
Improving State-of-the-Art OCR through

High-Precision Document-Specific Modeling

Andrew Kae1 Gary Huang1 Carl Doersch2 Erik Learned-Miller1

1Department of Computer Science

University of Massachusetts Amherst

{akae,gbhuang,elm}@cs.umass.edu

2Department of Computer Science

Carnegie Mellon University

carl.doersch@gmail.com

Abstract

Optical character recognition (OCR) remains a difficult

problem for noisy documents or documents not scanned at

high resolution. Many current approaches rely on stored

font models that are vulnerable to cases in which the docu-

ment is noisy or is written in a font dissimilar to the stored

fonts. We address these problems by learning character

models directly from the document itself, rather than using

pre-stored font models. This method has had some success

in the past, but we are able to achieve substantial improve-

ment in error reduction through a novel method for creating

nearly error-free document-specific training data and build-

ing character appearance models from this data.

In particular, we first use the state-of-the-art OCR sys-

tem Tesseract to produce an initial translation. Then, our

method identifies a subset of words that we have high con-

fidence have been recognized correctly and uses this sub-

set to bootstrap document-specific character models. We

present theoretical justification that a word in the selected

subset is very unlikely to be incorrectly recognized, and em-

pirical results on a data set of difficult historical newspa-

per scans demonstrating that we make only two errors in

56 documents. We then relax the theoretical constraint in

order to create a larger training set, and using document-

specific character models generated from this data, we are

able to reduce the error over properly segmented characters

by 34.1% overall from the initial Tesseract translation.

1. Introduction

Despite claims to the contrary, getting optical character

recognition (OCR) systems to consistently obtain very high

accuracy rates continues to be a challenging problem, due

to difficult cases arising from factors such as noise, low-

resolution, and unusual fonts [17]. One existing approach

to address this problem is to incorporate document-specific

modeling [4, 7, 8]. The idea is to specifically model the

document being processed by adapting to the fonts, noise

model, or lexicon in the document. However, such ap-

proaches have had only limited success.

If one had some method for finding a sample of words

in a document that were nearly all correct, one could effec-

tively use the characters in such words as training data from

which to build document-specific font models. Obtaining

such a sample of correctly labeled words is not easy, and to

our knowledge, there are no existing techniques to perform

this task with very high accuracy. There are many methods

that could be used to produce lists of words that are mostly

correct, but contain some errors. Unfortunately, such lists

are not much good as training data for document-specific

models since they contain significant numbers of errors, and

these errors in training propagate to create more errors later.

In this paper, we present a novel method for identify-

ing a subset of words that are nearly all correctly recog-

nized (with at most one error per document) from an ini-

tial translation produced by a third-party OCR system.1

We give both theoretical justification that our method is

highly unlikely to incorrectly identify a word as being cor-

rectly recognized, and empirical results for which we make

very few errors (less than 1 error per 2000 words chosen).

We demonstrate the utility of document-specific modeling

when such data is available by dramatically reducing char-

acter error on a set of difficult historical newspaper scans.

This is accomplished by using the characters in the iden-

tified words as high-precision training data to learn charac-

ter appearance models for the specific documents. Using

these models we can correct errors made in the initial trans-

lation, achieving a substantial error reduction of 34.1% over

properly segmented characters. Moreover, we show that us-

ing training data from a naive approach based on thresh-

olding confidence values leads to a lower error reduction of

9.5%. This demonstrates the utility of our method for iden-

1http://code.google.com/p/tesseract-ocr/



tifying training data with very few errors.

We begin in Section 2 with an overview of our approach

and present related work. In Section 3, we present the

specifics of our method for creating nearly error-free train-

ing sets, and give theoretical bounds on the probability of

error in these sets in Section 4. We then describe how we

use the document-specific model to reduce the error rate in

Section 5, and give experimental results in Section 6. Fi-

nally, we conclude with directions for future research.

