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Abstract

We address the problem of identifying specific instances of a class (cars)
from a set of images all belonging to that class. Although we cannot build
a model for any particular instance (as we may be provided with only one
“training” example of it), we can use information extracted from observ-
ing other members of the class. We pose this task as a learning problem,
in which the learner is given image pairs, labeled as matching or not, and
must discover which image features are most consistent for matching in-
stances and discriminative for mismatches. We explore a patch based
representation, where we model the distributions of similarity measure-
ments defined on the patches. Finally, we describe an algorithm that
selects the most salient patches based on a mutual information criterion.
This algorithm performs identification well for our challenging dataset
of car images, after matching only a few, well chosen patches.

1 Introduction

Figure 1 shows six cars: the two leftmost cars were captured by one camera; the right four
cars were seen later by another camera from a different angle. The goal is to determine
which images, if any, show the same vehicle. We call this task visual identification. Most
existing identification systems are aimed at biometric applications such as identifying fin-
gerprints or faces. While object recognition is used loosely for several problems (including
this one), we differentiate visual identification, where the challenge is distinguishing be-
tween visually similar objects of one category (e.g. faces, cars), and categorization where

Figure 1: The Identification Problem: Which of these cars are the same? The two cars on the
left, photographed from camera 1, also drive past camera 2. Which of the four images on the right,
taken by camera 2, match the cars on the left? Solving this problem will enable applications such as
wide area tracking of cars with a sparse set of cameras [2, 9].



Figure 2: Detecting and warping car images into alignment: Our identification algorithm assumes
that a detection process has found members of the class and approximately aligned them to a canon-
ical view. For our data set, detection is performed by a blob tracker. A projective warp to align the
sides is computed by calibrating the pose of the camera to the road and finding the wheels of the
vehicle. Note that this is only a rough approximation (the two warped images, center and right, are
far from perfectly aligned) that helps to simplify our patch descriptors and positional bookkeeping.

the algorithm must group together objects that belong to the same category but may be vi-
sually diverse[1, 5, 10, 13]. Identification is also distinct from “object localization,” where
the goal is locating a specific object in scenes in which distractors have little similarity to
the target object [6].1

One characteristic of the identification problem is that the algorithm typically only receives
one positive example of each query class (e.g. a single image of a specific car), before
having to classify other images as the “same” or “different”. Given this lack of a class
specific training set, we cannot use standard supervised feature selection and classification
methods such as [12, 13, 14]. One possible solution to this problem is to try to pick uni-
versally good features, such as corners [4, 6], for detecting salient points. However, such
features are likely to be suboptimal as they are not category specific. Another possibility
is to hand-select good features for the task, such as the distance between the eyes for face
identification.

Here we present an identification framework that attempts to be more general. The core
idea is to use a training set of other image pairs from the category (in our case cars), labeled
as matching or not, to learn what characterizes features that are informative in distinguish-
ing one instance from another (i.e. consistent for matching instances and dissimilar for
mismatches). Our algorithm, given a single novel query image, can build a “same” vs.
“different” classifier by: (1) examining a set of candidate features (local image patches)
on the query image (2) selecting a small number of them that are likely to be the most
informative for this query class and (3) estimating a function for scoring the match for each
selected feature. Note that a different set of features (patches) will be selected for each
unique query.

The paper is organized as follows. In Section 2, we describe our decision framework in-
cluding the decomposition of an image pair into bi-patches, which give local indications
of match or mismatch, and introduce the appearance distance between the two halves as
a discriminative statistic of bi-patches. This model is then refined in Section 3 by condi-
tioning the distance distributions on hyper-features such as patch location, contrast, and
dominant orientation. A patch saliency measure based on the estimated distance distribu-
tions is introduced in Section 3.4. In Section 4, we extend our model to include another
comparison statistic, the difference in patch position between images. Finally, in Section 5,
we conclude and show that comparing a small number of well-chosen patches produces
performance nearly as good as matching a dense sampling of them.

2 Matching Patches

We seek to determine whether a new query image IL (the “Left” image) represents the
same vehicle as any of our previously seen database images IR (the “Right” image). We
assume that these images are known to contain vehicles, have been brought into rough
correspondence (in our data set, through a projective transformation that aligns the sides
of the car) and have been scaled to approximately 200 pixels in length (see Figure 2 for
details).

