
Scene Text Segmentation via Inverse Rendering

Yahan Zhou, Jacqueline Feild, Erik Learned-Miller, and Rui Wang
University of Massachusetts, Amherst

Email: yhzhou@cs.umass.edu, jfeild@cs.umass.edu, elm@cs.umass.edu, ruiwang@cs.umass.edu

Abstract—Recognizing text in natural photographs that con-
tain specular highlights and focal blur is a challenging problem.
In this paper we describe a new text segmentation method based
on inverse rendering, i.e. decomposing an input image into basic
rendering elements. Our technique uses iterative optimization to
solve the rendering parameters, including light source, material
properties (e.g. diffuse/specular reflectance and shininess) as
well as blur kernel size. We combine our segmentation method
with a recognition component and show that by accounting for
the rendering parameters, our approach achieves higher text
recognition accuracy than previous work, particularly in the
presence of color changes and image blur. In addition, the derived
rendering parameters can be used to synthesize new text images
that imitate the appearance of an existing image.

I. INTRODUCTION

Scene text recognition, which aims to recognize text in
natural scenes, remains a challenging problem. Compared to
scanned documents, which are usually taken under uniform
lighting with sharp focus, scene text images often contain
undesirable lighting effects, such as specular highlights, glossy
reflections, and shadows; and the camera’s focal and motion
blur add additional difficulty to the recognition task.

In this paper we describe a new algorithm for scene text
segmentation by exploiting inverse rendering, i.e. decomposing
an input image into basic rendering elements. This technique
assigns each pixel in the image to a foreground (text) layer
or a background layer. Previous work [1] has shown that
accurate segmentation can significantly increase the success of
the subsequent text recognition step. However, segmentation in
natural photographs presents a challenge because effects such
as highlights, shadows, and focal blur can severely limit the
segmentation accuracy.

As our main contribution, we introduce inverse rendering
into the segmentation algorithm. Given an input image, our
method automatically infers parameters such as the light
source, material properties (e.g. diffuse/specular reflectance
and shininess) as well as a blur kernel size. By accounting
for these rendering parameters and illumination effects (which
are often the cause of color changes), our method can greatly
improve the accuracy of segmentation, and consequently lead
to improved text recognition results.

Our method solves the rendering parameters using both
closed-form solutions as well as analysis via synthesis. Starting
from an initial set of parameters and foreground/background
labels, we run a computer graphics rendering algorithm to
compute a synthesized image. We then use the error of
the synthesized image with the input image to drive the
updates of the parameters and assigned label. We formulate
this process as an iterative optimization problem and solve it
using an Expectation-Maximization (EM) algorithm. The end

result decomposes the input image into a foreground and a
background layer, and the associated material parameters for
each pixel. Results show that our method can greatly improve
text recognition in images that contain challenging effects such
as specular highlights and image blur. Besides text recognition,
our method can be used to synthesize new text images that
mimic the appearance of an existing image.

II. RELATED WORK

Scene Text Recognition. Scene text recognition is an im-
portant research problem in computer vision. Among existing
solutions, one popular approach is to use sliding windows
over the whole image to extract features for text detection
and recognition, such as [2], [3] and [4]. Another approach is
based on Maximally Stable Extremal Regions (MSERs). For
example, in [5] MSER has been used for localizing text in
images. In [6], the MSER-based method is further improved by
constructing an MSER tree and applying an effective pruning
algorithm. Instead of using MSER, in [7] a feature calculator
is integrated into the process of computing Extremal Regions
(ER), which enables efficient evaluation of all ERs.

Text Segmentation. Text segmentation aims to detect and
split an image into regions of text (foreground) and back-
ground. A classic approach for segmentation is to use thresh-
olding. A survey of such approaches can be found in [8]. Tradi-
tional thresholding-based algorithms are suitable for scanned
documents, which are usually taken under uniform lighting
with sharp focus. Thus the pixel values naturally form two
clusters. However, such an approach is difficult to apply in
scene text segmentation, due to the significant color variations
and illumination effects in natural images.

There are also segmentation methods based on colors. For
example, [9] runs a k-means algorithm to cluster pixels into
several groups. This produces several possible segmentations,
from which the best is selected using an SVM algorithm.
In [10], the authors extract strokes and build a color distri-
bution for embedded text segmentation tasks. A recent work
in [1] introduced an MRF-based model, where they first use a
Gaussian mixture model for clustering pixel colors, then use
a graph cut algorithm for solving the MRF.

Despite the success of previous work, the segmentation of
images that contain significant specular highlights and focal
blur still presents a great challenge. For example, highlights
can change the color of a text region, making it difficult to
distinguish a foreground (text) pixel from a background pixel.
Using an appropriate lighting model will greatly help in such
cases by accounting for illumination effects.

