none. If the normal case is to have integer val- 
ues, then the type tests effectively have been hoisted out of 
the integer version into the unknown version, which is exe- 
cuted only on the first loop iteration. 

Extended message splitting and iterative type analysis have 
been carefully designed to automatically compile multiple 
versions of loops. No additional implementation techniques 
or special algorithms are needed. No special treatment of in- 
tegers or loop control variables is needed, nor is any special 
work performed to hoist type tests out of loops. The compil- 
er just uses type prediction and message splitting to create 
and preserve the type information needed to inline messages 
and avoid type tests and sometimes ends up creating multi- 
ple versions of a loop. 

Of course, extended message splitting exacts a price in com- 
pile time and compiled code space, However, compiling an 
additional specialized version of most loops is probably not 
too costly. This is because the specialized version tends to be 
much smaller than the more general version of the loop that 
is littered with type tests, message sends, and failure blocks. 
Unfortunately, our current implementation sometimes com- 
piles more than just two versions of a loop; we plan to work 
on minimizing the number of extra versions of loops that get 
compiled 

6 Performance Measurements 
We measured the performance of the compiled code, the 
compiled code size, and compile time. All measurements 
were taken on a Sun-4/260 SPARC-based workstation. Our 
measurements am summarized for four sets of benchmatks: 

l Stanford is the set of eight integer benchmarks from 
the Stanford benchmark suite. These benchmarks 
typically measure the speed of accessing and iterating 
t.hough fixed-length arrays of integers. 

9 Stanford-00 consists of the same eight benchmarks 
rewritten in an object-oriented style. The changes are 
chiefly to redirect the target of messages from the 
benchmark object to the date structures manipulated by 
the benchmark (such as the array being sorted); none of 
the underlying algorithms were changed, nor were any 
source-level optimizations performed as part of the 
rewrite. The puzzle benchmark was not rewritten, but 
is included in this group anyway in the interest of 
fairness. 

l small is a group of “micro-benchmarks” used as an 
initial test suite when implementing the new techniques. 

l richards is a larger, operating system simulation 
benchmark, written in about 400 lines of SELF source 
co&. 
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Speed of Compiled Code (as a percentage of optimized C) 
median ( mln - max ) 

small stanford stanford-oo rlchards 

ST-80 10% (5%-10%) 9% (5%-53%) 9% (5%-80%) 9% 

old SELF-89 19% (lo%-48%) 28% (13%-56%) 26% 

old SELF-90 11% (7%--12%) 14% (9%-41%) 19%(9%-69%) 17% 

new SELF 24% (21%-53%) 25% (19%-47%) 42% (19%-91%) 21% 

Compile Time and Code Size 
median / 75%~lie / max 

small stanford+stanford-oo puzzle richards 

compile time (in seconds of CPU time) 

optimized C 3-o/3.4/3.9 9.1 13.4 

old SELF-90 0.3/0.3/0.4 0.7/0.8/1.1 6.9 2.1 

new SELF 5.2/5.7/6.4 21.1/31.9/123.3 362.3 35.6 

compiled code size (in kilobytes) 

optimized C 2.7/2.9/3.3 5.0 6.1 

old SELF-90 2.6/2.9/5.3 11.6/13.2/18.5 81.3 34.3 

new SELF 1.5/l-6/1.8 7.7/10.2/16.2 41.3 25.5 

The benchmm were run with five compilers: 

optimized C is the C compiler supplied with SunOS 
4.0 and invoked with the -02 flag.For richards, 
which is written in C++, the C version includes the 
effect of the AT&T cfront 1.2.1 preprocessor. 
ST-80 refers to the ParcPlace Systems Version 2.4 
Smalltalk- implementation. This system uses 
dynamic compilation [DS84], and is tied with Version 
2.5 for the distinction of being the fastest commercially 
available Smalltalk system. 
old SELF-89 refers to the measurements taken for the 
old SELF compiler in early 1989 and published in 
[CU89]. This was a well-tuned SELF system with a 
simpler compiler based on expression trees, 
customization, and local splitting. 
old SELF-90 is our current, production SELF system 
which uses the old SELF compiler. This system includes 
more elaborate semantics for message lookup and 
blocks, and is not as highly tuned as it was a year ago. 
For these *asons, the performance has worsened from 
last year’s numbers. However, comparing its 
performance to that of the new SELF compiler allows us 
to isolate the effects of the improvements in the new 
compiler. 

9 new SELF is our new SELF compiler as described in 
this paper, but without compiling multiple versions of 
loops. At the time of this writing, the part of the new 
compiler that recomputes the type information within a 
loop after splitting a loop head is broken. The results we 
have observed in the past for compiling multiple 
versions of loops leads us to expect even better 
performance when this part of the compiler is repaired 

The rest of this section summarizes the results. Raw data for 
individual benchmarks are given in the appendices. 

