
Learning from One Example Through Shared Densities on Transforms

Erik G. Miller and Nicholas E. Matsakis and Paul A. Viola
Massachusetts Institute of Technology Artificial Intelligence Laboratory

Cambridge MA 02139
{emiller, matsakis, viola}@ai.mit.edu

Published in Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition, 2000

Abstract

We define a process calledcongealingin which elements
of a dataset (images) are brought into correspondence with
each other jointly, producing a data-defined model. It is
based upon minimizing the summed component-wise (pixel-
wise) entropies over a continuous set of transforms on the
data. One of the biproducts of this minimization is a set of
transforms, one associated with each original training sam-
ple. We then demonstrate a procedure for effectively bring-
ing test data into correspondence with the data-defined
model produced in the congealing process.

Subsequently, we develop a probability density over the
set of transforms that arose from the congealing process.
We suggest that this density over transforms may be shared
by many classes, and demonstrate how using this density
as “prior knowledge” can be used to develop a classifier
based on only a single training example for each class.

1 Introduction

There has been such great progress in the development
of classifiers for problems such as handwritten digit recog-
nition that the problem is for many researchers considered
to be solved. Classifiers such as LeCun et al.’s convolu-
tional networks [9, 12] achieve performance very close to
that of human test subjects, a commonly assumed bench-
mark of “optimal” performance. It seems that performance
cannot get much better. However, these methods require
large training sets. For example, LeCun et al. use 6,000
samples of each character in training. This leaves open the
question of whether these methods are appropriate when
large amounts of training data are not available.

If we examine the performance of classifiers using a
small amount of data, in the limit, one example per class,
there still seems to be a large gap between the capabilities
of machines and humans. Consider the symbol for the new
European currency, the “Euro”, shown in Figure 1. After

Figure 1. The new symbol for the standard European
currency. After seeing a single example, people typ-
ically have no difficulty recognizing the symbol in a
wide variety of styles and variations.

seeing a single example of such a character, humans can
recognize the character in a wide variety of contexts, styles,
and positions.

Clearly, this is due at least in part to generalization based
on previously learned classes. That is, our knowledge about
handwriting in general allows us to bring prior knowledge
to the formation of our model for a new character based on
a single example. A long-standing question in computer vi-
sion, and in AI in general, is what form this prior knowledge
takes.

In this paper, we consider the value of knowledge about
common deformations of images of objects. We show that
such knowledge, in the form of a probability density on a
space of deformations, can be used to greatly improve the
behavior of a classifier on the handwritten digit recogni-
tion problem. Specifically, we discuss the performance of
three classifiers. The first classifier is a variation on nearest
neighbor using the Hausdorff distance between images [8].
It measures a distance directly to the original training sam-
ples. We use this classifier because it can be applied in very
sparse data settings, i.e. with only a single training example.
This classifier implicitly determines a probability measure
on images for each classc j , that is

P(I |c j), (1)

the probability of the observed image given the class.
For the second classifier, we give algorithms for finding

transforms that place the training and test images in corre-



spondence with each other before doing the Hausdorff dis-
tance comparison. Here, our probability measure is over the
corresponding, or latent, images. That is, we find

P(IL|T,c j), (2)

the probability of thelatentor “pre-transform” image, given
a transform and a class. This step is closely related to previ-
ous work reported in [2, 13, 5] and will be discussed below.

In the third classifier, we make a substantial improve-
ment by assigning a cost to the transformation which puts a
test character into correspondence with a particular training
set. This can be viewed as evaluating

P(T)P(IL|T,c j), (3)

the probability of the correspondence transformand the la-
tent image.

We then demonstrate how our techniques can be used
to build a classifier with only a single training example
from eachdigit class, by borrowing the first factor in Eq.(3)
from anothernon-digitclass. This classifier’s performance
(89.3%) is dramatically better than the basic Hausdorff dis-
tance classifier (29.7%) (one of the few that can be applied
in such an extreme sparse data situation). We believe that
the single sample learning problem is a good place to focus
efforts on closing the gap between human-machine perfor-
mance, given that the performance of classifiers based on
large amounts of data is plateauing.

2 The Image Model

We adopt an image model similar to those adopted in
papers on deformable templates as in [2]. Other researchers
have recently had successes in using similar models as in
[5] and [13].

