
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the 1999 USENIX

Annual Technical Conference
Monterey, California, USA, June 6–11, 1999

Flash:
An Efficient and Portable Web Server

Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel
Rice University

© 1999 by The USENIX Association

All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial

reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Flash: An efficient and portable Web server�

Vivek S. Paiz Peter Druschely Willy Zwaenepoely
z Department of Electrical and Computer Engineering

y Department of Computer Science
Rice University

Abstract

This paper presents the design of a new Web server
architecture called the asymmetric multi-process event-
driven (AMPED) architecture, and evaluates the perfor-
mance of an implementation of this architecture, the
Flash Web server. The Flash Web server combines the
high performance of single-process event-driven servers
on cached workloads with the performance of multi-
process and multi-threaded servers on disk-bound work-
loads. Furthermore, the Flash Web server is easily
portable since it achieves these results using facilities
available in all modern operating systems.

The performance of different Web server architec-
tures is evaluated in the context of a single implemen-
tation in order to quantify the impact of a server’s con-
currency architecture on its performance. Furthermore,
the performance of Flash is compared with two widely-
used Web servers, Apache and Zeus. Results indicate
that Flash can match or exceed the performance of exist-
ing Web servers by up to 50% across a wide range of real
workloads. We also present results that show the contri-
bution of various optimizations embedded in Flash.

1 Introduction

The performance of Web servers plays a key role in
satisfying the needs of a large and growing community
of Web users. Portable high-performance Web servers
reduce the hardware cost of meeting a given service de-
mand and provide the flexibility to change hardware plat-
forms and operating systems based on cost, availability,
or performance considerations.

Web servers rely on caching of frequently-requested
Web content in main memory to achieve throughput rates
of thousands of requests per second, despite the long la-
tency of disk operations. Since the data set size of Web
workloads typically exceed the capacity of a server’s
main memory, a high-performance Web server must be
structured such that it can overlap the serving of re-
quests for cached content with concurrent disk opera-

�To appear in Proc. of the 1999 Annual Usenix Technical Confer-
ence, Monterey, CA, June 1999.

tions that fetch requested content not currently cached
in main memory.

Web servers take different approaches to achieving
this concurrency. Servers using asingle-process event-
driven (SPED)architecture can provide excellent perfor-
mance for cached workloads, where most requested con-
tent can be kept in main memory. The Zeus server [32]
and the original Harvest/Squid proxy caches employ the
SPED architecture1.

On workloads that exceed that capacity of the server
cache, servers withmulti-process (MP)ormulti-threaded
(MT) architectures usually perform best. Apache, a
widely-used Web server, uses the MP architecture on
UNIX operating systems and the MT architecture on the
Microsoft Windows NT operating system.

This paper presents a new portable Web server ar-
chitecture, called asymmetric multi-process event-driven
(AMPED), and describes an implementation of this ar-
chitecture, the Flash Web server. Flash nearly matches
the performance of SPED servers on cached workloads
while simultaneously matching or exceeding the perfor-
mance of MP and MT servers on disk-intensive work-
loads. Moreover, Flash uses only standard APIs and is
therefore easily portable.

Flash’s AMPED architecture behaves like a single-
process event-driven architecture when requested docu-
ments are cached and behaves similar to a multi-process
or multi-threaded architecture when requests must be
satisfied from disk. We qualitatively and quantitatively
compare the AMPED architecture to the SPED, MP, and
MT approaches in the context of a single server imple-
mentation. Finally, we experimentally compare the per-
formance of Flash to that of Apache and Zeus on real
workloads obtained from server logs, and on two operat-
ing systems.

The rest of this paper is structured as follows: Sec-
tion 2 explains the basic processing steps required of
all Web servers and provides the background for the
following discussion. In Section 3, we discuss the
asynchronous multi-process event-driven (AMPED), the

1Zeus can be configured to use multiple SPED processes, particu-
larly when running on multiprocessor systems

Read
Request

Find
File

Read File
Send DataStart EndAccept

Conn
Send
Header

Figure 1: Simplified Request Processing Steps

single-process event-driven (SPED), the multi-process
(MP), and the multi-threaded (MT) architectures. We
then discuss the expected architecture-based perfor-
mance characteristics in Section 4 before discussing the
implementation of the Flash Web server in Section 5. Us-
ing real and synthetic workloads, we evaluate the perfor-
mance of all four server architectures and the Apache and
Zeus servers in Section 6.

2 Background

In this section, we briefly describe the basic process-
ing steps performed by an HTTP (Web) server. HTTP
clients use the TCP transport protocol to contact Web
servers and request content. The client opens a TCP
connection to the server, and transmits a HTTP request
header that specifies the requested content.

Static contentis stored on the server in the form of
disk files. Dynamic contentis generated upon request
by auxiliary application programs running on the server.
Once the server has obtained the requested content, it
transmits a HTTP response header followed by the re-
quested data, if applicable, on the client’s TCP connec-
tion.

For clarity, the following discussion focuses on serv-
ing HTTP/1.0 requests for static content on a UNIX-like
operating system. However, all of the Web server ar-
chitectures discussed in this paper are fully capable of
handling dynamically-generated content. Likewise, the
basic steps described below are similar for HTTP/1.1 re-
quests, and for other operating systems, like Windows
NT.

The basic sequential steps for serving a request for
static content are illustrated in Figure 1, and consist of
the following:
Accept client connection- accept an incoming connec-
tion from a client by performing anaccept operation
on the server’slisten socket. This creates a new
socket associated with the client connection.
Read request- read the HTTP request header from the
client connection’s socket and parse the header for the
requested URL and options.
Find file - check the server filesystem to see if the re-
quested content file exists and the client has appropriate
permissions. The file’s size and last modification time
are obtained for inclusion in the response header.
Send response header- transmit the HTTP response
header on the client connection’s socket.

Read file- read the file data (or part of it, for larger files)
from the filesystem.
Send data- transmit the requested content (or part of
it) on the client connection’s socket. For larger files, the
“Read file” and “Send data” steps are repeated until all
of the requested content is transmitted.