2. Document-Specific Modeling

In this paper, we consider a new approach to obtaining

a “clean word list” for use in document-specific modeling.

We consider a set of hypotheses about each word in the doc-

ument where each hypothesis poses that one particular word

of the initial OCR system is incorrect. We then search for

hypotheses that we can reject with high confidence. More

formally, we treat a third party OCR system as a null hy-

pothesis generator, in which each attempted transcription T
produced by the OCR system is treated as the basis for a

separate null hypothesis. The null hypothesis for word T
is simply “Transcription T is incorrect.” LettingW be the

true identity of a transcription T , we notate this as T 6= W .

Our goal is to find as many hypotheses as possible that

can be rejected with high confidence. In this paper, we take

high confidence to mean with fewer than 1 error in a thou-

sand rejected hypotheses. As we mention later, we only

make an 2 errors in 4465 words in our clean word lists, even

when they come from quite challenging documents.

This process allows us to form high-precision training

sets with very few errors, at the cost of lower recall. We

argue that this is preferable to the alternative of a larger

amount of training data at lower precision. Although some

classifiers may be robust to errors in the training data, this

will be very dependent on the number of training examples

available. For characters such as ’j’ that appear less fre-

quently, having even a few errors may mean that more than

half of the training examples are incorrect. While we can

tolerate some errors in character classes such as ’e’, we can-

not tolerate them in all classes, as is supported later in our

experimental results. Thus, it is essential that our error rate

be very low in our clean word list.

2.1. Related Work

There has been significant work done in post-processing

the output of an OCR system, although all different from the

work we present here. Kukich surveyed various methods to

correct words, either in isolation or with context, using nat-

ural language processing techniques [13]. Kolak developed

a generative model to estimate the true word sequence from

noisy OCR output [12]. They assume a generative process

that produces words, characters, and word boundaries, in

order to model segmentation and character recognition er-

rors of an OCR system.

Our work differs from the work above in that we ex-

amine the document images themselves to build document-

specific models of the characters. A similar idea was used

by Hong and Hull, who examined the inter-word relation-

ships of character patches to help constrain possible inter-

pretations [9]. Our work extends these ideas to produce

clean, document-specific training data that can then be used

along with more traditional supervised learning methods,

Our work is also related to a variety of approaches that

leverage inter-character similarity in documents in order

to reduce the dependence upon a priori character models.

One method for making use of such information is to treat

OCR as a cryptogram decoding problem [2, 16]. After per-

forming character clustering, decoding can be performed

by a lexicon-based method or using hidden Markov mod-

els [5, 14]. However, such methods are limited by the as-

sumption that characters can be clustered cleanly into pure

clusters consisting of only one character. This particular

problem can be overcome by solving the decoding problem

iteratively [11].

An alternative approach to obtaining document-specific

character models is presented in [3] using an iterative algo-

rithm to extract character templates from high confidence

regions. One major difference is that we provide a theoreti-

cal bound on the number of errors expected using our algo-

rithm to identify highly confident words. Another signifi-

cant difference is that the authors provide a small amount of

manually defined training data in their application, whereas

we provide none.

Another method for leveraging inter-character similarity

is to perform some type of character clustering, for exam-

ple to replace individual, potentially degraded character im-

ages with a smoothed image over the cluster or to perform

nearest-neighbor classification of characters [1, 6].

The inability to attain high confidence in either the iden-

tity or equivalence of characters in these papers has hin-

dered their use in subsequent OCR developments. We hope

that the high confidence values we obtain will spur the use

of these techniques for document-specific modeling.

3. Method for Producing Clean Word Lists

In this section, we present our method for taking a doc-

ument and the output of an OCR system and producing a

so-called clean word list, i.e. a list of words which we be-

lieve to be correct, with high confidence. Our success will

be measured by the number of words that can be produced,

and whether we achieve a very low error rate in the clean

list. Ideally, we must produce a clean word list which is

large enough to provide a sufficient amount of training data

for document-specific modeling.