Physically-based Lighting Model. In computer graphics
a standard lighting model is described by the integral of

incident light with BRDFs (Bidirectional Reflectance Distri-
bution Functions). The BRDF models have been well studied,
ranging from the simplest Phong model [11], which gives good
approximation of specular reflections, to more sophisticated
models or even measured BRDFs. A detailed analysis and
comparison of different types of BRDF models can be found
in [12]. For text segmentation tasks, we apply the lighting
model to infer the diffuse and specular reflectance as well
as the shininess of the material on both foreground and
background. Since input images are usually captured at low
resolution with low dynamic range colors, a very precise
BRDF model is unnecessary. Thus in our experiments we apply
the simple Phong BRDF model [11], which has been shown
to be sufficiently good for most images we have tested.

Inverse Rendering. Extracting illumination and BRDF in-
formation from images is known as inverse rendering and
has been studied in previous work. While estimating BRDF
from a single image in an unconstrained environment is gen-
erally intractable, researchers have proposed solutions based
on multiple images, or with assumptions such as known
lighting and/or 3D geometry [13] [14][15]. A survey of inverse
rendering can be found in [16]. In our paper, the BRDF
estimation problem is solved by making certain assumptions
of scene text images, explained in Section III.

III. LIGHTING MODEL

This section explains our lighting model. Given an input
image I , we simultaneously assign foreground / background
(i.e. segmentation) labels for each pixel and derive the lighting
parameters, such that a rendered image Ĩ using these param-
eters matches the input as close as possible.

Assumptions. For the text segmentation problem, we assume
the illumination comes from a single point light, text (fore-
ground) pixels have the same material (BRDF), and similarly
with the background pixels. In addition, we assume the image
is taken under orthographic projection (with little perspective
distortion), and pixels exist on the same planar surface (thus
have the same normal). These assumptions are valid for most
text image patches we tested. If necessary, the number of
parameters can be increased to accomodate more complicated
scenarios. Notice that we make these assumptions only for
the segmentation part of the algorithm. The recognition part
doesn’t rely on them.

Rendering Equation. Denote a pixel p’s screen coordinate
as ps and world coordinate as pw. The Phong BRDF model
describes the observed color of pixel p as the sum of a diffuse
and specular color:

Ĩ(p) = Id(p) + Is(p), (1)

Id(p) =
Cd

4π|S− pw|2
max (0, L ·N) , (2)

Is(p) =
Cs

4π|S− pw|2
max (0, R ·V)

α
, (3)

where Ld(p) and Ls(p) denote the diffuse and specular
components respectively, and · denotes vector dot product. The
other symbols are listed as follows:

Cd diffuse reflectance, determined by material
Cs specular reflectance, determined by material
α shininess of the material
S position of the light source
L direction from pixel to the light L = S−pw

|S−pw|
N surface normal
V view direction
R reflected light direction R = 2(L ·N)− L

Since we assume foreground pixels have uniform mate-
rial, they share the same set of parameters Cd,f , Cs,f , αf ;
similarly, background pixels share another set of parameters
Cd,b, Cs,b, αb. In addition, since most images are taken from
a direction right above the surface normal, we have N = −V.
For simplicity, we set the world coordinates such as N is along
the z-axis, thus N = (0, 0, 1) and V = (0, 0,−1). Given the
setup, equations 2 and 3 are now simplified to:

Id(p) =
Cd

4π |S− pw|2
max

(
0,

S.z − pw.z

|S− pw|

)
, (4)

Is(p) =
Cs

4π |S− pw|2
max

(
0,

S.z − pw.z

|S− pw|

)α
. (5)

In fact we can get rid of the max(·) function in the above
equations because S.z − pw.z > 0 is always true for visible
pixels. Thus rearranging the terms we have:

Id(p) =
S.z − pw.z

4π |S− pw|3
Cd, (6)

Is(p) =
(S.z − pw.z)

α

4π |S− pw|α+2Cs. (7)

Parameters. To summarize, in the simplified lighting model,
the free parameters are the light source position S (relative to
the depth of the text plane), the foreground/background label
of each pixel, and the BRDF variables including the diffuse
reflectance Cd, specular reflectance Cs and shininess α for
foreground and background pixels separately. We will refer to
them as the lighting parameters, denoted as θ. To simplify the
equations further, we use a binary function T (p) to represent
foreground/background labels:

T (p) =

{
0 if p is a background pixel;
1 if p is a foreground pixel.

And we denote the geometry terms in equations 6 and 7 as:

Ad,t(p) =
S.z − pw.z

4π |S− pw|3
, (8)

As,t(p) =
(S.z − pw.z)

αt

4π |S− pw|αt+2 , (9)

where subscript t is the binary foreground/background label.
This then allows us to combine the foreground and background
pixels together into a single equation:

Ĩ(p) = T (p)Ad,1(p)Cd,1 + (1− T (p))Ad,0(p)Cd,0
+T (p)As,1(p)Cs,1 + (1− T (p))As,0(p)Cs,0. (10)

This way the foreground or background lighting parameters
will be automatically selected via the binary label T (p).