6.1 Speed of Compiled Code 
These results in the above table show that the new SW 
compiler is around 40% the speed of optimized C for the 
Stanford-co benchmarks. This perfo~~~~~~ce is four times 
faster than Smalltalk- and more than twice as fast as the 
current SELF-90 version of the original compiler. Some of 
this improvement over the original SELF compiler results 
from better register allocation and delay slot Wing. Much of 
the rest can be credited to better type analysis and especially 
the inclusion of range analysis. 

The richards benchmark is worthy of further mention. Its 
performance is not as good as some of the other benchmarks, 
and we have traced this problem to a single bottleneck the 

159 



call site that runs the next task on the task queue. This calI is 
polymorphic (since different tasks handle the run message 
differently), and by invoking a different procedure almost 
every call defeats the traditional inline-caching optimization 
[DS84] intended to speed monomorphic call sites. The result 
is that the overhead to handle this single call site is the same 
as the total optimized C time of the benchmark. We think we 
could nearly eliminate this overhead by generating call-site- 
specific inline-cache miss handlers. If implemented, this 
would probably increase the performance of the richards 
benchmark to 25%. 

6.2 Compile Time 
We have not yet optimized compile time in the new compiler 
and the measurements suggest we will need to. Almost all of 
benchmarks take from 15 to 35 seconds to compile with the 
new compiler. We expect that these numbers can be reduced 
quite substantially because the old SELF compiler compiles 
most of the programs in less than a second. By contrast, the 
C compile takes about three seconds for most of these pro- 
grams. We suspect that new SELF compiler contains a few 
exponential algorithms for data flow analysis and register al- 
location, and we hope to improve them. 

6.3 Code Space 
The new compiler’s generated code size is about four times 
larger than for the optimized C programs. However, the dif- 
ference cannot be blamed solely on our new techniques. In 
fact, the original SELF compiler uses even more space than 
the new SELF compiler. A substantial part of the space over- 
head can be attributed to the large inline caches for dynami- 
tally-bound procedure caIls and to code handling primitive 
failures like overflow checking and array bounds checking. 
We have done only rudimentary work on conserving com- 
piled code space, and expect to be able to reduce this space 
overhead. 

Even with the current compiled code sixes, large SELF appli- 
cations can be executed without an exorbitant amount of 
code space. For example, our prototype graphical user inter- 
face and its supporting data structures am written in 7000 
lines of SELF source code and compile to less than a mega- 
byte of machine code (more space is currently used to store 
debugging and relocation information for the compiled 
code). In addition, since SELF compiles code dynamically, it 
need only maintain a working set of code in memory; unused 
compiled code is flushed from the code cache to be recom- 
piled when next needed. Although final proof must await 
larger SELF programs, we believe that extra code space will 
not be a problem. 

7 Related Work 
Other systems perform type analysis over programs without 
external type declarations. ML -901 is a statically- 
typed function-oriented language in which the compiler is 
able to infer the types of all procedures and expressions and 
do static type checking with virtually no type declarations, 
Researchers have attempted to extend ML-style type infer- 
ence to object-oriented languages, with some success 
[Wan87, Wan89,OB89. h4it89]. However, most of these ap- 
proaches use type systems that describe an object’s interface 
or protocol, rather than the object’s representation or method 
dictionary. While this higher-level view of an object’s type 
is best for flexible polymorphic type-checking, it provides 
little information for an optimizing compiler to speed pro- 
grams. 

A different approach is taken by the Typed SmaIltalk project 
[Joh86, JGZ88]. Their type system is based on sets of class- 
es, and a variable’s type specifies the possible object classes 
(not superclasses) that objects stored in the variable may 
have. If the number of possible classes associated with a 
variable is small, then messages sent to the variable can be 
inlined (after an appropriate series of run-time type tests). 

The Typed Smalltalk system includes a type inferencer that 
infers the types of most methods and local variables based on 
the user-declared types of instance variables, class variables, 
global variables, and primitives [Gra89, GJ90]. The type in- 
femncer is based on abstract interpretation of the program in 
the type domain, and an expression is type-correct if and 
only if the abstract interpretation of the expression in the 
context of the current class hierarchy is successfuI. The type 
of a method is determined by partially evaluating the ab- 
stract interpretation of the body of the method, and as such 
frequently cannot be completely determined to a simple 
type, but may contain unresolved constraints on the types of 
the method’s arguments. These constraints must be checked 
at each call site. 

This type-checking and type inference system is very pow- 
erful and should be able to type-check much existing SmalI- 
talk-80 code. It is also suitable for optimizing compilation, 
since the types of variables and expressions describe their 
possible representations and method dictionaries. Unfortu- 
nately, their system could take a long time to infer the type 
of au expression, since an arbitrarily large portion of the en- 
tire system wilI be abstract-evaluated to compute the type of 
the expression. 

