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Abstract

Our world is populated with visual information that a
sighted person makes use of daily. Unfortunately, the visu-
ally impaired are deprived of such information, which lim-
its their mobility in unconstrained environments. To help
alleviate this we are developing a wearable system [1, 19]
that is capable of detecting and recognizing signs in nat-
ural scenes. The system is composed of two main compo-
nents, sign detection and recognition. The sign detector,
uses a conditional maximum entropy model to find regions
in an image that correspond to a sign. The sign recognizer
matches the hypothesized sign regions with sign images in
a database. It then uses the match scores to compute meta-
features and train a classifier to decide if the most likely
sign is correct or if the hypothesized sign region does not
belong to a sign in the database. Our data sets encompass
a wide range of variability including changes in lighting,
orientation and viewing angle. In this paper, we present
an overview of the system while while paying particular at-
tention to the recognition component. Tested on 3,975 sign
images from two different data sets, the recognition phase
achieves accuracies of 99.5% with 35 distinct signs and
92.8% with 65 distinct signs.

1. Introduction

The development of an effective visual information sys-
tem will significantly improve the degree to which the vi-
sually impaired can interact with their environment. It has
been argued that a visually impaired individual seeks the
same sort of cognitive information that a sighted person
does [6]. For example, when a sighted person arrives at
a new airport or city they navigate from signs and maps.
The visually impaired would also benefit from the informa-
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tion provided by signs. Signs (textual or otherwise) can be
seen marking buildings, streets, entrances, floors and myr-
iad other places. In this research, a “sign” or “sign class” is
defined as any physical sign, including traffic, government,
public, and commercial. This wide variability of signs adds
to the complexity of the problem.

The wearable system will be composed of four modules
(Figure 1). The first module is a head-mounted camera used
to capture an image at the users request. The second module
is a sign detector, which takes in the image from the cam-
era and finds regions that correspond to a sign. The third
module is a sign recognizer which classifies each image re-
gion into one of the signs in its database. Finally, the fourth
module, a speech synthesizer, outputs information about the
signs found in the image.

Most of the previous techniques for recognizing
signs [17, 10, 5] have been limited to standardized traffic
signs, using color thresholding as the main method for de-
tection. In other work, Silapachote, Hanson and Weiss [18]
built a two-tier hierarchal system that used a color classifier
and shape context matching to recognize signs in a simi-
lar domain. Several techniques for text detection have been
developed [8, 9, 22]. More recently Chen and Yuille [3] de-
veloped a visual aid system for the blind that is capable of



reading text on various signs.
Unlike most previous work, our system is not limited to

recognizing a specific class of signs, such as text or traf-
fic. In this application a “sign” is simply any physical ob-
ject that displays information that may be helpful for the
blind. This system is faced with several challenges that
mainly arise from the large variability in the environment.
This variability may be caused by the wide range of lighting
conditions, different viewing angles, occlusion and clutter,
and the broad variation in text, symbolic structure, color and
shapes that signs can possess.

The recognition phase is faced with yet another challeng-
ing problem. Given that the detector is trained on specific
texture features, it produces hypothesized sign regions that
may not contain signs or may contain signs that are not in
our database. It is the responsibility of the recognizer to en-
sure that a decision is only made for a specific image region
if it contains a sign in the database. False positives come at
a high cost for a visually impaired person using this system.

In the following section we briefly overview the detec-
tion phase. For more details and experimental results we
refer the reader to the original paper [21].

2. Detection Phase

Sign detection is an extremely challenging problem. In
this application we aim to detect signs containing a broad
set of fonts and color. Our overall approach [21] operates
on the assumption that signs belong to a generic class of tex-
tures, and we seek to discriminate this class from the many
others present in natural images.

When an image is provided to the detector, it is first di-
vided into square patches that are the atomic units for a bi-
nary classification decision on whether the patch contains a
sign or not (Figure 2). We employ a wide range of features
that are based on multi-scale, oriented band-pass filters, and
non-linear grating cells. These features have been shown
to be effective at detecting signs in unconstrained outdoor
images [21]. Once features are calculated at each patch,
we classify them as being either sign or background using
a conditional random field classifier. After training, classi-
fication involves checking whether the probability that an
image patch is sign is above a threshold. We then create hy-
pothesized sign regions in the image by running a connected
components algorithm on the patches that were classified as
sign. Figure 2 shows the results of the sign detector on sam-
ple images in the detection database [1].

3. Recognition Phase

The recognition phase is composed of two classifiers.
The first classifier computes a match score between the

Figure 2. The detector results on two sample
images.

query sign region and each sign class in the database. The
second classifier trains on meta-features computed from the
match scores to solve a binary classification problem of
whether the class with the highest match score is the cor-
rect one or whether the query sign region does not belong
to any of the classes in the database. Figure 3 shows an
overview of the recognition system.