All of these steps involve operations that can poten-
tially block. Operations that read data or accept connec-
tions from a socket may block if the expected data has
not yet arrived from the client. Operations that write to a
socket may block if the TCP send buffers are full due to
limited network capacity. Operations that test a file’s va-
lidity (using stat()) or open the file (usingopen())
can block until any necessary disk accesses complete.
Likewise, reading a file (usingread()) or accessing
data from a memory-mapped file region can block while
data is read from disk.

Therefore, a high-performance Web server must in-
terleave the sequential steps associated with the serving
of multiple requests in order to overlap CPU process-
ing with disk accesses and network communication. The
server’sarchitecturedetermines what strategy is used to
achieve this interleaving. Different server architectures
are described in Section 3.

In addition to its architecture, the performance of a
Web server implementation is also influenced by various
optimizations, such as caching. In Section 5, we discuss
specific optimizations used in the Flash Web server.

3 Server Architectures

In this section, we describe our proposed asymmet-
ric multi-process event-driven (AMPED) architecture, as
well as the existing single-process event-driven (SPED),
multi-process (MP), and multi-threaded (MT) architec-
tures.

3.1 Multi-process

In the multi-process (MP) architecture, a process is
assigned to execute the basic steps associated with serv-
ing a client request sequentially. The process performs
all the steps related to one HTTP request before it accepts
a new request. Since multiple processes are employed
(typically 20-200), many HTTP requests can be served
concurrently. Overlapping of disk activity, CPU pro-
cessing and network connectivity occurs naturally, be-
cause the operating system switches to a runnable pro-
cess whenever the currently active process blocks.

Read
Request

Find
File

Read File
Send Data

Get
Conn

Read
Request

Find
File

Read File
Send Data

Accept
Conn

Get
Conn

Send
Header

Process 1

Read
Request

Find
File

Read File
Send Data

Get
Conn

Read
Request

Find
File

Read File
Send Data

Accept
Conn

Get
Conn

Send
Header

Process N

Figure 2: Multi-Process - In the MP model,each server
process handles one request at a time. Processes execute
the processing stages sequentially.

Read
Request

Find
File

Read File
Send Data

Get
Conn

Read
Request

Find
File

Read File
Send Data

Accept
Conn

Get
Conn

Send
Header

Figure 3: Multi-Threaded - The MT model uses a single
address space with multiple concurrent threads of execu-
tion. Each thread handles a request.

Since each process has its own private address space,
no synchronization is necessary to handle the processing
of different HTTP requests2. However, it may be more
difficult to perform optimizations in this architecture that
rely on global information, such as a shared cache of
valid URLs. Figure 2 illustrates the MP architecture.

3.2 Multi-threaded

Multi-threaded (MT) servers, depicted in Figure 3,
employ multiple independent threads of control operat-
ing within a single shared address space. Each thread
performs all the steps associated with one HTTP re-
quest before accepting a new request, similar to the MP
model’s use of a process.

The primary difference between the MP and the MT
architecture, however, is that all threads can share global
variables. The use of a single shared address space lends
itself easily to optimizations that rely on shared state.
However, the threads must use some form of synchro-
nization to control access to the shared data.

The MT model requires that the operating system
provides support for kernel threads. That is, when one
thread blocks on an I/O operation, other runnable threads
within the same address space must remain eligible
for execution. Some operating systems (e.g., FreeBSD
2.2.6) provide only user-level thread libraries without
kernel support. Such systems cannot effectively support
MT servers.

2Synchronization is necessary inside the OS to accept incoming
connections, since the accept queue is shared

3.3 Single-process event-driven

The single-process event-driven (SPED) architecture
uses a single event-driven server process to perform
concurrent processing of multiple HTTP requests. The
server uses non-blocking systems calls to perform asyn-
chronous I/O operations. An operation like the BSD
UNIX select or the System Vpoll is used to check
for I/O operations that have completed. Figure 4 depicts
the SPED architecture.

A SPED server can be thought of as a state machine
that performs one basic step associated with the serving
of an HTTP request at a time, thus interleaving the pro-
cessing steps associated with many HTTP requests. In
each iteration, the server performs aselect to check
for completed I/O events (new connection arrivals, com-
pleted file operations, client sockets that have received
data or have space in their send buffers.) When an I/O
event is ready, it completes the corresponding basic step
and initiates the next step associated with the HTTP re-
quest, if appropriate.

In principle, a SPED server is able to overlap the
CPU, disk and network operations associated with the
serving of many HTTP requests, in the context of a sin-
gle process and a single thread of control. As a result,
the overheads of context switching and thread synchro-
nization in the MP and MT architectures are avoided.
However, a problem associated with SPED servers is that
many current operating systems do not provide suitable
support for asynchronous disk operations.

In these operating systems, non-blockingread and
write operations work as expected on network sock-
ets and pipes, but may actually block when used on disk
files. As a result, supposedly non-blockingread opera-
tions on files may still block the caller while disk I/O is
in progress. Both operating systems used in our experi-
ments exhibit this behavior (FreeBSD 2.2.6 and Solaris
2.6). To the best of our knowledge, the same is true for
most versions of UNIX.

Many UNIX systems provide alternate APIs that im-
plement true asynchronous disk I/O, but these APIs are
generally not integrated with theselect operation.
This makes it difficult or impossible to simultaneously
check for completion of network and disk I/O events in
an efficient manner. Moreover, operations such asopen
andstat on file descriptors may still be blocking.

For these reasons, existing SPED servers do not use
these special asynchronous disk interfaces. As a result,
file read operations that do not hit in the file cache may
cause the main server thread to block, causing some loss
in concurrency and performance.

3.4 Asymmetric Multi-Process Event-Driven

The Asymmetric Multi-Process Event-Driven
(AMPED) architecture, illustrated in Figure 5, combines

Event Dispatcher

Read
Request
Read
Request

Find
File
Find
File

Get
Conn

Accept
Conn

Send Header
Read File
Send Data
Read File
Send Data

Send Header

Figure 4: Single Process Event Driven - The SPED
model uses a single process to perform all client process-
ing and disk activity in an event-driven manner.

the event-driven approach of the SPED architecture
with multiple helperprocesses (or threads) that handle
blocking disk I/O operations. By default, the main
event-driven process handles all processing steps asso-
ciated with HTTP requests. When a disk operation is
necessary (e.g., because a file is requested that is not
likely to be in the main memory file cache), the main
server process instructs ahelper via an inter-process
communication (IPC) channel (e.g., a pipe) to perform
the potentially blocking operation. Once the operation
completes, the helper returns a notification via IPC; the
main server process learns of this event like any other
I/O completion event viaselect .