None of these statically-typed systems handles dynamicahy- 
typed languages like SELF (the Typed Smalltalk systems dis- 
allows SmaIhallc programs that cannot be statically type- 
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checked). Our type analysis system is designed to compute 
as much exact type information about the receivers of mes- 
sages as possible, while still handling uncertain and un- 
known types gracefully. It operates with a limited amount of 
initial type information (just the type of the receiver and the 
types of constant slots), and so attempts to extract and pre- 
serve as much new type information as it can. 

Range analysis is performed in many traditional optimizing 
compilers. However, Fortran compilers typically determine 
subrange information by looking at the bounds specified in 
do loops. This approach doesn’t work in languages with 
user-defined control structures like SELF, Smalltalk, and 
Scheme mC86], since the compiler has no fixed do con- 
struct to look for loop index ranges. Our approach of com- 
puting range information based on primitive arithmetic and 
comparison operators rather than high-level statements lets 
our compiler perform range-based optimizations (like elim- 
inating overflow checks and array bounds checks) in the 
context of user-defined control structures. 

A useful extension to this scheme would be to record the m- 
suits of comparisons with non-constant integer values, in 
case the same comparison is performed again. This would 
help eliminate many array bounds checks where the exact 
size of the array is unknown, but the index is still always less 
than the array length, and so the array bounds check can be 
eliminated. Our current range analysis cannot eliminate 
these bounds checks, since the integer subrange of the array 
index overlaps the integer subrange for the array length, On 

the other hand, the TS compiler for Typed Smalltalk [3GZ88, 
McC89, Hei90] is able to optimize many of these bounds 
checks away, since it uses simple theorem proving to propa- 
gate the results of conditional expressions and thus avoid re- 
peated tests, such as that the index is less than the array 
length. However, their implementation only uses a single 
premise at a time to evaluate conditional expressions, where- 
as our integer subrange types can represent the combined ef- 
fects of several comparisons. More work is needed to ex- 
plore these approaches. 

The TS compiler for Typed Smalltalk performs an optimiza- 
tion similar to message splitting. A basic block with multiple 
predecessors may be copied and some of its predecessors re- 
routed to the copy if a conditional expression in the basic 
block may be eliminated for a subset of the original block’s 
predecessors; this is similar to local message splitting. An 
extension is proposed that could also copy blocks that inter- 
vened between the block containing the conditional and the 
predecessor(s) that would enable eliminating the condition- 
al, similarly to extended message splitting. However, these 
techniques only apply to eliminating conditional expres- 
sions, and is performed after type analysis and message in- 
lining has been completed. Our extended message splitting 
is performed at type arialysis time as part of message inlin- 
ing, and additionally can be used to split branches of the con- 

trol flow graph based on any other information available at 
type analysis time, such as splitting for available values 
[ASU86] in order to perform more common subexpression 
elimination. 

Extended message splitting with iterative type analysis may 
lead to more than one version of a loop being compiled, each 
for different initial type bindings. This is similar to an opti- 
mization in some parallelizing Fortran compilers called rwo- 
version loops [pW86], If a loop could be parallelized if cer- 
tain run-tune conditions held (e.g. that some variable was 
positive), then a compiler could insert a run-time test for the 
desired conditions before the loop, and branch to either a 
parallelized version or a sequential version. 

Our type analysis is also similar to partial evaluation [SSSS]. 
Type analysis is a form of abstract interpretation of the nodes 
in the control flow graph using compile-time types instead of 
nm-time values. Our system partially-evaluates methods 
with respect to the customized receiver type to produce au 
optimized version of the method spec3ic to that receiver 
type. Within the method, type analysis propagates type in- 
formation in a similar manner as partial evaluators propagate 
constant information. However, our compiler terminates 
over all input programs, while partial evaluators traditional- 
ly have been allowed to go into infinite loops if the input pro- 
gram contains an infinite loop. Partial evaluators also sup- 
port more complex descriptions of their input data, and gen- 
erate specialized versions of residual (non-inlined) function 
calls to propagate type information across procedure calls; 
our SELF compiler performs no interprocedural analysis or 
type propagation across non-inlined message sends. 

8 Conclusions 
Static type analysis is feasible even in a dynamically-typed 
object-oriented language like SELF. Our type analysis sys- 
tem computes enough static information to eliminate many 
costly message sends and run-time type tests. Value types 
serve to propagate constants throughout the control flow 
graph, while integer subrauge types computed from arith- 
metic and comparison primitives are used to avoid overflow 
checks and array bounds checks in a language with no built- 
in control structures. Iterative type analysis with mcompila- 
tion serves to compute accurate type information for vari- 
ables used within loops. 

