
CMPSCI 377 Operating Systems Fall 2007

Lecture 9: October 18
Lecturer: Emery Berger Scribe: Andrew Huang

9.1 Synchronization

9.1.1 Consistency

Threads must ensure consistency. Otherwise, threads may result in a race condition leading to a non-
deterministic result. A race is when the result is dependent the order in which the threads finish.

For example:
Thread A says x = 1, and if (x == 2), then print ‘What?’
Thread B says x = 2.

What is x?

Threads require synchronization operations for this to be answered.

9.2 ‘The too much milk problem

The too much milk problem

time You Your roommate
3:00 Arrive Home
3:05 Look in fridge, no milk
3:10 Leave for grocery
3:15 Arrive home
3:20 Arrive at grocery Look in fridge, no milk
3:25 Buy milk Leave for grocery
3:30 Arrive home, put milk in fridge
3:35 Arrive at grocery
3:40 Buy milk
3:45 Arrive home, put milk in fridge
3:50 Uh oh!

This is why we need to synchronize activities!

Terminology

Definition 9.1 Mutual exclusion (mutex) prevents multiple threads from entering. The critical sec-
tion is code that only one thread can execute at a time. A lock is a mechanism for mutual exclusion.

9-1



9-2 Lecture 9: October 18

• Lock on entering critical section, accessing shared data

• Unlock when complete

• Wait if locked

9.2.1 Solving the Too Much Milk Problem

Correctness properties

• Only one person buys milk

– Safety: ”nothing bad happens”

• Someone buys milk if you need to

– Progress: ”something good eventually happens”

First: use atomic loads stores as building blocks

• ”Leave a note” (lock)

• ”Remove a note” (unlock)

• ”Don’t buy milk if there’s a note” (wait)

9.2.2 Too Much Milk: Attempt 1

thread A thread B

if(no milk && no note) if (no milk && no note)
leave note leave note
buy milk buy note
remove note remove note

! If both threads switch after reading the if statement, then both will buy milk.

9.2.3 Too Much Milk: Attempt 2

Idea: use labeled notes

thread A thread B

leave note A leave note B
if (no note B) if (no note A)

if (no milk) if (no milk)
buy milk buy milk

remove note A remove note B



Lecture 9: October 18 9-3

! If both threads switch after leaving a note, neither will buy milk.

9.2.4 Too Much Milk: Attempt 3

Idea: wait for the right note

thread A thread B

leave note A leave note B
while (note B) if (no note A)

do nothing if (no milk)
if (no milk) buy milk

buy milk remove note B
remove note A

Possibility 1: thread A runs first, then thread B.
thread A will buy milk. thread B will see there is milk, and therefore not buy any more milk.

Possibility 2: thread B runs first, then thread A.
thread B will buy milk. thread A will see there is milk, and therefore not buy any more milk.

Possibility 3: Interleaved - A waits buys
thread A and thread B can leave a note, but thread A will wait for thread B to finish before moving on.
thread B will not buy milk because note A exists, and finish the thread.
thread A will continue and buy milk.

Possibility 4: Interleaved - A waits, B buys
thread B will leave a note, and see there is no note A.
A can start and see there is a note B, and wait for B to finish.
B will continue to buy milk if there no milk, and then finish before thread A will continue.
thread A will not buy milk because thread B just bought milk.

So attempt 3 is a correct solution because it preserves the desired properties:

• Safety: we only buy milk once

• Progress: we always buy milk

but..

9.2.5 Problems with this solution

Complicated

• Difficult to convince outselves that it works



9-4 Lecture 9: October 18

Asymmetrical

• Threads A & B are different

• Adding more threads = different code for each thread

Poor utilization

• Busy waiting consumes CPU, no useful work

– time could be better spent on other work

Possibly non-portable

• Relies on atomicity of loads & stores

– atomicity is ”all of nothing”

9.3 Language Support

Synchronization (making an area of code atomic) is complicated Better way - provide language-level support

• Higher-level approach

• Hide gory details in runtime system

Increasingly high-level approaches (pthread supplies all these):

• Locks, Atomic Operations

• Semaphores - generalized locks

• Monitors - tie shared data to synchronization

9.4 Locks

Provide mutual exclusion to shared data via two atomic routines:

• acquire - wait for lock, then take it

• release - unlock, wake up waiters

Rules:

• Acquire lock before accessing shared data

• Release lock afterwards

• Lock initially released



Lecture 9: October 18 9-5

9.4.1 Pthreads Syntax

POSIX standard for C/C++ Mutual exclusion locks

• Ensures only one thread in critical section

pthread mutex init(l);
..
pthread mutex lock(l);
update data; /* critical section */
pthread mutex unlock(l);

9.4.2 Pthreads API

Routine Prefix Functional Group
pthread Threads themselves and miscellaneous subroutines
pthread attr Threads attributes objects
pthread mutex Mutexes

9.4.3 Too Much Milk: Locks

thread A thread B

p m lock(l) p m lock(l)
if (no milk) if (no milk)

buy milk buy milk
p m lock(l) p m lock(l)

The code in both threads is exactly the same. Clean, symmetric - but how do we implement it? Hardware
support prevents both locks from happening at the same time. Dekker’s algorithm allows mutual exlusion.

9.4.4 Implementing Locks

Requires hardware support (in general) Can build on atomic operations:

• Load/Store

• Disable interrupts

– Uniprocessors only, this does not work on multiprocessors

– Says to OS, ”Shut up, don’t switch me out or interrupt me!”

• Test & Set, Compare & Swap



9-6 Lecture 9: October 18

9.4.5 Disabling Interrupts

”I want a notification when some time elapses, a hardware signal called an interrupt, and time is up.”
Disabling interrupts prevent scheduler from switching threads in middle of critical sections

• Ignores quantum expiration (timer interrupt)

• No handling I/O operations

– (Don’t make I/O calls in critical section!)

In cooperative multithreading, a thread can call yield and say it is ok to switch out

Class ={
private int value;
private Queue q;

Lock () {
value = 0; q = empty;
}

public void acquire () {
disable interrupts;
if (value == BUSY) {
add this thread to q;
enable interrupts;
sleep();
} else {
value = BUSY;
}
enable interrupts;
}

public void release () {
disable interrupts;
if (q not empty) {
thread t = q.pop();
put t on ready queue;
}
value = FREE;
enable interrupts;
}

}



Lecture 9: October 18 9-7

9.4.6 Locks via Disabling Interrupts

9.4.7 Barrier

X = 1
Y = 2
Z = X
Could run Z=x, and then X=1, because reads can come first but..

Barrier prevents misordering
X = 1
BARRIER //don’t execute until above is done
Y = 2
Z = X

9.5 Summary

Communication between threads:via shared variables Critical sections = regions of code that modify or
access shared variables Must be protected by synchronization primitives that ensure mutual exclusion

• Loads & stores: tricky, error-prone

• Solution: high-level primitives (e.g., locks)