The AMPED architecture strives to preserve the effi-
ciency of the SPED architecture on operations other than
disk reads, but avoids the performance problems suffered
by SPED due to inappropriate support for asynchronous
disk reads in many operating systems. AMPED achieves
this using only support that is widely available in modern
operating systems.

In a UNIX system, AMPED uses the standard non-
blocking read , write , andaccept system calls on
sockets and pipes, and theselect system call to test for
I/O completion. Themmapoperation is used to access
data from the filesystem and themincore operation is
used to check if a file is in main memory.

Note that the helpers can be implemented either as
kernel threads within the main server process or as sep-
arate processes. Even when helpers are implemented as
separate processes, the use ofmmapallows the helpers
to initiate the reading of a file from disk without intro-
ducing additional data copying. In this case, both the
main server process and the helpermmapa requested file.
The helper touches all the pages in its memory mapping.
Once finished, it notifies the main server process that it is
now safe to transmit the file without the risk of blocking.

4 Design comparison

In this section, we present a qualitative comparison
of the performance characteristics and possible optimiza-
tions in the various Web server architectures presented in
the previous section.

Event Dispatcher

Read
Request
Read
Request

Find
File
Find
File

Get
Conn

Accept
Conn

Send Header
Read File
Send Data
Read File
Send Data

Send Header

Helper 1 Helper 2 Helper k

Figure 5: Asymmetric Multi-Process Event Driven - The
AMPED model uses a single process for event-driven re-
quest processing, but has other helper processes to han-
dle some disk operations.

4.1 Performance characteristics

Disk operations - The cost of handling disk activity
varies between the architectures based on what, if any,
circumstances cause all request processing to stop while
a disk operation is in progress. In the MP and MT mod-
els, only the process or thread that causes the disk ac-
tivity is blocked. In AMPED, the helper processes are
used to perform the blocking disk actions, so while they
are blocked, the server process is still available to han-
dle other requests. The extra cost in the AMPED model
is due to the inter-process communication between the
server and the helpers. In SPED, one process handles all
client interaction as well as disk activity, so all user-level
processing stops whenever any request requires disk ac-
tivity.

Memory effects - The server’s memory consumption
affects the space available for the filesystem cache.
The SPED architecture has small memory requirements,
since it has only one process and one stack. When
compared to SPED, the MT model incurs some addi-
tional memory consumption and kernel resources, pro-
portional to the number of threads employed (i.e., the
maximal number of concurrently served HTTP requests).
AMPED’s helper processes cause additional overhead,
but the helpers have small application-level memory de-
mands and a helper is needed only per concurrent disk
operation, not for each concurrently served HTTP re-
quest. The MP model incurs the cost of a separate pro-
cess per concurrently served HTTP request, which has
substantial memory and kernel overheads.

Disk utilization - The number of concurrent disk re-
quests that a server can generate affects whether it can
benefit from multiple disks and disk head scheduling.
The MP/MT models can cause one disk request per pro-
cess/thread, while the AMPED model can generate one
request per helper. In contrast, since all user-level pro-
cessing stops in the SPED architecture whenever it ac-
cesses the disk, it can only generate one disk request at a

time. As a result, it cannot benefit from multiple disks or
disk head scheduling.

4.2 Cost/Benefits of optimizations & features
The server architecture also impacts the feasibility

and profitability of certain types of Web server optimiza-
tions and features. We compare the tradeoffs necessary
in the various architectures from a qualitative standpoint.

Information gathering - Web servers use information
about recent requests for accounting purposes and to im-
prove performance, but the cost of gathering this infor-
mation across all connections varies in the different mod-
els. In the MP model, some form of interprocess commu-
nication must be used to consolidate data. The MT model
either requires maintaining per-thread statistics and pe-
riodic consolidation or fine-grained synchronization on
global variables. The SPED and AMPED architectures
simplify information gathering since all requests are pro-
cessed in a centralized fashion, eliminating the need for
synchronization or interprocess communications when
using shared state.

Application-level Caching - Web servers can employ
application-level caching to reduce computation by using
memory to store previous results, such as response head-
ers and file mappings for frequently requested content.
However, the cache memory competes with the filesys-
tem cache forphysical memory, so this technique must
be applied carefully. In the MP model, each process may
have its own cache in order to reduce interprocess com-
munication and synchronization. The multiplecaches in-
crease the number of compulsory misses and they lead to
less efficient use of memory. The MT model uses a single
cache, but the data accesses/updates must be coordinated
through synchronization mechanisms to avoid race con-
ditions. Both AMPED and SPED can use a single cache
without synchronization.

Long-lived connections - Long-lived connections oc-
cur in Web servers due to clients with slow links
(such as modems), or through persistent connections in
HTTP 1.1. In both cases, some server-side resources are
committed for the duration of the connection. The cost of
long-lived connections on the server depends on the re-
source being occupied. In AMPED and SPED, this cost
is a file descriptor, application-level connection informa-
tion, and some kernel state for the connection. The MT
and MP models add the overhead of an extra thread or
process, respectively, for each connection.

5 Flash implementation

The Flash Web server is a high-performance imple-
mentation of the AMPED architecture that uses aggres-
sive caching and other techniques to maximize its perfor-
mance. In this section, we describe the implementation

of the Flash Web server and some of the optimization
techniques used.

5.1 Overview
The Flash Web server implements the AMPED ar-

chitecture described in Section 3. It uses a single non-
blocking server process assisted by helper processes.
The server process is responsible for all interaction with
clients and CGI applications [26], as well as control of
the helper processes. The helper processes are respon-
sible for performing all of the actions that may result in
synchronous disk activity. Separate processes were cho-
sen instead of kernel threads to implement the helpers, in
order to ensure portability of Flash to operating systems
that do not (yet) support kernel threads, such as FreeBSD
2.2.6.