Type information lost by control flow merges can be re- 
gained using extended message splitting. Extended message 
splitting is especially important within loops, and may lead 
to more than one version of a loop being generated. This is 
accomplished simply by allowing loop heads and tails to be 
split like other nodes; no extra implementation effort is 
needed to implement multi-version loops. Typically, one 
version of a loop wiJl work for the common case types (e.g. 
integers and arrays), and contain no type tests and few over- 
flow checks. Another version of the loop will be more 
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general and contain more type tests and error checks, but 
will only be executed for unusual run-time type conditions. 

Iterative type analysis, integer subrange analysis, and ex- 
tended message splitting are powerful new techniques that 
have nearly doubled the performance of our SELF compiler. 
SELF now IUIE at nearly half the speed of optimized C, with- 
out sacrificing dynamic typing, user-defined control struc- 
tures, automatic garbage collection, or source-level debug- 
ging. We feel that this new-found level of performance is 
making dynamically-typed object-oriented languages practi- 
cal, and we hope they will become more widely accepted 
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Appendix A Performance Data 

Compiled Code Speed (as a percentage of optimized C) 
benchmark 

stanf ord 

pen-n 
pen-n-00 

towers 
towers-00 

queens 
queens-oo 

intxnm 
intmm-00 

puzzle 

quick 
quick-00 

bubble 
bubble-00 

tree 
tree-00 

small 

sieve 

sumTo 
sumFromTo 
surnToConst 

atAllPut 

richards** 

ST-80 

7% 
8% 

8% 
19% 

9% 
10% 

10% 
6% 

5% 

9% 
10% 

6% 
7% 

53% 
80% 

5% 

10% 
10% 
10% 

6% 

9% 

old SELF-89 

18% 
28% 

21% 
34% 

19% 

34% 

16% 
* 

13% 

19% 
21% 

10% 
14% 

48% 
56% 

22% 

26% 

aid SELF-90 

13% 
20% 

16% 
21% 

14% 

16% 

19% 
22% 

9% 

14% 
17% 

9% 
9% 

41% 
69% 

7% 

11% 
10% 
11% 

12% 

17% 

new SELF 

24% 
56% 

23% 

43% 

26% 

35% 

35% 
40% 

19% 

28% 
40% 

22% 
63% 

47% 
91% 

23% 

24% 
21% 
33% 

53% 

21% 

*Empty entriesintheperfonnanee tablesindicateunavailable~ormation. 

**Seesection6.1foradiscussionoftheperfonnancemults for richards. 
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Appendix 6 Code Space and Compile Time 
Compiled Code Size (In kllobytes) 

benchmark 
at-ford 

P-m 
perm-00 
towers 
towers-00 
queen.9 
queens-00 

intm 
intmm- 00 
puzzle 
quick 
quick-00 
bubble 
bubble-00 
tree 
tree2 

mUl1 
sieve 
awnTo 
8umPromTo 
8umToConst 
PtAllPUt 

riahrrdm 6.1 34.3 25.5 

Optimized C old SELF-90 new SELF 

2.4 

3.1 

2.5 

2.5 

5.0 

2.8 

2.1 

3.3 
. 

7.5 5.8 
10.1 7.1 

12.1 16.2 
7.0 7.4 

11.7 12.0 
9.1 8.0 

11.2 5.1 
18.5 8.3 

a1.3 41.3 

14.1 11.9 
16.2 10.2 
11.5 6.7 

a.0 5.9 

13.2 9.5 
12.1 7.2 

0.5 5.3 1.5 

2.6 1.6 
2.9 1.8 
2.6 0.8 

2.2 0.9 

benchmark 
atmford 

pem 
penn-00 
towers 
towers-00 
queens 
queens-00 
intmm 
into-00 
puzzle 
quick 
quick-00 

bubble 
bubble-00 
tree 
tree-00 

SInell 
sieve 
sumTo 
8umPromTo 
8umToConst 
atAllPut 

richrtdm 13.4 2.1 35.6 

Compile Tlme (in seconds of CPU time) 
Optlmlzed C old SELF-90 new SELF 

2.0 

3.7 

3.1 

2.9 

9.1 
3.0 

2.9 

3.9 

0.58 11.8 
0.85 19.8 

0.73 31.9 
0.37 7.6 

0.71 65.4 
0.62 25.2 

0.84 20.7 
1.1 30.1 

6.9 362.3 

0.70 122.9 
0.90 123.3 

0.63 15.9 
0.55 21.5 

0.56 10.2 
0.74 7.0 

1.6 0.40 6.4 

0.31 5.2 
0.29 5.7 
0.32 2.9 

0.20 1.4 
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