The basic idea is that the image be understood astexture
andshapeas described in [13], or as alatent imagethat has
undergone atransformation, as presented in [5]. We denote
this as

I = T(IL) (4)

whereI is an observed image,IL is a latent image, andT(·)
is a transformation which warps one image into another. If
T is invertible, the latent image can be computed from the
input image as

IL = T−1(I). (5)

In the most general setting,T(·) could be any map from
the coordinates of one image (values inR 2) to the coordi-
nates in the new image. For our development, we will as-
sume that the transforms are affine, although we discuss ex-
tensions to arbitrary diffeomorphisms (smooth one-to-one
mappings) below. Affine transforms may be represented as
matrix operations as well as functions, so that

T∗ = T1T2 (6)

represents both the matrix product ofT1 andT2 as well as
the composition of the two warps.

When the so-called shape of an image relative to a ref-
erence image or model has been eliminated, then the im-
ages are said to be in correspondence. For example, by de-
shearing the image of an italic character, we can put it in
better correpondence with the canonical non-italicized ver-
sion of the character.

3 Congealing for model formation

Vetter et al. coined the termvectorizationfor the process
of aligning (bringing into correspondence) an image with
a reference image or a model. We introduce the termcon-
gealingwhich we define as the simultaneous vectorization
of each of a set of images to each other. This is similar
in spirit to Vetter et al.’s bootstrap vectorization procedure
[13] and Frey et al.’s Transformed Mixtures of Gaussians
[5], although it differs in several details, discussed below.

Given a set of training images for a particular class, the
process of congealing transforms each image, through an
iterative process, so as to minimize the joint pixelwise en-
tropiesE of the resulting images. We define this joint en-
tropy to be

E =
P

∑
p=1

H(v(p)), (7)

wherev(p) is the binary random variable defined by the val-
ues of a particular pixelp across all of the images,H(·)
is the discrete entropy function of that variable [3], and
1≤ p≤ P is the set of pixel indices for the image. For ex-
ample, if pixelp∗, whose coordinates are(7,13), is white in
half of the images and black in the other half, thenv(p∗) is a
Bernoulli random variable with mean 0.5, andH(v(p∗)) = 1
bit.

We treat thev(p) as independent random variables in
Eq.(7). This means that our entropy estimate from Eq.(7)
is an upper bound on the true entropy of the image distribu-
tion. By minimizing this upper bound we hope to minimize
the true entropy.

3.1 The congealing algorithm

The basic algorithm (Algorithm 1) proceeds as follows.
It makes small adjustments in the affine transforms applied
to each image to reduce the pixelwise entropy defined in
Eq. (7). More formally:

1. We will maintain a transform matrixUi for each image.
Set all of these to the identity initially.

2. Compute the summed pixel-wise entropiesE for the
current set of images.



3. Repeat until convergence:

(a) For each imageIi ,

i. For each affine parameter (rotation, x-shear,
y-shear, x-translation, y-translation, x-scale,
y-scale).
A. Let A be the 2-D affine transform based

on a nominal value of the current affine
parameter. For example,

A =





1 0 1
0 1 0
0 0 1





represents a matrix that translates an im-
age one pixel in the x direction.

B. LetUnew
i = AUi .

C. Apply Unew
i to imageIi and recompute

the pixel-wise entropyE.
D. If E has been reduced, acceptUnew

i , oth-
erwise:

E. LetUnew
i = A−1Ui and applyUnew

i to the
imageIi . If E has been reduced, accept
Unew

i , otherwise revert toUi .

(b) After each cycle through the image set, readjust
the scale of all of the transformsUi by the same
amountso that the mean log-determinant of the
transforms is 0 (discussed below).

(c) After each cycle through the image set, store the
current mean image for later use with test char-
acter congealing. We shall denote thekth mean
image for classj asM j

k.

4. At this point, each of theUi is the transform such that

Ui(I) = ILi . (8)

That is, Ui is our best guess of the transformation
which maps the observed data into the latent image.
Hence, we can identify the final transforms from con-
gealing as samples ofT−1 from Eq.(5). Alternatively,

Ti = U−1
i . (9)

These “samples” ofT will be used in Section 6 to form
a density on transforms.