The server is divided into modules that perform
the various request processing steps mentioned in Sec-
tion 2 and modules that handle variouscaching functions.
Three types of caches are maintained: filename transla-
tions, response headers, and file mappings. Thesecaches
and their function are explained below.

The helper processes are responsible for performing
pathname translations and for bringing disk blocks into
memory. These processes are dynamically spawned by
the server process and are kept in reserve when not ac-
tive. Each process operates synchronously, waiting on
the server for new requests and handling only one re-
quest at a time. To minimize interprocess communica-
tion, helpers only return a completion notification to the
server, rather than sending any file content they may have
loaded from disk.

5.2 Pathname Translation Caching
The pathname translation cache maintains a

list of mappings between requested filenames
(e.g., “/˜bob”) and actual files on disk (e.g.,
/home/users/bob/publichtml/index.html). This cache
allows Flash to avoid using the pathname translation
helpers for every incoming request. It reduces the
processing needed for pathname translations, and it
reduces the number of translation helpers needed by the
server. As a result, the memory spent on the cache can
be recovered by the reduction in memory used by helper
processes.

5.3 Response Header Caching
HTTP servers prepend file data with a response

header containing information about the file and the
server, and this information can be cached and reused
when the same files are repeatedly requested. Since the
response header is tied to the underlying file, thiscache
does not need its own invalidation mechanism. Instead,
when the mapping cache detects that a cached file has
changed, the corresponding response header is regener-
ated.

5.4 Mapped Files

Flash retains a cache of memory-mapped files to re-
duce the number of map/unmap operations necessary
for request processing. Memory-mapped files provide
a convenient mechanism to avoid extra data copying
and double-buffering, but they require extra system calls
to create and remove the mappings. Mappings for
frequently-requested files can be kept and reused, but un-
used mappings can increase kernel bookkeeping and de-
grade performance.

The mapping cache operates on “chunks” of files
and lazily unmaps them when too much data has been
mapped. Small files occupy one chunkeach, while large
files are split into multiple chunks. Inactive chunks are
maintained in an LRU free list, and are unmapped when
this list grows too large. We use LRU to approximate the
“clock” page replacement algorithm used in many op-
erating systems, with the goal of mapping only what is
likely to be in memory. All mapped file pages are tested
for memory residency viamincore() before use.

5.5 Byte Position Alignment

The writev() system call allows applications to
send multiple discontiguous memory regions in one op-
eration. High-performance Web servers use it to send
response headers followed by file data. However, its use
can cause misaligned data copying within the operating
system, degrading performance. The extra cost for mis-
aligned data is proportional to the amount of data being
copied.

The problem arises when the OS networking code
copies the various memory regions specified in a
writev operation into a contiguous kernel buffer. If
the size of the HTTP response header stored in the first
region has a length that is not a multiple of the machine’s
word size, then the copying of all subsequent regions is
misaligned.

Flash avoids this problem by aligning all response
headers on 32-byte boundaries and padding their lengths
to be a multiple of 32 bytes. It adds characters to vari-
able length fields in the HTTP response header (e.g., the
server name) to do the padding. The choice of 32 bytes
rather than word-alignment is to target systems with 32-
byte cache lines, as some systems may be optimized for
copying oncacheboundaries.

5.6 Dynamic Content Generation

The Flash Web server handles the serving of dynamic
data using mechanisms similar to those used in other
Web servers. When a request arrives for a dynamic docu-
ment, the server forwards the request to the correspond-
ing auxiliary (CGI-bin) application process that gener-
ates the content via a pipe. If a process does not currently
exist, the server creates (e.g., forks) it.

The resulting data is transmitted by the server just
like static content, except that the data is read from a
descriptor associated with the CGI process’ pipe, rather
than a file. The server process allows the CGI application
process to be persistent, amortizing the cost of creating
the application over multiple requests. This is similar to
the FastCGI [27] interface and it provides similar bene-
fits. Since the CGI applications run in separate processes
from the server, they can block for disk activity or other
reasons and perform arbitrarily long computations with-
out affecting the server.

5.7 Memory Residency Testing

Flash uses themincore() system call, which is
available in most modern UNIX systems, to determine
if mapped file pages are memory resident. In operating
systems that don’t support this operation but provide the
mlock() system call to lock memory pages (e.g., Com-
paq’s Tru64 UNIX, formerly Digital Unix), Flash could
use the latter to control its file cache management, elim-
inating the need for memory residency testing.

Should no suitable operations be available in a given
operating system to control the file cache or test for mem-
ory residency, it may be possible to use a feedback-based
heuristic to minimize blocking on disk I/O. Here, Flash
could run the clock algorithm to predict which cached
file pages are memory resident. The prediction can adapt
to changes in the amount of memory available to the file
cache by using continuous feedback from performance
counters that keep track of page faults and/or associated
disk accesses.

6 Performance Evaluation

In this section, we present experimental results that
compare the performance of the different Web server
architectures presented in Section 3 on real workloads.
Furthermore, we present comparative performance re-
sults for Flash and two state-of-the-art Web servers,
Apache [1] and Zeus [32], on synthetic and real work-
loads. Finally, we present results that quantify the perfor-
mance impact of the various performance optimizations
included in Flash.

To enable a meaningful comparison of different ar-
chitectures by eliminating variations stemming from im-
plementation differences, the same Flash code base is
used to build four servers, based on the AMPED (Flash),
MT (Flash-MT), MP (Flash-MP), and SPED (Flash-
SPED) architectures. These four servers represent all the
architectures discussed in this paper, and they were de-
veloped by replacing Flash’s event/helper dispatch mech-
anism with the suitable counterparts in the other architec-
tures. In all other respects, however, they are identical to
the standard, AMPED-based version of Flash and use the
same techniques and optimizations.

In addition, we compare these servers with two
widely-used production Web servers, Zeus v1.30 (a high-
performance server using the SPED architecture), and
Apache v1.3.1 (based on the MP architecture), to pro-
vide points of reference.