3.1. Global and Local Image Features

Image features can be roughly grouped into two cate-
gories, local or global. Global features, such as texture de-
scriptors, are computed over the entire image and result in
one feature vector per image. On the other hand, local fea-
tures are computed at multiple points in the image and de-
scribe image patches around these points. The result is a
set of feature vectors for each image. All the feature vec-
tors have the same dimensionality, but each image produces
a different number of features which is dependent on the
interest point detector used and image content.

Global features provide a more compact representation
of an image which makes it straightforward to use them with



Query 
Image

Extract
Local

Features

Local Features
of training

images

Match
local

features

Compute
match scores

with each 
class

Pick 
highest

matched 
class?

Trained SVM
classifier

no

Output nothing

Output 
highest 

matched 
class

yes

Figure 3. An overview the sign recognition
phase.

a standard classification algorithm (e.g. support vector ma-
chines). However, local features possess several qualities
that make them more suitable for our application. Local
features are computed at multiple interest points in an im-
age, and thus are more robust to clutter and occlusion and
do not require a segmentation. Given the imperfect nature
of the sign detector in its current state, we must account for
errors in the outline of the sign. Also, local features have
proved to be very successful in numerous object recogni-
tion applications [11, 20].

Local feature extraction consists of two components,
the interest point detector, and the feature descriptor. The
interest point detector finds specific image structures that
are considered important. Examples of such structures in-
clude corners, which are points where the intensity surface
changes in two directions; and blobs, which are patches of
relatively constant intensity, distinct from the background.
Typically, interest points are computed at multiple scales,
and are designed to be stable under image transforma-
tions [15]. The feature descriptor produces a compact and
robust representation of the image patch around the inter-
est point. Although there are several criteria that can be
used to compare detectors [15], such as repeatability and
information content, the choice of a specific detector is ul-
timately dependent on the objects of interest. One is not
restricted to a single interest point detector, but may include
feature vectors from multiple detectors into the classifica-
tion scheme [4].

Many interest point detectors [15] and feature descrip-
tors [12] exist in the literature. While the detectors and
descriptors are often designed together, the solutions to
these problems are independent [12]. Recently, several fea-
ture descriptors including Scale Invariant Feature Trans-

form (SIFT) [11], gradient location and orientation his-
togram (GLOH, extended SIFT descriptor) [12], shape con-
text [2], and steerable filters [7], were evaluated [12]. Re-
sults showed that SIFT and GLOH obtained the highest
matching accuracy on a test data set focused to test the ro-
bustness of the features. Experiments also showed that ac-
curacy rankings for the descriptors was relatively insensi-
tive to the interest point detector used.

3.2. Scale Invariant Feature Transform

Due to its high accuracy in other domains, we decided
to use SIFT [11] local features for the recognition compo-
nent. SIFT uses a Difference of Gaussians (DoG) interest
point detector and a histogram of gradient orientations as
the feature descriptor. The SIFT algorithm is composed of
four main stages: (1) scale-space peak detection; (2) key-
point localization; (3) orientation assignment; (4) keypoint
descriptor. In the first stage, potential interest points are
found by searching across image location and scale. This
is implemented efficiently by finding local peaks in a se-
ries of DoG functions. The second stage, fits a model to
each candidate point to determine location and scale, and
discards any points that are found unstable. The third stage
finds the dominant orientation for each keypoint based on
its local image patch. All future operations are performed
on image data that has been transformed relative to the as-
signed orientation, location and scale to provide invariance
to these transformations. The final stage computes 8 bin
histograms of gradient orientations at 16 patches around
the interest point, resulting in a 128 dimensional feature
vector. The vectors are then normalized and any vectors
with small magnitude are discarded. SIFT has been shown
to be very effective in numerous object recognition prob-
lems [11, 12, 4, 13]. Also, the features are computed over
gray scale images which increases their robustness to vary-
ing illumination changes, a very useful property for an out-
door sign recognition system.

3.3. Image Similarity Measure

One technique for classification with local features is to
find point correspondences between two images. A fea-
ture ��� in image A corresponds or matches to a feature
��� in image B if the nearest neighbor (in feature space)of
� � in image B is � � and the Euclidean distance (in feature
space) between them falls below a threshold. The Euclidean
distance (in feature space) is usually used with histogram-
based descriptors, such as SIFT, while other features such as
Differential features are compared using the Mahalanobis
distance, because the range of values of their components
differ by orders of magnitude.



For our recognition component, we will use the num-
ber of point correspondences between two images as our
similarity measure. There are two main advantages of this
measure. First, SIFT feature matching has been shown to be
very robust with respect to image deformation [12]. Second,
nearest neighbor search can be implemented efficiently us-
ing a k-d-b tree [14] which allows fast classification. Thus,
we can define an image similarity measure that is based on
the number of matches between the images. Since the num-
ber of matches between image ��� and ��� is different from
the number of matches between image ��� and ��� , we define
our bi-directional image similarity measure as

��� � �
	 � ������
� � ��	 � ����� �

� � ��	 � ���� 	
where �

��� 	���� is the number of matches between A and B.
We refer to this method as “Image Matching.”