1There is evidence that this distinction exists in the human visual system. Some findings suggest
that the fusiform face area is specialized for identification of instances from familiar categories[11].



Figure 3: Patch Matching: The left (query) image is sampled (red dots) by patches encoded as
oriented filter channels (for labeled patch 2, this encoding is shown). Each patch is matched to the
best point in the database image of the same car by maximizing the appearance similarity between the
patches (the similarity score is indicated by the size and color of the dots, where larger and redder is
more similar). Three bi-patches are labeled. Although the classification result for this pair of images
should be “same” (C = 1), notice that some bi-patches are better predictors of this result than others
(the similarity score of 2 & 3 is much better than for patch 1). Our goal is to be able to predict the
distribution of P (d|C = 1) and P (d|C = 0) for each patch accurately based on the appearance and
position of the patch in the query image (for the 3 patches, our predictions are shown on the right).

2.1 Image Patch Features

Our strategy is to break up the whole image comparison problem into multiple local match-
ing problems, where we encode a small patch F L

j (1 ≤ j ≤ n) of the query image IL and
compare each piece separately [12, 14]. As the exact choice of features, their encoding and
comparison metric is not crucial to our technique, we chose a fairly simple representation
that was general enough to use in a wide variety of settings, but informative enough to
capture the details of objects (given the subtle variation that can distinguish two different
cars, features such as [6] were found not to be precise enough for this task).

Specifically, we apply a first derivative Gaussian odd-symmetric filter to the patch at four
orientations (horizontal, vertical, and two diagonal), giving four signed numbers per pixel.
To compare a query patch F L

j to an area of the right image F R
j , we encode both patches

as 4× 252 length vectors (4 orientations per pixel) and compute the normalized correlation
(dj = 1 − CorrCoef(F L

j , FR
j )) between these vectors. As the two car images are in rough

alignment, we need only to search a small area of IR to find the best corresponding patch
FR

j - i.e. the one that minimizes dj . We will refer to such a matched left and right patch
pair FL

j , FR
j , together with the derived distance dj , as a bi-patch Fj .

2.2 The Decision Rule

We pose the task of deciding if the a database image IR is the same as a query image IL as
a decision rule

R =
P (C = 1|IL, IR)

P (C = 0|IL, IR)
=

P (IL, IR|C = 1)P (C = 1)

P (IL, IR|C = 0)P (C = 0)
> λ. (1)

where λ is chosen to balance the cost of the two types of decision errors. The priors are
assumed to be known.2 Specifically, for the remaining equations in this paper, the priors are
assumed to be equal, and hence are dropped from subsequent equations. With our image
decomposition into patches, the posteriors from Eq. (1) will be approximated using the bi-
patches F1, ..., Fn as P (C|IL, IR) ≈ P (C|F1, ..., Fm) ∝ P (F1, ..., Fm|C). Furthermore,
in this paper, we will assume a naive Bayes model in which, conditioned on C, the bi-
patches are assumed to be independent. That is,

R =
P (IL, IR|C = 1)

P (IL, IR|C = 0)
≈

P (F1, ..., Fm|C = 1)

P (F1, ..., Fm|C = 0)
=

m∏

j=1

P (Fj |C = 1)

P (Fj |C = 0)
. (2)

2For our application, dynamic models of traffic flow can supply the prior on P (C).



In practice, we compute the log of this likelihood ratio, where each patch contributes an
additive term (denoted LLRi for patch i). Modeling the likelihoods in this ratio (P (Fj |C))
is the central focus of this paper.

2.3 Uniform Appearance Model

Figure 4: Identification using appearance dif-
ferences: The bottom curve shows the precision
vs. recall for non-patch based direct comparison of
rectified images. (An ideal precision-recall curve
would reach the top right corner.) Notice that all
three patch based models outperform this method.
The three top curves show results for various mod-
els of dj from Sections 2.3 (Baseline), 3.1 (Dis-
crete), and 3.2 & 3.3 (Continuous). The regression
model outperforms the uniform one significantly -
it reduces the error in precision by close to 50%
for most values of recall below 90%.