We assume the following setup:



• We are provided with a document D in the form of a
grayscale image.

• We are provided with an OCR system.
• We further assume that the OCR system provides an
attempted segmentation of the documentD into words,
and that the words are segmented into characters. It

is not necessary that the segmentation be entirely cor-

rect, but merely that the system produces an attempted

segmentation.

• In addition to a segmentation of words and characters,
the system should produce a best guess for every char-

acter it has segmented, and hence, by extension, of ev-

ery word (or string) it has segmented. Of course, we do

not expect all of the characters or words to be correct,

as that would make our exercise pointless.

• Using the segmentations provided by the OCR system,
we assume we can extract the gray-valued bitmaps rep-

resenting each guessed character from the original doc-

ument image.

• Finally, we assume we are given a lexicon. Our
method is relatively robust to the choice of lexicon,

and assumes there will be a significant number of non-

lexicon words in the document.

We define a few terms before proceeding. The Ham-

ming distance between two strings of the same number of

characters is the number of character substitutions neces-

sary to convert one string to the other. The Hamming ball

of radius r for a word W , Hr(W ), is the set of strings
whose Hamming distance to W is less than or equal to

r. Later, after defining certain equivalence relationships
among highly confusable characters such as ’o’ and ’c’,

we define a pseudo-Hamming distance which is equivalent

to the Hamming distance except that it ignores substitu-

tions among characters in the same equivalence class. We

also use the notions of edit distance, which extends Ham-

ming distance by including joins and splits of characters,

and pseudo-edit distance, which is edit distance using the

aforementioned equivalence classes.

Our method for identifying words in the clean list has

three basic steps. We consider each word T output by the
initial OCR system.

1. If T is not in the lexicon, we discard it and make no
attempt to classify whether it is correct. That is, we do

not put it on the clean word list.2

2Why is it not trivial to simply declare any output of an OCR system

that is a lexicon word to be highly confident? The reason is that OCR

systems frequently use language models to project uncertain words onto

nearby lexicon words. For example, suppose the original string was “Rum-

pledpigskin”, and the OCR system, confused by its initial interpretation,

projected “Rumpledpigskin” onto the nearest lexicon word “Rumplestilt-

skin”. A declaration that this word is correct would then be wrong. How-

ever, our method will not fail in this way because if the true string were in

fact “Rumpledpigskin”, the character consistency check would never pass.

It is for this reason that our method is highly non-trivial, and represents a

significant advance in the creation of highly accurate clean word lists.

2. Given that T is a lexicon word, we evaluate whether
H1(T ) is non-empty, i.e. whether there are any lexicon
words for which a single change of a letter can produce

T . If H1(T ) is non-empty, we discard T and again
make no attempt to classify whether it is correct.

3. Assuming we have passed the first two tests, we now

perform a consistency check (described below) of each

character in the word. If the consistency check is

passed, we declare the word to be correctly recognized

and include it in the clean list.

3.1. Consistency Check

In the following discussion, we refer to the bitmap as-

sociated with a character whose identity is unknown as a

glyph. LetWj be the true character class of the jth glyph of
a wordW , and let Tj be the initial OCR system’s interpreta-

tion of the same glyph. The goal of a consistency check is to

ensure that the OCR system’s interpretation of a glyph is re-

liable. We will assess reliability by checking whether other

similar-looking glyphs are usually interpreted the same by

the OCR system.

To understand the purpose of the consistency check, con-

sider the following situation. Imagine that a document con-

tains a stray mark that does not look like any character at

all, but was interpreted by the initial OCR system as a char-

acter. If the OCR system thought that the stray mark was a

character, it would have to assign it to a character class like

’t’. We would like to detect that this character is unreliable.