Sign images that belong to the same class will have simi-
lar local features since each class contains the same sign un-
der different viewing conditions. We will use that property
to increase our classification accuracy by grouping all the
features that belong to the same class into one bag. Thus,
we will end up with one bag of keypoints for each class.
Now we can match each test image with a bag and produce
a match score for each class. We define a new similarity
measure between an image � and a class

�
that contains �
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���
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We refer to this method as “Feature Grouping.” In Sec-
tion 5 we will show that the Feature Grouping method ob-
tains higher accuracy over the Image Matching method.

3.4. Rejecting Most Likely Class

During classification, when we are presented with a hy-
pothesized sign region we match the region to all the classes
to obtain a match score of the region with all the classes.
Given the match score for each class, we train a meta-
classifier to decide if the class with the highest match score
is the correct class or if the test image does not belong to
any of the signs in the database. We have observed that
when a test image does not belong to any of the signs in
the database, the match scores are relatively low and have
approximately the same value. Thus, for the classifier we
compute meta-features from the match scores that capture
that information.

First, we sort the match scores from all the classes in de-
scending order, then we subtract adjacent match scores to
get the difference between the scores of the first and second
class, the second and third class, etc. However, since the

difference between lower ranked classes are insignificant
we limit our differences to the top 11 classes resulting in
10 features. We also use the highest match score as another
feature along with the probability of that class. We estimate
a posterior probability distribution over class labels by sim-
ply normalizing the match scores. Thus, the probability that
image � belongs to class % � is defined as

& � % �$' � ��
� � � 	 % � �(*)+ ! � � � � 	 % + � 	

where , is the number of classes. We also compute the
entropy of the probability distribution over class labels. En-
tropy is an information-theoretic quantity that measures the
uncertainty in a random variable. The entropy - �/. � of a
random variable

.
with a probability mass function & ��0 � is

defined by
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Using these 13 features we train a classifier to decide if the
class with the highest score is the correct one.

The approach of using the output of a classifier for input
to another meta-classifier is similar to an ensemble algo-
rithm known as “stacking.” Stacking [16] improves classifi-
cation accuracy by combining the outputs of multiple com-
ponent classifiers. It concatenates the probability distribu-
tions over class labels produced by each component classi-
fier and uses that as input to a meta-classifier. Stacking can
also be used with just one component classifier. In the case
of stacking both the component classifiers and the meta-
classifier are solving the same � -class problem. However,
in our case we use the meta-classifier to solve a different
problem than the component classifier.

We adapt the idea of stacking by using the probability
distribution as the sole features for the meta-classifier. In
experiment 3 of Section 5, we compare a meta-classifier us-
ing our choice of features with a meta-classifier using only
the posterior probabilities.

4. Data Sets

For our experiments, we used two different data sets
(available online [1]) to test the recognition phase. The im-
ages of signs were taken from downtown Amherst using a
still digital camera (Nikon Coolpix 995) with the automatic
white balance on. Manual +/- exposure adjustment along
with spot metering was used to control the amount of light
projected onto the camera sensor. The following subsec-
tions provide more information regarding each of the data
sets.



Figure 4. An example of the different lighting
conditions captured by the five different im-
ages in the 35 sign data set.

4.1. Recognition I: Lighting and Orientation

The purpose of this data set is to test the robustness of the
sign recognizer with respect to various illumination changes
and in plane rotations. Frontal images of signs were taken
at five different times of the day, from sunrise to sunset.
See Figure 4 for an example of the different lighting condi-
tions captured in the five images. The images were manu-
ally segmented to remove the background. We then rotated
each image from 1������ to ����� at � ��� intervals, resulting in
95 synthetic images per sign. We synthesized views for 35
different signs resulting in a database of 3325 images.

4.2. Recognition II: Viewing Angle

We compiled a second recognition data set to test the
robustness of the recognizer with respect to different view-
ing angles. This second database contains ten images each
of 65 different signs under various viewing angles. Fig-
ure 5 provides sample viewing angles of nine signs in the
65-class data set. As before, all the images were manually
segmented to remove any background. The different view-
ing angles where taken by moving the camera around the
sign (i.e. the data was not synthesized).

5. Experiments and Results

We performed 3 different experiments to test the vari-
ous aspects of the recognition phase. The first experiment
tested the recognizer on the 35 sign database. The second
tested it on the 65 sign database. Finally, the third exper-
iment tested the recognizer on the 65 class database while
omitting half of the sign classes from the training data to
evaluate how well it performs on ruling out a sign image
that does not belong to any of the signs in the training set.
Table 1 summarizes the results of the recognizer for the dif-

Figure 5. Nine sample images that illustrate
the different signs and views in the 65 sign
data set.

ferent experiments. The following subsections describe the
experimental set up in more detail.