The scale readjustment step (b) protects against the im-
ages all shrinking to improve the cost function. While the
algorithm allows some images to shrink and others to grow,
it forces the mean scale to be the same as in the original
images.

The reader may notice that the number of affine param-
eters given in Algorithm 1 (7) is actually greater than the

(a) (b)

(c) (d)

Figure 3. Mean images during the congealing pro-
cess. (a) The initial mean image for the set of zeroes.
The blurriness is due to the misalignment of the im-
ages. (b) The initial mean image for the set of twos.
(c) The final mean image for the set of zeroes. The
coherence of the aligned images is indicated by the
increased sharpness of the image.(d) The final mean
image for the set of twos.

number of degrees of freedom in a two-dimensional affine
transform (6). That is, the set of parameters overspecifies
the transform. This is irrelevant for a coordinate-descent
procedure, however. In fact, the overcomplete parameteri-
zation works significantly faster in practice than doing co-
ordinate descent on the individual elements of the transform
matrix, presumably because these parameters tend to point
in directions closer to the transform gradient than the naive
parameterization.

We demonstrate the properties of this algorithm on sev-
eral real and artificial data sets. Figures 2(a) and 2(b) show
samples from the NIST character database. The data vary in
scale, position, rotation, shear, and position to a limitedex-
tent. Figures 2(c) and 2(d) show the congealed versions of
these data sets, i.e. their positions after optimal alignment.

Figure 3 illustrates how the pixelwise entropies of the ad-
justed image sets change as the algorithm progresses. Fig-
ures 3(a) and (b) demonstrate that before the congealing
process has begun, the pixelwise entropies are relatively
high, and the high coherence of (c) and (d) show the im-
provement in pixelwise entropies due to the congealing pro-



(a) (b)

(c) (d)

Figure 2. (a) Samples of zeroes from the NIST database. (b) Sample s of twos from the NIST database. (c) The
zeroes after congealing. (d) The twos after congealing.

cess. Notice that there is more entropy in the final mean
“two” image than in the “zero” image due to the fact that
zeroes can be better aligned through affine transforms than
twos can.

3.2 Avoiding Local Minima

The congealing process has a serendipitous advantage in
that it often circumvents two types of minimization prob-
lems, the so-called “zero-gradient” problem and the local
minima problem. Because the alignment process is done
over an ensemble of images which has a data-dependent
smoothing effect, these two issues arise infrequently.

An example of the zero-gradient problem is shown in
Figure 4. Note that the grey “X” and the white “X” do
not overlap at all, despite the fact that their centroids are
aligned. Thus a differential change in relative rotation of
the two characters will not improve alignment according to
our cost function. There is a local minimum problem here

as well. It arises when one of the legs of the “X” overlaps,
while the other does not.

A common solution to these problems is to blur the im-
ages before trying to align them, for example by convolving
them with Gaussian kernels. This sometimes works well for
the zero-gradient problem, but throws away high frequency
information in the image which may be helpful for align-
ment. And it frequently cannot solve the local minimum
problem at all.

The congealing method addresses both of these problems
without any ad hoc blurring. Since the method aligns each
example to the statistical model of the ensemble, the natural
variability in the data causes smoothing in exactly the parts
of the image where the images vary. In other words, it cre-
ates a kind of data-specific smoothing as seen in Figure 3.
Given a reasonably large number of examples, this smooth-
ing addresses both the “zero gradient” and local minima
problems.

There are, however, situations in which our method fails



Figure 4. An example of two images that will not con-
geal to the global minimum of the correspondence
fitness function. This problem can usually be alle-
viated in practice by congealing a large number of
samples simultaneously.

to converge to the globally optimum alignment for a set of
characters. We conducted the following experiment to ex-
amine this issue more systematically on realistic data. Start-
ing with a single image of a “4” from the NIST database,
we generated a sequence of 100 images rotated at uniform
intervals from− θ

2 to θ
2 . Forθ < 68 degrees, the images con-

gealed to a unique corresponding position, but whenθ > 68
degrees, two correspondence “centers” emerged. This is
due to a local minimum in the congealing process, as il-
lustrated in Figure 5. Although this lack of convergence to
a single global “center” is not ideal, it does not preclude
us from using the resulting density model, which has rela-
tively low entropy. That is, even in the presence of multiple
convergent “centers” we are performing an important di-
mensionality reduction in the data by congealing. The key
property is that a test character will be congealed to a pre-
dictable location for comparison with the model (discussed
below).

