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Abstract

Many important high throughput projects use in situ gene expression detection
technology and require the analysis of images of spatial cross sections of organ-
isms taken at cellular level resolution. Projects creating gene expression atlases
at unprecedented scales for the embryonic fruit fly as well as the embryonic and
adult mouse already involve the analysis of hundreds of thousands of high resolu-
tion experimental images. We present an end-to-end approach for processing raw
in situ expression imagery and performing subsequent analysis. We use a non-
linear image registration technique specifically adapted for mapping expression
images to anatomical annotations and a method for extracting expression infor-
mation within an anatomical region. We also present a new approach for jointly
clustering the rows and columns of a matrix and we relate clustered patterns to
Gene Ontology (GO) annotations. Our approach should be applicable to a variety
of in situ experiments but we focus here on imagery and experiments of the mouse
brain – an application with tremendous potential for increasing our fundamental
understanding of neural information processing systems.

1 Introduction

Many large scale molecular biology experiments now use cDNA microarray technology for measur-
ing expression levels of a large number of genes for a small tissue sample or cell. However, there are
a number of projects underway to map spatial patterns of gene expression using in situ hybridization
(ISH) technology for tens of thousands of genes in different organisms. In contrast to microarray
based methods, these projects can produce huge archives of high-resolution 2D and 3D images and
involve the analysis of complex spatial patterns of expression in the context of anatomical struc-
tures, tissues and cells. Examples of these projects include: the Berkeley ISH embryonic fruit fly
(Drosophila) experiments [16], the ISH mouse embryo experiments at the Max-Planck Institute [3],
and the particularly massive scale ISH experiments involving over 21, 000 genes, and roughly 300,
5000 × 5000 pixel images per gene for adult mouse brains in the Allen Brain Atlas [1].

The processing and analysis of ISH experiments, linking of atlas based experimental archives with
relevant scientific literature and comparing results with existing knowledge has the potential for
tremendous impact on the scientific community. In our experiments here we focus on the processing
and analysis of ISH experiments of the adult mouse brain. In this paper we outline some emerging
problems and challenges and describe our end-to-end system. Our system consists of a non-linear,
information theoretic, adaptive landmark based procedure for registering high resolution ISH im-
agery to a reference, a method to obtain mappings to spatial and anatomical regions and a novel
method for jointly clustering the rows and columns of a matrix using a variational learning method
and a sequential optimization approach. Finally, we show that the results of our analysis allows



Figure 1: A. Reference is a centrally located sagittal image. Expression images for B. (Abr) is one of the
best quality images. Most are of quality C (Adcy5) and D (Astn1) is amongst the worst with substantial tissue
damage and distortion.

one to discover clusters of biological relevance, focusing our experiments on relating clusters to the
Gene Ontology (GO) database [2].

2 Image Registration and Expression Level Extraction

Since our goal is to gather statistics about common expression patterns in anatomical structures
across experiments, it is important that we achieve an accurate and robust registration. Due to the
intrusive nature of processing steps in ISH experiments such as organ extraction and cutting into
slices, substantial deformations, artifacts and tissue damage can arise. Fig. 1 illustrates some of the
challenges involved with the processing and analysis of these types of experiments. A good review
of existing brain warping techniques is given in [15]. For many ISH experiments, image resolutions
and raw image sizes are much greater than typical medical imagery. Our registration approach is
particularly adapted to these properties.

For our experiments here, we use 100 centrally located, sagittal 2D expression experiment slices and
find the closest corresponding reference slices in the Allen Atlas [1]. In [18] a coarse to fine 3D ap-
proach was used to register a histology reference volume of the Allen Atlas imagery. We will restrict
our discussion and experiments here to robust non-linear 2D registrations between experimental and
reference slices. While full 3D registration is desirable, high spatial resolution in the image plane
and relatively widely spaced slices across the volume for expression imagery make such approaches
particularly challenging. 

 
 
 
 
 
  

 
 

Figure 2: Green channel is the expression image, red channel is the reference image, each are at 400 × 800
pixel resolution. (Left) Before registration. (Middle) After approximate registration where dotted squares
indicate search spaces for smaller anchor patches within. (Right) After our adaptive non-linear registration step
anatomical patterns are extracted using a mask (shown in blue).