In our tests, the Flash-MP and Apache servers use
32 server processes and Flash-MT uses 64 threads. Zeus
was configured as a single process for the experiments
using synthetic workloads, and in a two-process configu-
ration advised by Zeus for the real workload tests. Since
the SPED-based Zeus can block on disk I/O, using mul-
tiple server processes can yield some performance im-
provements even on a uniprocessor platform, since it al-
lows the overlapping of computation and disk I/O.

Both Flash-MT and Flash use a memory-mapped file
cache with a 128 MB limit and a pathname cache limit
of 6000 entries. Each Flash-MP process has a mapped
file cache limit of 4 MB and a pathname cache of 200
entries. Note that the caches in an MP server have to
be configured smaller, since they are replicated in each
process.

The experiments were performed with the servers
running on two different operating systems, Solaris 2.6
and FreeBSD 2.2.6. All tests use the same server hard-
ware, based on a 333 MHz Pentium II CPU with 128 MB
of memory and multiple 100 Mbit/s Ethernet interfaces.
A switched Fast Ethernet connects the server machine
to the client machines that generate the workload. Our
client software is an event-driven program that simulates
multiple HTTP clients [3]. Each simulated HTTP client
makes HTTP requests as fast as the server can handle
them.

6.1 Synthetic Workload
In the first experiment, a set of clients repeatedly re-

quest the same file, where the file size is varied in each
test. The simplicity of the workload in this test allows the
servers to perform at their highest capacity, since the re-
quested file is cached in the server’s main memory. The
results are shown in Figures 6 (Solaris) and 7 (FreeBSD).
The left-hand side graphs plot the servers’ total output
bandwidth against the requested file size. The connec-
tion rate for small files is shown separately on the right.

Results indicate that the choice of architecture has lit-
tle impact on a server’s performance on a trivial, cached
workload. In addition, the Flash variants compare fa-
vorably to Zeus, affirming the absolute performance of
the Flash-based implementation. The Apache server
achieves significantly lower performance on both oper-
ating systems and over the entire range of file sizes, most
likely the result of the more aggressive optimizations
employed in the Flash versions and presumably also in
Zeus.

Flash-SPED slightly outperforms Flash because the
AMPED model tests the memory-residency of files be-

fore sending them. Slight lags in the performance of
Flash-MT and Flash-MP are likely due to the extra ker-
nel overhead (context switching, etc.) in these architec-
tures. Zeus’ anomalous behavior on FreeBSD for file
sizes between 10 and 100 KB appears to stem from the
byte alignment problem mentioned in Section 5.5.

All servers enjoy substantially higher performance
when run under FreeBSD as opposed to Solaris. The rel-
ative performance of the servers is not strongly affected
by the operating system.

6.2 Trace-based experiments
While the single-file test can indicate a server’s max-

imum performance on a cached workload, it giveslittle
indication of its performance on real workloads. In the
next experiment, the servers are subjected to a more real-
istic load. We generate a client request stream by replay-
ing access logs from existing Web servers.

Figure 8 shows the throughput in Mb/sec achieved
with various Web servers on two different workloads.
The “CS trace” was obtained from the logs of Rice Uni-
versity’s Computer Science departmental Web server.
The “Owlnet trace” reflects traces obtained from a Rice
Web server that provides personal Web pages for approx-
imately 4500 students and staff members. The results
were obtained with the Web servers running on Solaris.

The results show that Flash with its AMPED archi-
tecture achieves the highest throughput on both work-
loads. Apache achieves the lowest performance. The
comparison with Flash-MP shows that this is only in part
the result of its MP architecture, and mostly due to its
lack of aggressive optimizations like those used in Flash.

The Owlnet trace has a smaller dataset size than the
CS trace, and it therefore achieves better cache locality
in the server. As a result, Flash-SPED’s relative perfor-
mance is much better on this trace, while MP performs
well on the more disk-intensive CS trace. Even though
the Owlnet trace has high locality, its average transfer
size is smaller than the CS trace, resulting in roughly
comparable bandwidth numbers.

A second experiment evaluates server performance
under realistic workloads with a range of dataset sizes
(and therefore working set sizes). To generate an input
stream with a given dataset size, we use the access logs
from Rice’s ECE departmental Web server and truncate
them as appropriate to achieve a given dataset size. The
clients then replay this truncated log as a loop to generate
requests. In both experiments, two client machines with
32 clients each are used to generate the workload.

Figures 9 (BSD) and 10 (Solaris) shows the perfor-
mance, measured as the total output bandwidth, of the
various servers under real workload and various dataset
sizes. We report output bandwidth instead of request/sec
in this experiment, because truncating the logs at differ-
ent points to vary the dataset size also changes the size

0 50 100 150 200
0

20

40

60

80

100

120

File size (KBytes)

B
an

dw
id

th
 (

M
b/

s)

SPED
Flash
Zeus
MT
MP
Apache

0 5 10 15 20
200

400

600

800

1000

1200

File size (kBytes)

C
on

ne
ct

io
n

ra
te

 (
re

qs
/s

ec
)

SPED
Flash
Zeus
MT
MP
Apache

Figure 6: Solaris single file test — On this trivial test, server architecture seems to have little impact on performance.
The aggressive optimizations in Flash and Zeus cause them to outperform Apache.

0 50 100 150 200
0

50

100

150

200

250

File size (KBytes)

B
an

dw
id

th
 (

M
b/

s)

SPED
Flash
Zeus
MP
Apache

0 5 10 15 20
500

1000

1500

2000

2500

3000

3500

File size (kBytes)

C
on

ne
ct

io
n

ra
te

 (
re

qs
/s

ec
)

SPED
Flash
Zeus
MP
Apache

Figure 7: FreeBSD single file test — The higher network performance of FreeBSD magnifies the difference between
Apache and the rest when compared to Solaris. The shape of the Zeus curve between 10 kBytes and 100 kBytes is
likely due to the byte alignment problem mentioned in Section 5.5.

distribution of requested content. This causes fluctua-
tions in the throughput in requests/sec, but the output
bandwidth is less sensitive to this effect.