4 Using the Models for Classification

To perform classification, we wish to estimate the model
with the maximum posterior probability give the observed
imageI . Assuming a uniform prior over the classesc j , we
have using Bayes’ rule:

argmax
j

P(c j |I) = argmax
j

P(I |c j). (10)

(a) (b)

Figure 5. Two distinct centers of convergence for a
set of rotated “4” images. The algorithm aligned the
horizontal part of some fours with the vertical part of
others and got stuck in this local minimum. However,
since any test character which happens to be a four
should rotate to one of these two positions, this can
still make a good model for classification.

As in [5], we then introduce the transformation variableT
and integrate over it:

argmax
j

P(I |c j) (11)

= argmax
j

Z

T∈T
P(T, I |c j) dT (12)

= argmax
j

Z

T∈T
P(T|c j)P(I |T,c j) dT (13)

= argmax
j

Z

T∈T
P(T|c j)P(IL|T,c j) dT (14)

Eq.(14) follows since the latent imageIL corresponding to
the imageI is a deterministic function ofI , given the trans-
form T.

We now make the key simplifying assumption that, with
high probability,

argmax
j

Z

T∈T
P(T|c j)P(IL|T,c j) dT (15)

= argmax
j

max
T∈T

P(T|c j)P(IL|T,c j). (16)

This is an approximation to the full Bayesian treatment
of the problem, and assumes that the joint distribution
P(T, IL|c j) peaks sharply around the maximum. This al-
lows us to avoid the integral in Eq.(15) and search a full
space of possible transforms, rather than a discrete set as
some authors have done [5].

As an additional, but optional simplification, we assume
that the transform probability is independent of the class,
and so the final maximization expression becomes

argmax
j

max
T∈T

P(T)P(IL(T, I)|T,c j). (17)



In the last equation, we have shownIL as a function ofT
andI only to remind the reader that the latent image is de-
fined by the observed imageI and the current value of the
transformT.

4.1 Finding the best transform of a test image

An additional challenge when dealing with an infinite
number of allowable transforms is to find the maximum
overT in Eq.(17). When dealing with only a finite number
of transforms, this becomes just an iterative computation,
linear in the number of allowed transformations. Obviously
this is not possible in dealing with a continuously parame-
terized space of transforms.

One possibility would be to perform gradient descent on
Eq.(17) in the space of affine parameters of the transforms.
The problem with this is that this function may have lo-
cal minima that cannot be circumvented easily, especially if
the congealing process produced a low entropy model, as in
Figures 3(c) and (d). That is, we may end up with local min-
ima or zero-gradient problems as discussed in the previous
section.

As stated above, elements of the training ensemble rarely
get stuck during the congealing process. In order to im-
prove convergence of a test example, it can beinserted into
the training ensemble. Congealing can then be performed
as before. Since the test sample was drawn from the same
distribution as one of the training classes, the test sample
should also successfully reach a “center” or local minimum
which is on average as good as the local minimum achieved
by the training data for the corresponding class.

Of course congealing all of the training data for each test
character presented to the system would represent a great
deal of redundant computation. Two insights allow for a
significant reduction in computation. First, if the number of
training examples is large, the addition of an addition ex-
ample should not effect the convergence of the ensemble.
Second, the elements of the ensemble only interact through
the probabilistic model which is estimated at each time step.
As a result the convergence behavior of a new example
added to the ensemble is only a function of the sequence of
probabilistic models, not the behavior of the entire ensem-
ble. Alignment of a new test example proceeds by reducing
the entropy, or equivalently by maximizing the likelihood,
of the example with respect to a sequence of probabilistic
models, which are saved during Algorithm 1.