Our scheme for doing this is to find other characters that are

similar to this glyph, and to check the identity assigned to

those characters by the initial OCR system. If a large ma-

jority of those characters are given the same interpretation

by the OCR system, then we consider the original character

to be reliable. Since it is unlikely that the characters closest

to the stray mark are clustered tightly around the true char-

acter ’t’, we hope to detect that the stray mark is atypical,

and hence unreliable.

More formally, to test a glyph g for reliability, we first
find theM characters in the document that are most similar
to g. We then run the following procedure:
1. Initialize i to 1.
2. Record the label of the character that is ith most similar
to g. (We use normalized correlation as the similarity
measure.)

3. If any character class c has matched g a number of
times cn such that

cn

i+1 > θ, then declare the character
g to be θ-dominated by the class c, and terminate the
procedure.

4. Otherwise, add 1 to i. If i < M , go to Step 2.
5. If, after the top M most similar characters to g are
evaluated and no character class c dominates the glyph,
then we declare that the glyph g is undominated.
There are three possible outcomes of the consistency



check. The first is that the glyph g is dominated by the same
class c as the OCR system’s interpretation of g, namely Tj .

The second outcome is that g is dominated by some other
class that does not match Tj . The third outcome is that g is
undominated. In the latter two cases, we declare the glyph

g to be unreliable. The interpretation of glyph g is reli-
able only if g is dominated by the same class as the original
OCR system. Furthermore, a word is included in the clean

list only if all of the characters in the word are reliable.

The constants used in our experimentswereM = 20 and
θ = 0.66. That is, we compared each glyph against a max-
imum of 20 other glyphs in our reliability check, and we

insisted that a “smoothed” estimate of the number of simi-

larly interpreted glyphs was at least 0.66% before declaring

a character to be reliable. We now analyze the probability

of making an error in the clean list.

4. Theoretical Bound

The goal of this section is to show that, under certain

simple assumptions that hold for a very large class of docu-

ments, our method for producing clean lists has a very low

probability of error. This formal bound on the error prob-

ability gives us some confidence that such a method will

work not just for the documents tested in this paper but for

a much larger class of documents.

The following is a condensed version of our analysis.

More complete derivations can be found in the technical

report [10]. Let C be the event that the word passed the
consistency check. When wt is a lexicon word and has an

empty Hamming ball of size 1, we want to upper bound

Pr(W 6= wt|T = wt, C)

=
∑

w 6=wt

Pr(W = w|T = wt, C)

=
∑

w 6=wt

w∈Dict,|w|=|wt|

Pr(W = w|T = wt, C)

+
∑

w 6=wt

w∈Dict,|w|6=|wt|

Pr(W = w|T = wt, C)

+
∑

w 6=wt

w/∈Dict

Pr(W = w|T = wt, C).

Let ǫ be an upper bound on the probability that noise
has caused a character of any given class to look like it be-

longs to another specific class other than its own class. The

probability of the consistency check giving a label c2 when

the true underlying label is c1 is then less than 2ǫ, for any
classes c1, c2. Let δ be a lower bound on the probability that
a character consistency check will succeed if the OCR sys-

tem’s label of the character matches the ground truth label.

Let Di be the number of lexicon words of pseudo-

Hamming distance i away from wt. Let rD be the rate of

growth of Di as a function of i, e.g. Di+2 = ri
DD2. As-

sume, since ǫ ≪ 1, that rD(2ǫ
δ ) < 1

2 . Similarly, let Ei be

the number of lexicon words w with a pseudo-edit distance
i away from wt and |w| 6= |wt|, and also assume that rE ,

the rate of growth of Ei, satisfies rE(2ǫ
δ ) < 1

2 .

Let Ni be the set of non-lexicon words with

a pseudo-edit distance i from wt, and let pi =
Pr(T=wt|W∈Ni) Pr(W∈Ni)
Pr(T=wt|W=wt) Pr(W=wt)

. Assume the rate of growth of

rN of pi satisfies rN (2ǫ
δ ) < 1

2 . We will make the as-

sumption that the individual character consistency checks

in Pr(C|T = wt, W = w) are independent, although this
is not exactly true.