The performance of all the servers declines as the
dataset size increases, and there is a significant drop at
the point when the working set size (which is related
to the dataset size) exceeds the server’s effective main
memory cache size. Beyond this point, the servers are
essentially disk bound. Several observation can be made
based on these results:

� Flash is very competitive with Flash-SPED on
cached workloads, and at the same time exceeds
or meets the performance of the MP servers on
disk-bound workloads. This confirms that Flash
with its AMPED architecture is able to combine
the best of other architectures across a wide range
of workloads. This goal was central to the design
of the AMPED architecture.

� The slight performance difference between Flash
and Flash-SPED on the cached workloads reflects

the overhead of checking for cache residency of re-
quested content in Flash. Since the data is already
in memory, this test causes unnecessary overhead
on cached workloads.

� The SPED architecture performs well for cached
workloads but its performance deteriorates quickly
as disk activity increases. This confirms our earlier
reasoning about the performance tradeoffs associ-
ated with this architecture. The same behavior can
be seen in the SPED-based Zeus’ performance, al-
though its absolute performance falls short of the
various Flash-derived servers.

� The performance of Flash MP server falls signifi-
cantly short of that achieved with the other archi-
tectures on cached workloads. This is likely the re-
sult of the smaller user-level caches used in Flash-
MP as compared to the other Flash versions.

� The choice of an operating system has a signifi-
cant impact on Web server performance. Perfor-

Apache MP MT SPED Flash
0

10

20

30

40
B

an
dw

id
th

 (
M

b/
s)

CS trace
Apache MP MT SPED Flash

0

10

20

30

40

B
an

dw
id

th
 (

M
b/

s)

Owlnet trace

Figure 8: Performance on Rice Server Traces/Solaris

15 30 45 60 75 90 105 120 135 150
0

50

100

150

200

Data set size (MB)

B
an

dw
id

th
 (

M
b/

s)

SPED
Flash
Zeus
MP
Apache

Figure 9: FreeBSD Real Workload - The SPED architecture is ideally suited for cached workloads, and when the
working set fits in cache, Flash mimics Flash-SPED. However, Flash-SPED’s performance drops drastically when
operating on disk-bound workloads.

mance results obtained on Solaris are up to 50%
lower than those obtained on FreeBSD. The oper-
ating system also has some impact on the relative
performance of the various Web servers and archi-
tectures, but the trends are less clear.

� Flash achieves higher throughput on disk-bound
workloads because it can be more memory-
efficient and causes less context switching than
MP servers. Flash only needs enough helper pro-
cesses to keep the disk busy, rather than need-
ing a process per connection. Additionally, the
helper processes require little application-level
memory. The combination of fewer total processes
and small helper processes reduces memory con-
sumption, leaving extra memory for the filesystem
cache.

� The performance of Zeus on FreeBSD appears to

drop only after the data set exceeds 100 MB, while
the other servers drop earlier. We believe this
phenomenon is related to Zeus’s request-handling,
which appears to give priority to requests for small
documents. Under full load, this tends to starve
requests for large documents and thus causes the
server to process a somewhat smaller effective
working set. The overall lower performance under
Solaris appears to mask this effect on that OS.

� As explained above, Zeus uses a two-process con-
figuration in this experiment, as advised by the
vendor. It should be noted that this gives Zeus
a slight advantage over the single-process Flash-
SPED, since one process can continue to serve re-
quests while the other is blocked on disk I/O.

Results for the Flash-MT servers could not be pro-
vided for FreeBSD 2.2.6, because that system lacks sup-
port for kernel threads.

15 30 45 60 75 90 105 120 135 150
30

40

50

60

70

80

Data set size (MB)

B
an

dw
id

th
 (

M
b/

s)

SPED
Flash
Zeus
MT
MP
Apache

Figure 10: Solaris Real Workload - The Flash-MT server has comparable performance to Flash for both in-core and
disk-bound workloads. This result was achieved by carefully minimizing lock contention, adding complexity to the
code. Without this effort, the disk-bound results otherwise resembled Flash-SPED.

6.3 Flash Performance Breakdown

0 5 10 15 20
500

1000

1500

2000

2500

3000

3500

File size (KBytes)

C
on

ne
ct

io
n

ra
te

 (
re

qs
/s

ec
)

all (Flash)
path & mmap
path & resp
path only

mmap & resp
mmap only
resp only
no caching

Figure 11: Flash Performance Breakdown - Without op-
timizations, Flash’s small-file performance would drop
in half. The eight lines show the effect of various combi-
nations of the caching optimizations.

The next experiment focuses on the Flash server and
measures the contribution of its various optimizations on
the achieved throughput. The configuration is identical
to the single file test on FreeBSD, where clients repeat-
edly request a cached document of a given size. Fig-
ure 11 shows the throughput obtained by various ver-
sions of Flash with all combinations of the three main op-
timizations (pathname translation caching, mapped file
caching, and response headercaching).

The results show that each of the optimizations has a
significant impact on server throughput forcached con-
tent, with pathname translation caching providing the
largest benefit. Since each of the optimization avoids a

per-request cost, the impact is strongest on requests for
small documents.

6.4 Performance under WAN conditions

0 100 200 300 400 500
20

40

60

80

100

120

of simultaneous clients

B
an

dw
id

th
 (

M
b/

s)

SPED
Flash
MT
MP

Figure 12: Adding clients - The low per-client over-
heads of the MT, SPED and AMPED models cause stable
performance when adding clients. Multiple application-
level caches and per-process overheads cause the MP
model’s performance to drop.

Web server benchmarking in a LAN environment
fails to evaluate an important aspect of real Web work-
loads, namely that fact that clients contact the server
through a wide-area network. The limited bandwidth and
packet losses of a WAN increase the average HTTP con-
nection duration, when compared to LAN environment.
As a result, at a given throughput in requests/second, a
real server handles a significantly larger number of con-
current connections than a server tested under LAN con-
ditions [24].