The most straightforward way to esti-
mate P (Fj |C) is to assume that the ap-
pearance difference dj captures all of the
information Fj about the probability of
a match (i.e. C and Fj are independent
given dj), and that all of dj’s from all
patches are identically distributed. Thus
the decision rule, Eqn. 1, becomes

R ≈
m∏

j=1

P (dj |C = 1)

P (dj |C = 0)
> λ. (3)

The two conditional distributions,
P (dj |C ∈{0, 1}), are estimated as nor-
malized histograms from all bi-patches
matched within the training data.3 For
each value of λ, we evaluate Eqn.(3) to
classify each test pair as matching or
not, producing a precision-recall curve.
Figure 4 compares this patch-based
model to a direct image comparison
method.4 Notice that even this naive
patch-based technique significantly
outperforms the global matching.

3 Refining the Appearance Distributions with Hyper-Features

The most significant weakness of the above model is the assumption that the dj’s from
different bi-patches should be identically distributed (observe the 3 labeled patches in Fig-
ure 3). When a training set of “same” (C = 1) and “different” (C = 0) images is available
for a specific query image, estimating these distributions directly for each patch is straight-
forward. How can we estimate a distribution for P (dj |C = 1), where F L

j is a patch from
a new query image, when we only have that single positive example of F L

j ? The intuitive
answer: by finding analogous patches in the training set of labeled (same/different) image
pairs. However, since the space of all possible patches (appearance & position, <25∗25+2)
is very large, the chance of having seen a very similar patch to F L

j in the training set is
small. In the next sections we present two approaches both of which rely on projecting F L

j

into a much lower dimensional space by extracting meaningful features from its position
and appearance (the hyper-features).

3.1 Non-Parametric Model with Discrete Hyper-Features

First we attempted a non-parametric approach, where we model the joint distribu-
tion of dj and a few hyper-features (e.g. the x and y coordinate of the patch F L

j ,

3Data consisted of 175 pairs (88 training, 87 test pairs) of matching car images (C=1) from two
cameras located on the same side of the street one block apart. Within training and testing sets, about
4000 pairs of mismatched cars (C=0) were formed from non-corresponding images, one from each
camera. All comparisons were performed on grayscale (not color) images.

4The global image comparison method used here as a baseline technique uses normalized correla-
tion on a combination of intensity and filter channels, and attempts to overcome slight misalignment.



Figure 5: Fitting a GLM to the Γ distribution: we demonstrate our approach by fitting a gamma
distribution, through the latent variables Θ = (µ, γ), to the y position of the patches. Here we
allowed µ and σ to be a 3rd degree polynomial function of y (i.e. Z = [y3,y2,y,1]T). The center-
left square shows, on each row, a distribution of d conditioned on the y position of the left patch (F L)
for each bi-patch, for training data taken from matching vehicles. The center-right square shows the
same distributions for mismatched data. The height of histogram distributions is color-coded, dark
red indicating higher density. The central curve shows the polynomial fit to the conditional means,
while the outer curves show the ±σ range. For reference, we include a partial image of a car whose
y-coordinate is aligned with the center images. On the right, we show two histogram plots, each
corresponding to one row of the center images (a small range of y corresponding to the black arrows).
The resulting gamma distributions are superimposed on the histograms.

i.e. Z = [x, y]). The distribution is modeled “non-parametrically” (similar to Sec-
tion 2.3) using an N-dimensional normalized histogram where each dimension (d,x, and
y) has been quantized into several bins. In this model P (C|Fj) ≈ P (C|dj , yj , xj) ∝
P (dj |yj , xj , C)P (yj , xj |C)P (C) ∝ P (dj |yj , xj , C), where the last formula follows from
the assumption of equal priors (P (C) = 0.5) and the independence of (yj , xj) and C. The
Discrete Hyper-Features curve in Figure 4 shows the performance gain from conditioning
on these positional hyper-features.

3.2 Parametric Model with Continuous Hyper-Features

The drawback of using a non-parametric model for the distributions is that the amount
of data needed to populate the histograms grows exponentially with the number of di-
mensions. In order to add additional appearance-based hyper-features, such as contrast,
oriented edge energy, etc., we moved to a smooth parametric representation for both the
distribution of dj and the model by which the the hyper-features influence this distribution.