We will make use of the following inequality:

Pr(W = w|T = wt, C)

≤
Pr(C|T = wt, W = w)

Pr(C|T = wt, W = wt)

×
Pr(T = wt|W = w) Pr(W = w)

Pr(T = wt|W = wt) Pr(W = wt)
. (1)

For lexicon words w, we will assume that

Pr(T = wt|W = w) Pr(W = w)

Pr(T = wt|W = wt) Pr(W = wt)

=
Pr(W = w|T = wt)

Pr(W = wt|T = wt)
< 1. (2)

Bounding lexicon words. Applying Eq. 2 to Eq. 1, we

get

Pr(W = w|T = wt, C)

≤
Pr(C|T = wt, W = w)

Pr(C|T = wt, W = wt)
. (3)

For a word w that is a pseudo-Hamming distance i from
wt, we can simplify Eq. 3 as Pr(W = w|T = wt, C) ≤
(2ǫ)i

δi and bound the sum over all Hamming distance words

as
∑

w 6=wt,w∈Dict,|w|=|wt|

Pr(W = w|T = wt, C)

≤
∑

i=2

Di
(2ǫ)i

δi
≤ 8D2

ǫ2

δ2
.

For a word w that is a pseudo-edit distance i from wt,

we can simplify Eq. 3 as Pr(W = w|T = wt, C) ≤ (2ǫ)i+1

δi

and bound the sum over all such edit distance words as
∑

w 6=wt,w∈Dict,|w|6=|wt|

Pr(W = w|T = wt, C)

≤
∑

i=1

Ei
(2ǫ)i+1

δi
≤ 8E1

ǫ2

δ2
.



Bounding non-lexicon words. Rearranging Eq. 1 and

summing over all non-lexicon words,

∑

w 6=wt,w/∈Dict

Pr(W = w|T = wt, C)

≤
∑

i=1

∑

w∈Ni

(2ǫ)i

δi

Pr(W = w|T = wt)

Pr(W = wt|T = wt)

=
∑

i=1

(2ǫ)i

δi
pi ≤ 4p1

ǫ

δ2
.

Final bound. This gives us a final error probability of

Pr(W 6= wt|T = wt) ≤
(8D2 + 8E1)ǫ

2 + 4p1ǫ

δ2
.

For ǫ < 10−3, 8D2 + 8E1 < 102, 4p1 < 10−1, δ2 >
10−1,

Pr(W 6= wt|T = wt) ≤ 2 · 10−3.

The bounds for the constants chosen above were selected

conservatively to hold for a large range of documents, from

very clean to moderately noisy. Not all documents will nec-

essarily satisfy these bounds. In a sense, these inequalities

define the set of documents for which our algorithm is ex-

pected to work, and for heavily degraded documents that

fall outside this set, the character consistency checks may

no longer be robust enough to guarantee a very low proba-

bility of error.

Our final bound on the probability of error, 0.002, is the

result of a worst case analysis under our assumptions. If

our assumptions hold, the probability of error will likely

be much lower for the following reasons. For most pairs of

letters, ǫ = 10−3 is not a tight upper bound. The quantity on

the right of Eq. 2 is typically much lower than 1. The rate of

growths rD, rE , rN are typically much lower than assumed.

The bound on p1, the non-lexicon word probabilities, is not

a tight upper bound, as non-lexicon words mislabeled as

lexicon words are rare. Finally, the number of Hamming

and edit distance neighborsD2 andE1 will typically be less

than assumed.