5.1. Recognition: 35-Class Data Set

This data set contains 3325 sign images from 35 differ-
ent signs. We performed a leave-one-out experiment using
3325 test images, while using only 175 training instances.
Although each sign contains 95 instances, there are only 5
unique ones since the remaining 90 correspond to the syn-
thetic rotations. For our training set we only kept the five
unique images from each sign. We compared each test im-
age to 174 training images leaving out the one that corre-
sponds to the rotated version of the test image.

The results of both the image matching and feature
grouping were identical and extremely high, achieving a
99.5% accuracy. In fact, the two methods misclassified the
same images, most of which were of very poor quality. Fig-
ure 6 shows an example of a sign that was classified in-
correctly. The identical performance of the two methods
implies that if a test image is very different from one train-
ing image of the correct class, it is likely to be very differ-
ent from all of them. This result shows that SIFT features
are very robust with respect to illumination changes and in-
plane rotation present in this data set.



Experiment Mean Accuracy STD (+/-)

35 sign: Image Matching 99.5% N/A
35 sign: Feature Grouping 99.5% N/A

65 sign: Image Matching 90.4% 2.75%
65 sign: Feature Grouping 92.8% 2.73%

Table 1. Summary of matching results for the
sign recognizer.

Figure 6. The image on the left is a sample
sign that was misclassified in the 35 sign ex-
periment. It was classified as a member of
the sign on the right.

5.2. Recognition: 65-Class Data Set

Following the performance of the recognizer on the pre-
vious data set, we compiled a second more challenging data
set that included a much larger number of sign classes and
more variability in the viewing angles. We performed five
fold cross validation on the 650 images. Image matching
performed 90.4% accuracy, and when we grouped the fea-
tures by class, the accuracy increased to 92.8%. This 25%
reduction in error shows the advantage of the feature group-
ing method.

5.3. Recognition: 65-Class Data Set with Missing
Training Classes

This experiment was intended to test the ability of the
recognizer in deciding if the highest matched class is the
correct one. We performed ten fold cross validation. On
each fold we removed the images from a randomly selected
group of 35 signs from the testing set. During training, we
obtained the match scores of the classes for a specific train-
ing instance. We then computed features from the match
scores and then attached a class label of 1 if the training in-
stance belonged to a class in the new test set, 0 otherwise.
We then train a Support Vector Machine (SVM) with a lin-
ear kernel and use the trained model to classify the test data.

Figure 7. An example where two different
signs were grouped together by the detector.

Using our 13 features, the meta-classifier achieved
90.8% accuracy, while using the probability distribution we
only achieved 82.25%. These results support our choice of
features and show that they contain more useful information
than the probability distribution.

This is mainly because the probability distribution can
be misleading with respect to the match scores. For exam-
ple, assume that we have two classes in our database, and
we are presented with an image that truly does not belong to
either. Assume also that when we match the image with the
two classes we get 1 and 0 match scores respectively. Al-
though it is obvious that the match scores are too low for the
image to belong to any of the classes, when we normalize,
we obtain a 100% probability that the first class is the cor-
rect class, which is obviously incorrect. Our features cap-
ture most of the relevant information from the match scores
which is important for the classification task.

6. Conclusion and Future Work

We have presented algorithms for sign detection and
recognition for a wearable system to be used by the blind.
The sign detector uses a wide array of features with a con-
ditional random field classifier to find sign regions in the
image. The sign recognizer matches each of the hypothe-
sized sign regions with the sign classes in a database and
then decides if the highest matched class is the correct one
or if the region does not belong to any of the sign classes.

Each of the components perform well on their respec-
tive tasks. We are currently in the process of integrating the
two components to obtain a complete working system. Fig-
ure 8 shows initial sample results of the two components
working together. We are also working on improving the
accuracy of the individual components. We plan to improve



the sign detection rate by using Markov fields with ICM
for fast approximate inference. Also the sign recognizer
has to be extended to be able to deal with cases were a hy-
pothesized sign region contains more than one sign in the
database (Figure 7). Future work also includes adding the
final two modules to the system, the head-mounted camera
and the voice synthesizer.
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Figure 8. A sample result after integrating the detector and recognizer. The first row contains the
initial image and the result of the detector. The second row shows sample results of three connected
components and their respective segmentation. The third row shows the result of matching each
connected component with the sign classes in the 65 sign data set. The third sign was classified
incorrectly because the image region does not belong to any of the signs in the database. However,
our trained meta-classifier successfully classified the image region as a negative instance, meaning
that it does not belong to any of the classes in the database.