5 Initial Experiments

We performed experiments on NIST Special Database
19 [7]. These are 128x128 binary images of characters that
have been segmented and roughly centered but are other-
wise unprocessed. For a baseline, we used 1000 examples

of each training class and tested on 100 examples which did
not overlap with the training data. For the following exper-
iments, we implemented a symmetric Hausdorff distance
classifier [8]. This is essentially a template match which ig-
nores mismatched pixels near the boundaries of each char-
acter. We used a dilation of only a single pixel around each
example. The base performance of the Hausdorff classifier
in this experiment was 92.5%, as shown in Table 1.

Since we have demonstrated that we can congeal both
training and test data into the forms seen in Figure 2, we
could also classify in the congealed data space. For this ex-
periment, the classifier actually degraded to 87.3%. We ex-
plain this as follows. Since we allowed any affine transform
rather than one from a finite set as a possible solution to the
minimization of Eq.(17), there were cases in which an in-
appropriate transform may have been used to minimize the
joint entropy of the test sample and the training data for a
particular class. In particular, examining the confusion ma-
trix for this case, it became clear that many of the digits had
been transformed into very good matches to the “1” model,
by getting shrunk in the x-direction. For example, by scal-
ing an “8” down by a factor of 10 in the x-direction, we get
a character which matches the “1” model very well. This
explains the poor performance of this version of the classi-
fier.

We help alleviate this problem by estimating an explicit
density on transforms, as suggested by Eq.(17). By mod-
ifying our likelihood estimates with the transform density,
performance was increased to 96.4%. This is precisely be-
cause we are assigning a high cost to transforms such as one
described above which transforms an “8” into a “1”. A sim-
ilar approach (with an implicit estimate) has been taken by
[10].

6 Estimating a Density on Affine Transforms

Note that the congealing process implicitly produces a
large set of possible transforms for each class. (Recall, each
training image is mapped to a latent image by some trans-
form Ui , thus giving a sample ofTi , its inverse.) Thus we
can develop a kernel based estimator for the class of trans-
forms that map latent images to observed images. Let us
assume our estimator has the form:

P(T) =
1
N

N

∑
i=1

K(T,Ti). (18)

One simple way to put a density on the space of affine
transforms would be to consider each sampleTi as a vector
in a six-dimensional space and then to use a Gaussian kernel
in a Parzen style estimator. For example, setting the kernel
function as in:

K(T,Ti) = Ce−‖T−Ti‖
2
. (19)



Training Samples Basic Hausdorff With Congealing With Transform Density

1000 92.5% 87.3% 96.4%
1 29.7% 60.0% 89.3%

Table 1. The first row of the table shows experiments using 1000 tra ining examples. The first column shows the
results for a basic Hausdorff classifier with centroid alignment. The second column shows the same technique
applied to the congealed data. The third column shows the benefit fr om using the density on transforms. In the
second row, we show the results from a classifier using only a single e xample. The last column of the second row
used a previous computed density on transforms.

The problem with this approach is that it does not obey
the so-called Affine Group Invariance property [1]. Intu-
itively, this just means that the above kernel behaves very
differently in different regions of the space. For example,
two shrinking transforms which vary by 1 degree of rotation
would be treated as being much closer together than two ex-
panding transforms separated by 1 degree of rotation. This
violates the Affine Group Invariance property. See [6] and
[1] (Section 7), for more details on this.

We propose an alternative kernel, namely

K(T,Ti) = Ce−F(T−1Ti), (20)

which obeys the Affine Group Invariance property. When
the set of affine transforms is viewed as a group, the opera-
tor T−1Ti can be viewed as the natural difference betweenT
andTi in the sense that it is the operator which mapsT to Ti

(when applied on the right). We currently chooseF(M) to
be‖M−1‖2, where1 is the identity matrix. In other words,
subtract the identity matrix from the argumentM and take
the sum of the squared magnitudes of the remaining com-
ponents. This particular choice ofF(·) in our estimator is,
at the moment, an arbitrary decision, and we are currently
investigating the option of learning a better function to re-
place it with.

Once we have a density on transforms, we can improve
our performance by evaluating Eq.(3) rather than Eq.(2).
This takes our performance from 87.3% to 96.4%. We now
examine how this method can be applied in a setting where
we have learned similar tasks, but have very little data for
our new task.

7 A One Sample Classifier

Assume we are addressing the handwrittendigit recog-
nition problem. Suppose that previously we have learned a
density on transforms in a separate problem, e.g. by exam-
ining handwrittenletters. In the following experiments, we
used a set of transformsBi derived by congealing a set of
100 images of the letter “A” taken from the NIST Special
Database 19.