On the other hand, for sufficiently noisy documents, and

certain types of errors, our assumptions do not hold. Some

of the problematic cases include the following. As dis-

cussed, the assumption that the individual character con-

sistency checks are independent is not true. If a document

is degraded or has a font such that one letter is consistently

interpreted as another, then that error will likely pass the

consistency check (e.g. ǫ will be very large). If a document
is degraded or is very short, then δ may be much smaller
than 10−

1
2 . (The character consistency check requires a

character to match to at least a certain number of other simi-

larly labeled characters, so, for example, if that number isn’t

present in the document to begin with, then the check will

fail with certainty.) Finally, if the lexicon is not appropri-

ate for the document then 4p1 < 10−1 may not hold. This

problem is compounded if the initial OCR system projects

to lexicon words.

5. Character Recognition

Using the clean list generated from the approach above,

we build document-specific character models using SIFT

features [15]. We refer to our algorithm as SIFT Align.

We use the traditional SIFT descriptor without applying the

Gaussian weighting because we did not want to weight the

center of an image more highly than the rest. In addition,

we fix the scale to be 1 and orientation to be 0 at all times.

The SIFT Align procedure is presented below:

1. Compute the SIFT descriptor for each character image

in the clean list, at the center of the image.

2. Compute the component-wise arithmetic mean of all

SIFT descriptors for each character class in the clean

list. These mean descriptors are the “representations”

(or character models) of the respective classes.

3. For each character image in the clean list, compute a

SIFT descriptor for each point in a window in the cen-

ter of the image (we use a 5x5 window) and select the

descriptor with smallest L2 distance to the mean SIFT

descriptor for this character class. This aligns each

character’s descriptor to the mean class descriptor.

4. Test images are all character images not in the clean

list (since we don’t want to test on images we trained

on). In addition, test images must be labeled as one of

the clean list character classes by the initial OCR sys-

tem, and actually be one of the clean list characters.3

Align each test image as in the previous step, except

select the descriptor with smallest L2 distance to any

of the mean descriptors. This aligned descriptor is the

final descriptor for the test image.

5. Pass the SIFT descriptors for the training/test images

found in the previous steps to a multiclass SVM with a

C value of 5,000,000.

We use the SV Mmulticlass implementation4 of multi-

class SVM [18] and use a high C value of 5,000,000, which

was selected through cross-validation. This makes sense

since we generally do not have many instances of each char-

acter class in the clean list, and so we want a minimum of

slack, which a high C value enforces.

3Note that if a character is labeled as a clean list character class but its

true label is actually not one of these classes, then it must be incorrectly

labeled by the initial OCR system and and so our approach can do no worse

by excluding it from the test set.
4http://svmlight.joachims.org/



Figure 1. Red boxes indicate clean list words. Green boxes indicate Tesseract’s confident word list. Blue boxes indicate words in both lists.

“timber” is incorrectly recognized by OCR system as “timhcr”. All other words in boxes are correctly translated. (Best viewed in color)

0 10 20 30 40 50 60
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Documents

%
 E

rr
o
r 

R
e
d
u
c
ti
o
n

% Error Reduction for all Test Documents

 

 

SIFT_Align with Clean List (SIFT_Align_Clean)

SIFT_Align with Tesseract Confidences (SIFT_Align_Tess)

Figure 2. Character error reduction rates for SIFT Align using the clean list (SIFT Align Clean) and Tesseract’s confident word list

(SIFT Align Tess) on the test sets of 56 documents. SIFT Align Clean increases error in 10 documents whereas SIFT Align Tess in-

creases error in 21 documents.



Figure 3. Sample of results from two documents. A green box indicates both the initial OCR system (Tesseract) and SIFT Align correctly

classified the character. A red box indicates both systems misclassified the character, and a blue box indicates that SIFT Align classified the

character correctly and Tesseract misclassified it. In this example, there are no cases shown where Tesseract correctly classified a character

and SIFT Align misclassifies it. (Best viewed in color)

6. Experiments

We experimented with two sets of documents. The first

set consists of 10 documents from the JSTOR archive5

and Project Gutenberg6. This initial set of documents was

used to evaluate our clean list generation algorithm and de-

velop our algorithm for producing character models from

the clean lists [10]. In this work, our clean list results se-

lected an average of 6% of the words from each document.

