
CMPSCI 377 Operating Systems Spring 2009

Lecture 8: October 1
Lecturer: Emery Berger Scribes: Bruno Silva,Jim Partan

8.1 Thread safety

What does it mean for something to be thread-safe? By saying that X is thread-safe we mean that if multiple
threads use X at the same time, we don’t have to worry about concurrency problems. The STL, for instance,
is not thread-safe; if we were to create an STL queue and have two threads to operate on it simultaneously,
we would have to manually perform all locking operations. The cout instruction is also not thread-safe.

Suppose now we want to build a thread-safe queue; the methods we want the queue to have are insert(item),
remove() and empty(). The first question to be asked is what should remove() do when the queue is empty.
One solution would be for it to return a special value (such as NULL or -1, etc) or to throw an exception.
It would much more elegant and useful, however, to make that function call wait until something actually
appears in the queue. By implementing this type of blocking system, we are in fact implementing part of a
producer-consumer system.

Now let us think of how to make the function wait. We can spin, i.e. write something like while (empty()) ;.
This, however, obviously doesn’t work, since the test of emptiness needs to read shared data; we need to put
locks somewhere! And if we lock around the while(empty()); line, the program will hang forever. Several
other näıve approaches do not work (see slides for examples). The conclusion is that we need some way of
going to sleep and at the same time having someone to wake us up when there’s something interesting to
do. Let us now present several possible implementations for this system and discuss why they do not work.
The first possibility is:

dequeue()
lock() // needs to lock before checking if it’s empty
if (queue empty)

sleep()
remove_item()
unlock()

enqueue()
lock()
insert_item()
if (thread waiting)

wake up dequeuer
unlock()

8-1



8-2 Lecture 8: October 1

One problem with this approach is that the dequeuer goes to sleep while holding the lock! How about the
second possible approach:

dequeue()
lock() // need to lock before checking if it’s empty
if (queue empty) {

unlock()
sleep()

}
remove_item()
unlock()

enqueue()
lock()
insert_item()
if (thread waiting)

wake up dequeuer
unlock()

One problem here is that we are using an “if” instead of a “while” when checking whether or not the queue
is empty. Consider the case where the dequeuer is sleeping, waiting for the enqueuer to insert an item. The
enqueuer inserts an item, sends a wake-up signal, and the dequeuer wakes up. But then another dequeuer
thread runs and removes the item. The first dequeuer thread now tries to remove an item from an empty
queue. This problem can be fixed by using a “while” instead of the “if” statement, like this:

dequeue()
lock() // need to lock before checking if it’s empty
while (queue empty) {

unlock()
sleep()

}
remove_item()
unlock()

enqueue()
lock()
insert_item()
if (thread waiting)

wake up dequeuer
unlock()

This presents a more subtle and harder problem: the dequeuer might unlock, and then before it actually
executes the sleep() function, the enqueuer could get the CPU back. In this case, the enqueuer would acquire
the lock and insert the new item, but since there would be no one sleeping, there would be no thread to
wake up, so the enqueuer would simply unlock, and never wake up the dequeuer again. Then the dequeuer
would get the CPU back, finish calling sleep(), and sleep forever, even though the queue is not empty. The
main issue is that another thread can run between the unlock() and the sleep() calls in dequeue().



Lecture 8: October 1 8-3

The general solution to this type of problem is to make “unlock + sleep” atomic, which we will use to build
our function called wait():

wait(lock l, cv c) {
unlock_and_sleep(l,c); // in one atomic step, unlock and sleep, waiting for c.v. c
lock(l); // re-acquire the lock

}

We use condition variables to do exactly that: condition variables make it possible and easy to go to sleep,
by atomically releasing the lock, putting the thread on the waiting queue and going to sleep. Each condition
variable has a “wait queue” of threads waiting on it, managed by the threads library. There are three
important functions to be used when dealing with condition variables:

• wait(lock l, cv c): atomically releases the lock and goes to sleep. When calling wait, we must be
holding the lock. Depending upon the threads library, wait() may or may not re-acquire the lock when
awakened (pthread cond wait() does re-acquire the lock);

• signal(cv c): wakes up one waiting thread, if there are any;

• broadcast(cv c): wakes up all waiting threads.

8.1.1 Producer-consumer using condition variables

Now let us present an implementation of a producer-consumer system using condition variables. This im-
plementation works.

dequeue()
lock(A)
while (queue empty) {

wait(A, C) // atomically releases lock A and sleeps, waiting for
// condition variable C.
// When the thread wakes up, it re-acquires the lock.
// C is the condition variable that means ‘‘queue not empty’’.

}
remove_item()
unlock(A)

enqueue()
lock(A)
insert_item()
signal(C)
unlock(A)

In dequeue() above, if the thread wakes up and by chance the queue is empty, there is no problem: that’s
why we need the ”while” loop.