We then make the assumption that this transform density
can be substituted into Eq.(17) in place of a digit transform
density. We then need only compute the probability of the
maximum likelihood latent image under the current model
and we have a classifier.

The major challenge here is to bring a test sample into
correspondence with the single training sample of a digit.
We achieve this in the following way. Assume that we have
the set of transformsBi derived from the set of “A”s.

1. Create an artificial data set for a classj from the sin-
gle training example by operating on the example with
each of theBi . Since we can borrow an arbitrarily large
number of transforms from another classifier, we can
make this data set as large as we want.

2. Once we have this artificial data set, we can proceed
exactly as if we had a real training set.

To make the problem easier, in choosing a single ex-
ample of each digit on which to build a model, we chose
a sample of each digit from the NIST database that repre-
sented our estimate of a “canonical” example of that partic-
ular character. This clearly makes the problem easier than
if we had randomly selected a character from the same dis-
tribution as the test data. However, we note that this method
of selecting a single canonical example fits very well with
the model of a teacher teaching a student via a canonical
example.

The method of creating artificial data discussed above is
similar to the methods used in [11] and [12] in which extra
data is created by randomly sampling from affine transforms
and applying those transforms to data samples already ob-
served. The difference here is that we are using exactly
those transforms for which we have evidence, rather than
sampling uniformly over some ad hoc set of transforms.

The simple Hausdorff classifier, applied to the single
training example case gave us 29.7%. By creating an ar-
tificial data set and doing congealing of the test sample, we
improved performance to 60.0%. Finally, by including the
density on transforms derived from the set of “A”s, we im-
proved the performance to 89.3%. We emphasize that this
is just a starting point, and we hope to be able to use similar



methods to improve this number significantly. Also, notice
that we used the “borrowed” set of transforms both to create
an artificial dataset for the congealing processandto evalu-
ate the probability of the transform applied to a test image.

8 Discussion and Conclusions

We have demonstrated a method which simultaneously
estimates the geometric correspondences for an ensemble of
training images and can also be used to put a test image in
correspondence with a model. From the original images, a
factored probabilistic model can be estimated that includes
a model for the latent image as well as the distribution of ge-
ometric transformations. Once we have correspondences, it
is easier to develop good density estimators and classifiers,
even based on extremely simple methods such as a Haus-
dorff Distance classifier.

All of the experiments we described have been done on
binary images, but there is no reason these methods cannot
also be applied to other types of data. As long as a mea-
sure of entropy for each component of a data point can be
developed, as in [14] for example, the method could be ap-
plied to greyscale and color images, as well as other types
of data. We recently have had promising results in on-line
handwriting, allowing transformations not only in the spa-
tial domain, but also in time.

We also note that the congealing method and probability
associated with the accompanying transform can be used
in conjunction with any classifier, such as support vector
machines [12]. We are currently investigating the effect on
performance of these classifiers in sparse data settings.

An obvious question is whether affine transforms are the
appropriate set of transformations to consider in modeling
the observed image as a combination of a latent image and
some arbitrary “warp”. [4] discusses a Fourier representa-
tion for smoothly varying vector fields. We are currently
investigating whether a family of transformations based on
these representations can give us better performance on the
one-sample classifier problem.

Finally, we note that our congealing process can be
viewed as a type of non-linear projection on a manifold.
That is, we can view the congealing process as a propaga-
tion of our training data (and then test data) into a lower di-
mensional manifold which spans only the variability in the
data that cannot be represented by affine transforms. This
raises the question of whether other desired invariances can
be dealt with via this data propagation approach. For ex-
ample, consider the case of shadows on objects. In most
cases, we would like recognition to proceed independent of
a particular shadow cast on an object. Suppose we allow
ourselves to smoothly change the brightness of a greyscale
image in any region bounded by an edge to make a collec-
tion of images less entropic, in the sense defined by Eq.(7).
This may allow us to remove shadows from images without

adding many spurious features to an image. This would be
a kind of congealing in the “texture” space, rather than in
the “shape” space. We are currently investigating this pos-
sibility.1
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