These clean list did not contain a single error, e.g. the pre-

cision of our clean list was 100%. This strongly supports

our theoretical bounds established in Section 4.

The second set of documents, used for performance eval-

uation of the SIFT Align algorithm, are 56 documents taken

from the Chronicling America7 archive of historical news-

papers. Since our initial OCR system (Tesseract) can only

accept blocks of text and does not perform layout analy-

sis, we manually cropped out single columns of text from

these newspaper pages. Other than cropping and converting

to TIFF for Tesseract, the documents were not modified in

any way. There are on average 1204 words per document.

The clean list contains 2 errors out of a total of 4465 words,

within the theoretical bound of .002 mentioned earlier.

In an effort to increase the size of the clean lists beyond

6% per document, we experimented with relaxing some of

the criteria used to select the clean lists. In particular, we

allowed the Hamming ball of radius 1 for a word to be non-

empty as long as the words within the ball did not appear

within the document. By making this small change, we

were able to increase the size of the clean lists to an average

of 18% per document while introducing at most one error

5http://www.jstor.org
6http://www.gutenberg.org/
7http://chroniclingamerica.loc.gov/

per document. We refer to the original clean lists as con-

servative clean lists and to the modified, larger, and slightly

less accurate clean lists as aggressive clean lists. We de-

cided to use the aggressive clean lists for our experiments

because they contain few errors and there are more charac-

ter instances. From this point, our use of “clean list” refers

to the aggressive clean list.

We then ran Tesseract on all documents, obtaining char-

acter bounding boxes8 and guesses for each character. Next,

we used Mechanical Turk9 to label all character bounding

boxes to produce a ground truth labeling. We instructed an-

notators to only label bounding boxes for which a single

character is clearly visible. Other cases (multiple characters

in the bounding box or a partial character) were discarded.

After the initial OCR system was used to make an ini-

tial pass at each document, the clean list for that document

was extracted. Character recognition was then performed

as in Section 5 on any characters from the classes defined

by the clean list. Even though many of the characters were

already recognized correctly by OCR system, our approach

improves the recognition to produce an even higher accu-

racy than the original OCR system’s accuracy, on average.

As shown in the next section, in most cases, this resulted in

correcting the classifications of a significant portion of the

characters in the documents.

7. Results

In Figure 1, we show a portion of a document and the

corresponding subset of clean list words (generated by our

process) and highly confident Tesseract words within this

8This feature is not available out of the box; we edited the source code.
9https://www.mturk.com/mturk/welcome



portion. In this example, the only mistranslated word by

Tesseract is “timber” in the latter set, while our clean list

does not have errors.

In order to judge the effectiveness of using our clean

list, we also generated another confident word list us-

ing Tesseract’s own measure of confidence.10 To gen-

erate the confident word list, we sort Tesseract’s recog-

nized words by certainty and take the top n words that
result in the same number of characters as our clean list.

We refer to the SIFT Align algorithm using our clean list

as SIFT Align Clean and the SIFT Align algorithm using

Tesseract’s confidences as SIFT Align Tess.

In Figure 2, we show the character error reduction rates

for both SIFT Align Clean and SIFT Align Tess. In 46

of the 56 documents, SIFT Align Clean results in a re-

duction of errors whereas SIFT Align Tess reduces error

in 35 documents. Note this figure shows percent error re-

duction, not the raw number of errors. SIFT Align Clean

made a total of 2487 character errors (44.4 errors per docu-

ment) on the test set compared to 7745 errors (138.3 errors

per document) originally made by Tesseract on those same

characters. For the 10 cases where SIFT Align Clean in-

creased error, SIFT Align Clean made 356 character errors

and Tesseract made 263 errors. Thus, overall, the error re-

ductions achieved by SIFT Align Clean were much greater

than the errors introduced.