Specifically, we model the distributions P (dj |C = 1) and P (dj |C = 0) as gamma dis-
tributions (notated Γ()) parameterized by the mean and shape parameter θ = {µ, γ} (see
the right panel of Figure 5 for examples of the Γ() fitting the empirical distributions). The
smooth variation of θ with respect to the hyper-features can be modeled using a general-
ized linear model (GLM). Ordinary (least-squares) linear models assume that the data is
normally distributed with constant variance. GLMs are extensions to ordinary linear mod-
els that can fit data which is not normally distributed and where the dispersion parameter
also depends on the covariates (see [7] for more information on GLMs).

Our goal is to fit gamma distributions to the distributions of d values for various patches by
maximizing the probability density of data under gamma distributions whose parameters
are simple polynomial functions of the hyper-features. Consider a set X1, ..., Xk of hyper-
features such as position, contrast, and brightness of a patch. Let Z = [Z1, ..., Zl]

T be a
vector of l pre-chosen functions of those hyper-features, like squares, cubes, cross terms,
or simply copies of the variables themselves. Then each bi-patch distance distribution has
the form

P (d|X1, X2, ..., Xk, C) = Γ(d; α
µ
C
· Z, α

γ
C
· Z), (4)

where the second and third arguments to Γ() are mean and shape parameters.5 Each α
(there are four of these: α

µ
C=0

, α
γ
C=0

, α
µ
C=1

, α
γ
C=1

) is a vector of parameters of length l

5For the GLM, we use the identity link function for both µ and γ. While the identity is not
the canonical link function for µ, its advantage is that our ML optimization can be initialized by



that weights each hyper-feature monomial Zi. The α’s are adapted to maximize the joint
data likelihood over all patches for C = 0 or C = 1 withing the training set. These ideas
are illustrated in detail in Figure 5.

3.3 Automatic Selection of Hyper-Features

In this section we describe the automatic determination of Z. Recall that in our GLM model
we assumed a linear relationship between Z and µ, γ. This allows us to use standard feature
selection techniques, such as Least Angle Regression (LARS)[3], to choose a few (around
10) hyper-features from a large set of candidates,6 such as: (a) the x and y positions of F L,
(b) the intensity and contrast within F L and the average intensity of the entire vehicle, (c)
the average energy in each of the 8 oriented filter channels, and (d) derived quantities from
the above (e.g. square, cubic, and cross terms). LARS was then asked to choose Z from
these features. Once Z is set, we proceed as in Section 3.2.

Running an automatic feature selection technique on this large set of possible conditioning
features gives us a principled method of reducing the complexity of our model. Reducing
the complexity is important not only to speed up computation, but also to mitigate the risk
of over-fitting to the training set. The top curve in Figure 4 shows results when Z includes
the first 10 features found by LARS. Even with such a naive set of features to choose from,
the performance of the system improves significantly.

3.4 Estimating the Saliency of a Patch

From the distributions P (dj |C = 0) and P (dj |C = 1) computed separately for each patch,
it is also possible to estimate the saliency of the patch, i.e. the amount of information about
our decision variable C we are likely to gain should we compute the best corresponding
FR

j . Intuitively, if the distribution of Dj is very different for C = 0 and C = 1, then
the amount of information gained by matching patch j is likely to be large (see the 3
distributions on the right of Figure 3). To emphasize the fact that the distribution P (dj |C)
is a fixed function of F L

j , given the learned hyper-feature weights α, we slightly abuse
notation and refer to the random variable from which dj is sampled as F L

j .

With this notation, computing the mutual information between F L
j and C gives us a mea-

sure of the expected information gain from a patch with particular hyper-features:

I(FL
j ;C) = H(F L

j ) − H(FL
j |C).

Here H() is Shannon entropy. The key fact to notice is that this measure can be computed
just from the estimated distributions over dj (which, in turn, were estimated from the hyper-
features of F L

j ) before the patch has been matched. This allows us to match only those
patches that are likely to be informative, leading to significant computational savings.