The number of concurrent connections can have a
significant impact on server performance [4]. Our next
experiment measures the impact of the number of con-
current HTTP connections on our various servers. Per-
sistent connections were used to simulate the effect of
long-lasting WAN connections in a LAN-based testbed.
We replay the ECE logs with a 90MB data set size to ex-
pose the performance effects of a limited file cache size.
In Figure 12 we see the performance under Solaris as the
number of number of simultaneous clients is increased.

The SPED, AMPED and MT servers display an ini-
tial rise in performance as the number of concurrent con-
nections increases. This increase is likely due to the
added concurrency and various aggregation effects. For
instance, a large number of connections increases the av-
erage number of completed I/O events reported in each
select system call, amortizing the overhead of this op-
eration over a larger number of I/O events.

As the number of concurrent connections exceeds
200, the performance of SPED and AMPED flattens
while the MT server suffers a gradual decline in perfor-
mance. This decline is related to the per-thread switch-
ing and space overhead of the MT architecture. The
MP model suffers from additional per-process overhead,
which results in a significant decline in performance as
the number of concurrent connections increases.

7 Related Work

James Hu et al. [17] perform an analysis of Web
server optimizations. They consider two different archi-
tectures, the multi-threaded architecture and one that em-
ploys a pool of threads, and evaluate their performance
on UNIX systems as well as Windows NT using the
WebStone benchmark.

Various researchers have analyzed the processing
costs of the different steps of HTTP request serving and
have proposed improvements. Nahum et al. [25] com-
pare existing high-performance approaches with new
socket APIs and evaluate their work on both single-file
tests and other benchmarks. Yiming Hu et al. [18] exten-
sively analyze an earlier version of Apache and imple-
ment a number of optimizations, improving performance
especially for smaller requests. Yates et al. [31] mea-
sure the demands a server places on the operating system
for various workloads types and service rates. Banga et
al. [5] examine operating system support for event-driven
servers and propose new APIs to remove bottlenecks ob-
served with large numbers of concurrent connections.

The Flash server and its AMPED architecture bear
some resemblance to Thoth [9], a portable operating sys-
tem and environment built using “multi-process structur-
ing.” This model of programming uses groups of pro-
cesses called “teams” which cooperate by passing mes-
sages to indicate activity. Parallelism and asynchronous

operation can be handled by having one process syn-
chronously wait for an activity and then communicate
its occurrence to an event-driven server. In this model,
Flash’s disk helper processes can be seen as waiting for
asynchronous events (completion of a diskaccess) and
relaying that information to the main server process.

The Harvest/Squid project [8] also uses the model of
an event-driven server combined with helper processes
waiting on slow actions. In that case, the server keeps its
own DNS cache and uses a set of “dnsserver” processes
to perform calls to thegethostbyname() library rou-
tine. Since the DNS lookup can cause the library rou-
tine to block, only the dnsserver process is affected.
Whereas Flash uses the helper mechanism for blocking
disk accesses, Harvest attempts to use theselect()
call to perform non-blocking fileaccesses. As explained
earlier, most UNIX systems do not support this use of
select() and falsely indicate that the disk access will
not block. Harvest also attempts to reduce the number of
disk metadata operations.

Given the impact of disk accesses on Web servers,
new caching policies have been proposed in other work.
Arlitt et al. [2] propose newcaching policies by analyz-
ing server access logs and looking for similarities across
servers. Cao et al. [7] introduce the Greedy DualSize
caching policy which uses both access frequency and file
size in making cache replacement decisions. Other work
has also analyzed various aspects of Web server work-
loads [11, 23].

Data copying within the operating system is a sig-
nificant cost when processing large files, and several ap-
proaches have been proposed to alleviate the problem.
Thadani et al. [30] introduce a new API to read and send
memory-mapped files without copying. IO-Lite [29] ex-
tends the fbufs [14] model to integrate filesystem, net-
working, interprocess communication, and application-
level buffers using a set of uniform interfaces. Engler
et al. [20] use low-level interaction between the Cheetah
Web server and their exokernel to eliminate copying and
streamline small-request handling. The Lava project uses
similar techniques in a microkernel environment [22].

Other approaches for increasing Web server perfor-
mance employ multiple machines. In this area, some
work has focused on using multiple server nodes in par-
allel [6, 10, 13, 16, 19, 28], or sharing memory across
machines [12, 15, 21].

8 Conclusion

This paper presents a new portable high-performance
Web server architecture, called asymmetric multi-
process event-driven (AMPED), and describes an im-
plementation of this architecture, the Flash Web server.
Flash nearly matches the performance of SPED servers
on cached workloads while simultaneously matching or

exceeding the performance of MP and MT servers on
disk-intensive workloads. Moreover, Flash uses only
standard APIs available in modern operating systems and
is therefore easily portable.

We present results of experiments to evaluate the im-
pact of a Web server’s concurrency architecture on its
performance. For this purpose, various server architec-
tures were implemented from the same code base. Re-
sults show that Flash with its AMPED architecture can
nearly match or exceed the performance of other archi-
tectures across a wide range of realistic workloads.

Results also show that the Flash server’s performance
exceeds that of the Zeus Web server by up to 30%, and
it exceeds the performance of Apache by up to 50% on
real workloads. Finally, we perform experiments to show
the contribution of the various optimizations embedded
in Flash on its performance.

Acknowledgments
We are grateful to Erich Nahum, Jeff Mogul, and

the anonymous reviewers, whose comments have helped
to improve this paper. Thanks to Michael Pearlman for
our Solaris testbed configuration. Special thanks to Zeus
Technology for use of their server software and Damian
Reeves for feedback and technical assistance with it.
Thanks to Jef Poskanzer for the thttpd web server, from
which Flash derives some infrastructure. This work was
supported in part by NSF Grants CCR-9803673, CCR-
9503098, MIP-9521386, by Texas TATP Grant 003604,
and by an IBM Partnership Award.

References
[1] Apache. http://www.apache.org

[2] M. F. Arlitt and C. L. Williamson. Web Server
Workload Characterization: The Search for Invari-
ants. InProceedings of the ACM SIGMETRICS ’96
Conference, pages 126–137, Philadelphia, PA, Apr.
1996.