SIFT Align Clean outperforms Sift Align Tess. Aver-

age error reduction for SIFT Align Clean is 34.1% com-

pared to 9.5% for Sift Align Tess. Error reduction is calcu-

lated as (TT − ST )/TD where TT is # Tesseract errors in
the test set, ST is # SIFT Align errors in the test set and TD
is # Tesseract errors in the document. SIFT Align Clean

also reduces the character error in more documents than

does Sift Align Tess.

Our test cases only consider properly segmented charac-

ters which account for about half of all the errors in these

documents. The error reduction for SIFT Align Clean over

all characters (segmented properly or not) is 20.3%.

We are able to achieve these significant reductions in

average character error, for properly segmented characters,

using only simple appearance-based character recognition

techniques with the clean lists. We believe that further

improvements can be achieved by using the clean lists

in conjunction with more sophisticated models, such as

document-specific language models, as suggested by [19].

In addition, we believe that the clean lists can also be used

to re-segment and fix the large percentage of initial errors

that result from incorrect character segmentation.

Acknowledgements. Supported by NSF Grant IIS-

0916555.

10There are two measures of word confidence in Tesseract: rating and

certainty, of which we use certainty.

References

[1] T. Breuel. Character recognition by adaptive statistical sim-

ilarity. In International Conference on Document Analysis

and Recognition, 2003.

[2] R. Casey. Text OCR by solving a cryptogram. In Interna-

tional Conference on Pattern Recognition, 1986.

[3] J. Edwards and D. Forsyth. Searching for character models.

In Neural Information Processing Systems, 2005.

[4] T. K. Ho. Bootstrapping text recognition from stop words.

In International Conference on Pattern Recognition, 1998.

[5] T. K. Ho and G. Nagy. OCR with no shape training. In

International Conference on Pattern Recognition, 2000.

[6] J. Hobby and T. Ho. Enhancing degraded document images

via bitmap clustering and averaging. In International Con-

ference on Document Analysis and Recognition, 1997.

[7] T. Hong and J. Hull. Character segmentation using visual

inter-word constraints in a text page. In Proceedings of SPIE

(International Society for Optics and Photonics), 1995.

[8] T. Hong and J. Hull. Improving OCR performance with word

image equivalence. In Symposium on Document Analysis

and Information Retrieval, 1995.

[9] T. Hong and J. J. Hull. Visual inter-word relations and their

use in OCR post-processing. In International Conference on

Document Analysis and Recognition, 1995.

[10] A. Kae, G. Huang, and E. Learned-Miller. Bounding the

probability of error for high precision recognition. Techni-

cal Report UM-CS-2009-031, University of Massachusetts

Amherst, 2009.

[11] A. Kae and E. Learned-Miller. Learning on the fly: Font

free approaches to difficult OCR problems. In International

Conference on Document Analysis and Recognition, 2009.

[12] O. Kolak. A generative probabilistic ocr model for NLP ap-

plications. In North American Chapter of the Association for

Computational Linguistics on Human Language Technology,

2003.

[13] K. Kukich. Techniques for automatically correcting words

in text. ACM Computing Surveys, 24(4):377–439, 1992.

[14] D. Lee. Substitution deciphering based on HMMs with appli-

cations to compressed document processing. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 24(12),

2002.

[15] D. Lowe. Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision, 2004.

[16] G. Nagy. Efficient algorithms to decode substitution ciphers

with applications to OCR. In International Conference on

Pattern Recognition, 1986.

[17] G. Nagy. Twenty years of document image analysis in PAMI.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 22(1), 2000.

[18] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Al-

tun. Support vector machine learning for interdependent

and structured output spaces. In International Conference

on Machine Learning, 2004.

[19] M. Wick, M. Ross, and E. Learned-Miller. Context-sensitive

error correction: Using topic models to improve OCR. In

International Conference on Document Analysis and Recog-

nition, 2007.


