Topics in Runtime Systems – Fall 2004
University of Massachusetts, Amherst
www.cs.umass.edu/~emery/cmpsci691s

Instructor Information
Professor Emery Berger (emery@cs.umass.edu)
Office: CMPS 344
Office hours by appointment only

Course Description
Runtime systems are the glue that binds programming languages, operating systems and architecture. Topics to be covered include: explicit and automatic memory management (garbage collection), thread management and synchronization, and dynamic, just-in-time compilation. The goal of this class is to familiarize students with the key ideas behind these topics. We will be reading and discussing seminal papers as well as more recent advances in the state-of-the-art.

Textbook
Garbage Collection, by Jones & Lins. This is an optional text, but I highly recommend it.

Course Grade
Your course grade will be based on class participation, including paper summaries prepared before each class (20%), your presentations (20%), and a course project (60%).

Participation
Prior to each class, you should read and submit a summary/review of each paper. We will follow a conference-style review format modeled on that used at programming language conferences like PLDI, OOPSLA, and ASPLOS. Unlike most papers one reviews for a conference, though, these papers are seminal contributions. Accordingly, you should focus your review on the key ideas of the paper, and explain why they are significant. I expect you to spend approximately one hour reading each paper, unless you are the presenter. NOTE: Unlike real reviews, your review should only be about two paragraphs long.

Everyone will sign up to present papers to the class and lead the discussion. The role of the presenter is to explain the key ideas to everyone in the class. You should be prepared to answer questions, and so you should read the paper in detail.
To make things interesting, half of the class will be designated *advocates* and half of the class will be *detractors*. No one may remain neutral (except me!). We will swap who is an advocate and who is a detractor for each class, although the paper presenter will always be an advocate. Depending on the size and composition of the class, we may also have panel discussions and debates.

Late Policy
Just as with conferences, late submissions are **not accepted**. However, unlike conferences, I will accept a doctor’s note or similar proof of a valid reason for lateness.

Topics
Topics to be covered include the following:

- Virtual machines, dynamic optimization & just-in-time compilation
- Synchronization
 - Atomic operations
 - Thin locks
 - Lock-free algorithms
- Thread scheduling (Gilk, Hood)
- Improving Locality
 - Cache-oblivious computation
 - GC and locality
- Dynamic storage allocation
 - Hoard
 - Heap Layers
 - Reap
- Garbage collection, including:
 - Conservative GC
 - Generational garbage collection
 - Mark-copy (Cheney)
 - Deferred reference counting (Deutsch)
 - Real-time collection (Baker’s Treadmill)
 - On-the-fly collection (Dijkstra, Steele)
 - Multiprocessor collection (Lamport)
 - MP compaction (Steele)
Class Schedule
This schedule is subject to change, but we should be adhering pretty closely to it. Any changes will be announced in class and/or by e-mail.

1. Th September 9 Introduction to Runtime Systems Emery Berger
2. Tu September 14 Adaptive Optimization in the Jalapeño JVM Matthew Hertz
 Dynamo: A Transparent Dyn. Optimization System Trek Palmer
3. Th September 16 Thin Locks: Featherweight Synchronization for Java Tim Richards
 Wait-Free Synchronization Michael Bradshaw
4. Tu September 21 Cilk: An Efficient Multithreaded Runtime System Trevor Strohman
 Thread Scheduling for Multi. Multiprocessors Tom Heydt-Benjamin

Th September 23 class cancelled

5. Tu September 28 Cache-Oblivious Algorithms Bruno Ribeiro
 The Garbage Collection Advantage: Improving Program Locality Ting Yang
6. Th September 30 Hoard: A Scalable Memory Allocator
 Composing High-Performance Memory Allocators Emery Berger (both)
7. Tu October 5 Reconsidering Custom Memory Allocation Emery Berger
 Garbage Collection in an Uncooperative Environment Gene Novark
8. Th October 7 A Non-Recursive List Compacting Algorithm Zongfang Lin
 List Processing in Real-Time on a Serial Computer Ed Walters

Tu October 12 class cancelled (ASPLOS)
Th October 14 class cancelled (ASPLOS)

9. Tu October 19 Generational Scavenging
Ting Yang
Simple Generational GC and Fast Allocation
Eric Feng

10. Th October 21 An Efficient Incremental Automatic GC
Pritesh Sharma
Ulterior Reference Counting
Gene Novark

Tu October 26 class cancelled (OOPSLA)
Th October 28 class cancelled (OOPSLA)