We start with a Nissl stain reference image with hand annotated anatomical regions (fig. 1A). For
each experimental ISH expression image, we perform a coarse registration with a global affine trans-
formation (fig. 2, middle) and use a discrete search with a mutual information based matching cri-
terion [17]. We use a joint histogram based approach similar to [10] but with 16 equally spaced
intensity bins. 75 high entropy 100 × 100 pixel patches are identified in the reference image which
are then used to define anchor locations within each expression image for our refined registration.
Patches may overlap, but we limit the maximal overlap to be 50%. Entropy is a measure of infor-
mation about local shape and structure in a region and choosing high entropy patches reduces our
chances of spurious registrations. Other authors have also used entropy measures to identify salient
regions for more general correspondence problems in computer vision [9].

The anchor patches are more precisely mapped to the experimental image by performing a local
search over a small subset of affine transformations in a 150×150 pixel window defined by the initial
anchor position in the reference. This approach is similar to the montages of transformed latent



images introduced in [13]. However, here again we use a local mutual information based matching
criterion. After local registration, the centers of the patches in the reference and experimental images
serve as the key pixel correspondences between the images. From these points, two corresponding
Delaunay triangulations are constructed in the two images and we perform an outlier rejection step
to eliminate inconsistent correspondences. The final, refined registration is obtained by performing
a bi-cubic interpolation of each point with respect to the encompassed triangle. Once the expression
images are registered, the annotated anatomical regions in the reference image are simply mapped to
the experimental image, allowing for the expression levels within each region to be easily extracted
in a semi-automated way.

We have experimented with simple summary metrics for each anatomical region such as the mean
and median expression level, however, we have found that a robust, quantile measure results in
superior performance. Fig. 3 shows the 70th percentile for each of 38 anatomical regions for 100
genes. Once this form of matrix summarization has been constructed we can apply cluster analysis
techniques in a manner similar to the analysis of cDNA microarray experiments. One approach
is to independently cluster the rows and columns of the data matrix [5], ignoring any dependencies
between the two clustering problems. Other approaches based on direct clustering [7] or biclustering
[11] simultaneously cluster both the rows and columns of a data matrix and have been applied
to microarray data [4] as well as other heterogeneous data [14]. Other approaches have cast bi-
clustering in various cost minimization frameworks. We now present and apply a novel approach to
bi-clustering in which we formulate the problem as one of inference and optimization in a formal
probability model, a joint row-column mixture model.

3 Row Column Mixtures for Cluster Analysis

Consider a data matrix X where elements of the matrix are written as xi,j . In our model each row i of
the matrix is associated with a row class random variable ri ∈ {1, ..., nr}, where nr is the number of
possible row classes. Each column j of the matrix is associated with a column class random variable
cj ∈ {1, ..., nc}, where nc is the number of column classes. The conditional distribution for element
xi,j is then a function of the random variable associated with row i and column j. As such, the joint
distribution of the data X, row classes ri and column classes cj can be written:

P (X, R, C) =
Nr∏
i

Nc∏
j

p(xi,j |ri, cj)P (ri)P (cj). (1)

Here we will use Gaussian models where P (xi,j |ri, cj) = N (xi,j ; Θri,cj
), where Θri,cj

=
{µri,cj

, σ2
ri,cj

} although other choices of distribution are possible. The unconditional distribution
for each row class ri and column class cj is given by P (ri) = πri

and P (cj) = πcj
respec-

tively. Let all the row and column classes be written as R = {r1, ..., rNr
}, where Nr is the

number of rows in the matrix and let C = {c1, ..., cNc
}, where Nc is the number of columns.

It is insightful to contrast row column mixtures with a traditional mixture of Gaussians for the
rows of a matrix where the joint distribution for the data matrix and the row classes is given by:
P (X, R) =

∏
i

∏
j N(xi,j ;µri,j , σ

2)πri ,where µri,j now represents elements of vectors µj . If, in
the joint row column model we assign each column to its own class then the models are equivalent.