4 Modeling Appearance and Position Differences

In the last section, we only considered the similarity of two matching patches that make up
a bi-patch in terms of the appearance of the patches (dj). Recall that for each left patch
FL

j , a matching right patch F R
j is found by searching for the most similar patch in some

large neighborhood around the expected location for the match. In this section, we show
how to model the change in position, rj , of the match relative to its expected location, and
how this, when combined with the appearance model, improves the matching performance.

solving an ordinary least squares problem. We experimentally compared it to the canonical inverse
link (µ = (αµ

C

T ∗ Z)−1), but observed no noticeable change in performance on our data set.
6In order to use LARS (or most other feature selection methods) “out of the box”, we use regres-

sion based on an L2 loss function. While this is not optimal for non-normal data, from experiments
we have verified that it is a reasonable approximation for the feature selection step.



Figure 6: Results: The LEFT plot shows precision vs. recall curves for models of r. The results
for δx and δy are shown separately (as there are often more horizontal than vertical features on cars,
δy is better). Re-estimating parameters of the global alignment, W (affine fit), significantly improves
the curves. Finally, performance is improved by combining position with appearance (“Complete”
curve) compared to using appearance alone. The CENTER pair of images show a correct match,
with the patch centers indicated by circles. The color of the circles in the top image indicates MI j ,
in bottom image LLRj . Our patch selection algorithm chooses the top patches based on MI where
subsequent patches are penalized for overlapping with earlier ones (neighborhood suppression). The
top 10 “left” patches chosen are marked with arrows connecting them to the corresponding “right”
patches. Notice that these are concentrated in informative regions. The RIGHT plot quantifies this
observation: the curves show 3 different methods of choosing the order of patches - random order,
MI and MI with neighborhood suppression. Notice that this top curve with 3 patches does as well
as the direct comparison method. All 3 methods converge above 50 patches.

Let rj = (δxj , δyj) be the difference in position between the coordinates of F L
j and FR

j

within the standardized coordinate frames. Generally, we expect rj ≈ 0 if the two images
portray the same object (C = 1). The estimate for R, incorporating the information from
both d and r becomes

R ≈
m∏

j=1

P (rj |dj ,Zj , C = 1)P (dj |Zj , C = 1)

P (rj |dj ,Zj , C = 0)P (dj |Zj , C = 0)
, (5)

where Zj again refers to a set of hyper-features.

Here we focus on the first factor, where the distribution of rj given C is dependent on the
appearance and position of the left patch (F L

j , through the hyper-features Zj) and on the
similarity in appearance (dj). The intuition for the dependence on dj is that for the C = 1
case, we expect rj to be smaller on average when a good appearance match (small dj) was
found.

Following our approach for dj , we model the distribution of rj as a 0 mean normal dis-
tribution, N (0,Σ) , where Σ (we use a diagonal covariance) is a function of Zj ,dj . The
parameterization of (Zj ,dj) is found through feature selection, while the weights for the
linear function are obtained by maximizing the likelihood of rj over the training data. To
address initial misalignment, we select a small number of patches, match them, and com-
pute a global affine alignment between the images. We subsequently score each match
relative to this global alignment.

The bottom four curves of Figure 6 show that fitting an affine model first significantly
improves the positional signal. While position seems to be less informative than appear-
ance, the complete model, which combines appearance and position (Eq. 5), outperforms
appearance alone.

5 Conclusion

The center and right sides of Figure 6 show our ability to select the most informative
patches using the estimated mutual information I(F L

j , C) of each patch. To prevent spa-
tially overlapping patches from being chosen, we added a penalty factor to the mutual in-



formation score that penalizes patches that are very close to other chosen patches (MI with
neighborhood suppression). To give a numerical indication of the performance, we note
that with only 10 patches, given a 1-to-87 forced choice problem, our algorithm chooses
the correct matching image 93% of the time.

A different approach to a learning problem that is similar to ours can be found in [5, 8],
which describe methods for learning character or object categories from few training ex-
amples. These works approach this problem by learning distributions on shared factors
[8] or priors on parameters of fixed distributions for a category [5] where the training data
consists of images from other categories. We, on the other hand, abandon the notion of
building a model with a fixed form for an object from a single example. Instead, we take
a discriminative approach and model the statistical properties of image patch differences
conditioned on properties of the patch. These learned conditional distributions allow us to
evaluate, for each feature, the amount of information potentially gained by matching it to
the other image.7
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