[3] G. Banga and P. Druschel. Measuring the capacity
of a Web server. InProceedings of the USENIX
Symposium on Internet Technologies and Systems
(USITS), Monterey, CA, Dec. 1997.

[4] G. Banga and P. Druschel. Measuring the capac-
ity of a Web server under realistic loads.World
Wide Web Journal (Special Issue on World Wide
Web Characterization and Performance Evalua-
tion), 1999. To appear.

[5] G. Banga, P. Druschel, and J. C. Mogul. Resource
containers: A new facility for resource manage-
ment in server systems. InProc. 3rd USENIX Symp.
on Operating Systems Design and Implementation,
Feb. 1999.

[6] T. Brisco. DNS Support for Load Balancing. RFC
1794, Apr. 1995.

[7] P. Cao and S. Irani. Cost-aware WWW proxy
caching algorithms. InProceedings of the USENIX
Symposium on Internet Technologies and Systems
(USITS), Monterey, CA, Dec. 1997.

[8] A. Chankhunthod, P. B. Danzig, C. Neerdaels,
M. F. Schwartz, and K. J. Worrell. A Hierarchical
Internet Object Cache. InProceedings of the1996
Usenix Technical Conference, Jan. 1996.

[9] D. R. Cheriton. The Thoth System: Multi-Process
Structuring and Portability. Elsevier Science Pub-
lishing Co,. Inc, 1982.

[10] Cisco Systems Inc. LocalDirector.
http://www.cisco.com

[11] M. Crovella and A. Bestavros. Self-Similarity in
World Wide Web Traffic: Evidence and Possible
Causes. InProceedings of the ACM SIGMETRICS
’96 Conference, pages 160–169, Philadelphia, PA,
Apr. 1996.

[12] M. Dahlin, R. Yang, T. Anderson, and D. Patterson.
Cooperativecaching: Using remote client mem-
ory to improve file system performance. InProc.
USENIX Symp. on Operating Systems Design and
Implementation, Monterey, CA, Nov. 1994.

[13] O. P. Damani, P.-Y. E. Chung, Y. Huang, C. Kintala,
and Y.-M. Wang. ONE-IP: Techniques for hosting
a service on a cluster of machines.Computer Net-
works and ISDN Systems, 29:1019–1027, 1997.

[14] P. Druschel and L. L. Peterson. Fbufs: A high-
bandwidth cross-domain transfer facility. InPro-
ceedings of the Fourteenth ACM Symposium on
Operating System Principles, pages 189–202, Dec.
1993.

[15] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R.
Karlin, H. M. Levy, and C. A. Thekkath. Imple-
menting global memory management in a worksta-
tion cluster. InProceedings of the Fifteenth ACM
Symposium on Operating System Principles, Cop-
per Mountain, CO, Dec. 1995.

[16] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,
and P. Gauthier. Cluster-based scalable network
services. InProceedings of the Sixteenth ACM Sym-
posium on Operating System Principles, San Malo,
France, Oct. 1997.

[17] J. C. Hu, I. Pyrali, and D. C. Schmidt. Measuring
the impact of event dispatching and concurrency

models on web server performance over high-speed
networks. InProceedings of the 2nd Global Inter-
net Conference, Phoenix, AZ, Nov. 1997.

[18] Y. Hu, A. Nanda, and Q. Yang. Measurement, anal-
ysis and performance improvement of the Apache
web server. InProceedings of the 18th IEEE In-
ternational Performance, Computing and Commu-
nications Conference (IPCCC’99), February 1999.

[19] IBM Corporation. IBM eNetwork dispatcher.
http://www.software.ibm.com/network/dispatcher

[20] M. F. Kaashoek, D. R. Engler, G. R. Ganger, and
D. A. Wallach. Server Operating Systems. In
Proceedings of the1996 ACM SIGOPS European
Workshop, pages 141–148, Connemara, Ireland,
Sept. 1996.

[21] H. Levy, G. Voelker, A. Karlin, E. Anderson, and
T. Kimbrel. Implementing Cooperative Prefetching
and Caching in a Globally-Managed Memory Sys-
tem. InProceedings of the ACM SIGMETRICS ’98
Conference, Madison, WI, June 1998.

[22] J. Liedtke, V. Panteleenko, T. Jaeger, and N. Islam.
High-performance caching with the Lava hit-server.
In Proceedings of the USENIX1998 Annual Tech-
nical Conference, New Orleans, LA, June 1998.

[23] S. Manley and M. Seltzer. Web Facts and Fantasy.
In Proceedings of the USENIX Symposium on Inter-
net Technologies and Systems (USITS), pages 125–
134, Monterey, CA, Dec. 1997.

[24] J. C. Mogul. Network behavior of a busy web
server and its clients. Technical Report WRL 95/5,
DEC Western Research Laboratory, Palo Alto, CA,
1995.

[25] E. Nahum, T. Barzilai, and D. Kandlur. Perfor-
mance Issues in WWW Servers. submitted for pub-
lication.

[26] National Center for Supercomputing Ap-
plications. Common Gateway Interface.
http://hoohoo.ncsa.uiuc.edu/cgi

[27] Open Market, Inc. FastCGI specification.
http://www.fastcgi.com

[28] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Dr-
uschel, W. Zwaenepoel, and E. Nahum. Locality-
aware request distribution in cluster-based network
servers. InProceedings of the 8th Conference on
Architectural Support for Programming Languages
and Operating Systems, San Jose, CA, Oct. 1998.
ACM.

[29] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-
Lite: A unified I/O buffering and caching system.
In Proceedings of the 3rd Symposium on Operating
Systems Design and Implementation, New Orleans,
LA, Feb. 1999.

[30] M. N. Thadani and Y. A. Khalidi. An efficient zero-
copy I/O framework for UNIX. Technical Report
SMLI TR-95-39, Sun Microsystems Laboratories,
Inc., May 1995.

[31] D. Yates, V. Almeida, and J. Almeida. On the
interaction between an operating system and Web
server. Technical Report TR-97-012, Boston Uni-
versity, CS Dept., Boston MA, 1997.

[32] Zeus Technology Limited. Zeus Web Server.
http://www.zeus.co.uk