One way to optimize parameters Θ of a row column mixture is to use a variational [8] Expectation
Maximization (EM) approach. We use an approximation to the posterior distribution P (R,C|X)
consisting of Q(R,C) =

∏
i Q(ri)

∏
j Q(cj). To optimize a variational bound on the log probabil-

ity of the data we start with initial guesses (e.g. uniform distributions) and iteratively update Q(ri)s
and Q(cj)s. Starting with an initial guess for Θ̃, we repeat the following two steps until conver-
gence: (1) Variational E-steps for one or more rounds updating Qs, then (2) An M-step, updating Θ̃.
To express our variational E-steps succinctly, define hidden row and column class membership or
indicator variables as H = {R,C}. It can be shown that the variational updates for fully factorized
Qs can be written Q∗

i ({H}k) = exp
[
EQl 6=k

〈lnP (X̃,H)〉
]
[
∑

{H}k
exp

[
EQl 6=k

〈lnP (X̃,H)〉
]
]−1

where EQl 6=k
〈·〉 denotes the expectation under all Ql 6=k and X̃ represents an observed data ma-

trix X. Since one holds Ql 6=k constant, these computations are performed locally in the graphical
model of (1). Variables are updated in turn under random permutations of their ordering over itera-



tions. The updates of parameters of the model are computed via a Maximization or M-step, setting
∂
∂θEQ〈log P (X̃, R, C)〉 = 0, giving us closed form updates for Θ.

A second optimization method is to start with a hard assignment for row and column classes and
search for new Maximum a Posteriori (MAP) parameter {Θ̃, R̃} and variable C̃ assignments by
considering individual row r̃i and column c̃j assignment changes sequentially. To perform this
optimization, we cycle through the data under a random permutation, removing the contribution of
each row or column and compute the optimal class re-assignment after the parameters have also
been updated. We refer to this type of algorithm as a sequential optimization.

4 Results, Discussion and Conclusions

To illustrate the robustness and quality of our registrations figures 3, 4 and 5 show a progression of
good to poorly registered images. Approximately 55, 40 and 5 images of our 100 image set could
be characterized as belonging to these good, moderate and poor registration categories respectively.

Figure 3: A selection of relatively well registered images. Leftmost image is the original image and rightmost
is the final registered image. Other images show the difference between the reference image (red channel) and
expression image (green channel) first as the original images, then after coarse registration and then the final
registration respectively. Figures 4 and 5 use the same arrangement.

Figure 4: A selection of the moderately well registered images.

Our experiments have shown that when block constant patterns are indeed present within the data,
both the variational and sequential methods described in section 3 produce comparable and improved
quality clustering results in comparison to independently applied row and column clustering meth-
ods and a variety of other optimization algorithms [12]. We have used the sequential method for



Figure 5: A selection of more challenging and poorly registered images.

the results shown in fig. 4 as our implementation runs faster for matrices of the size examined here.
We used the best result over 10 runs for a 5 row and 5 column class model, but we see annealing
approaches, variational MCMC hybrids and automated model selection methods as having great po-
tential for this model. Based on other experiments [12] we anticipate that variational methods should
have superior running time performance for data matrices on the order of 20, 000 experiments and
hundreds to thousands of anatomical structures and sub-structures. Given these initial results, there
appears to be reasonable block constant structure present in the data matrix. However, recent related
methods allowing overlapping groups such as Matrix Tile Analysis [6] seem promising. Further,
methods which also account for spatial proximity of brain regions seem promising.
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Figure 6: (Left) The original data matrix where each row corresponds to a gene expression experiment and
each column corresponds to an anatomical region. Matrix elements represent expression levels. (Right) A
permutation of the original matrix X after row column clustering.

The following observations give support that our registration and mask based feature extraction
methods are of good quality. The set of highly expressed genes for mask 1, the olfactory bulb,
is enriched for feeding behavior genes with a p-value of .008. Learning and memory genes are
highly expressed in mask 11, the medial habenula which is just below the hippocampal formation,
(p-value .001). Analysis of the clustering in Fig. 4 also suggests that this aspect of our approach
can yield biologically meaningful information. We found that many genes within our clusters had
high expression values in organs consistent with their GO annotations. For example, gene/row
cluster 2 contains genes Aff2, Prkar1b, Shc3, Tmod2, Abi2 and is therefore enriched for category
GO:0007611 “learning and/or memory” with a p-value of 10−3. All p-values were computed using
hypergeometric based enrichment tests. In conclusion, we believe the methods we have developed



here should be applicable to other contexts and organisms and should scale to higher resolution and
genome scale data.
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