Blur Estimation Accurate text segmentation needs to con-
sider possible blur effects in images, caused by either camera’s

(a) Without blur estimation (b) With blur estimation

Fig. 1. Comparison of segmentation results with and without blur estimation.
The top image is the input, the second row shows the segmentation results,
and the third row shows the corresponding reconstructed images.

focal blur or motion blur. By incorporating blur estimation into
our algorithm, we can greatly improve the segmentation results
in natural images. An example is shown in Figure 1. We model
the blur by convolving an image with a Gaussian kernel κ(·):

Ĩb(p) = (Ĩ ⊗ κ)(p) =
∫
Ĩ(q)κ(p− q)dq. (11)

In discrete form, it is:

Ĩb(p) =
∑
q

Ĩ(q)κ(p− q). (12)

Because Ĩ(p) in equation 10 is expressed as the sum of
four terms, we can associate the convolution with each term
individually, thereby expressing Ĩb(p) as:

Ĩb(p) = Bd,1(p)Cd,1 +Bd,0(p)Cd,0
+ Bs,1(p)Cs,1 +Bs,0(p)Cs,0, (13)

where Bd,1, Bd,0, Bs,1 and Bs,0 are the blurred foreground
diffuse, background diffuse, foreground specular, and back-
ground specular components respectively (i.e. Bd,1(p) =
[T (p)Ad,1(p)] ⊗ κ and so on). Therefore, in addition to the
lighting parameters and segmentation labels, we will also need
to estimate the blur kernel size (refer to Section IV-C).

IV. ALGORITHMS AND IMPLEMENTATION

In this section, we describe an EM (Expectation Maximiza-
tion) algorithm for estimating the parameters discussed in the
above section. Given an input scene text image, our goal is
to compute a set of parameters θ, such that a rendered image
using these parameters is as close as possible to the input,
measured by the L2 norm. In other words, we formulate this
as an optimization problem, and the target error function is:

Err(θ) =
∑
p

(
Ĩb(p)− I(p)

)2
, (14)

where I(p) is the input and Ĩb(p) is defined in equation 13.
EM minimizes the error function iteratively by alternating
between optimizing some parameters while keeping the re-
maining parameters fixed.

A. Solving the Lighting Parameters

We first discuss how to optimize the lighting parameters,
assuming the segmentation labels and blur kernel size are
fixed. To do so, we separate the lighting parameters θ into
a linear set θL = [Cd,0, Cs,0, Cd,1, Cs,1]

′ and a non-linear
set θN = [S, α0, α1]. These parameters are all initialized

as uniform random numbers. The optimal linear parameters
should each satisfy ∂Err

∂θL
= 0. We demonstrate how to solve

this by using the first parameter ∂Err
∂Cd,1

as an example:

∂Err

∂Cd,1
= 2

∑
p

(
Ĩb(p)− I(p)

) ∂Ĩb(p)
∂Cd,1

= 2
∑
p

(
Bd,1(p)Cd,1 +Bd,0(p)Cd,0

+Bs,1(p)Cs,1 +Bs,0(p)Cs,0 − I(p)
)
Bd,1(p).

Since we want ∂Err
∂Cd,1

= 0, we can re-write the above equation
in matrix form,(Bd,1 ·Bd,1)(Bd,0 ·Bd,1)

(Bs,1 ·Bd,1)
(Bs,0 ·Bd,1)

T Cd,1Cd,0

Cs,1
Cs,0

 = (Bd,1 · I) , (15)

where · denotes the dot product between two images (i.e. by
treating an image as a long vector).

Clearly the equations for ∂Err
∂Cd,0

, ∂Err
∂Cs,1

and ∂Err
∂Cs,0

will have
a similar form. Therefore we can put them together as:

BT BC = BT I, (16)

where BT = [Bd,1, Bd,0, Bs,1, Bs,0] and similarly CT =
[Cd,1, Cd,0, Cs,1, Cs,0]. To solve the linear parameters C, we
fix the non-linear parameters, compute matrix B and multiply
the psudo-inverse of BTB to both sides of equation 16.

Solving Non-linear Parameters After the linear parameters
are optimized in the previous step, we will then move on to
optimize the non-linear parameters θN . Since we do not have
a closed-form solution for θN , we use a Levenberg-Marquardt
algorithm with the objective function defined in equation 14.
The details of this algorithm can be found in [17].

B. Foreground/Background Label Assignment

Now we discuss how to compute the labels assuming the
other parameters are fixed. This problem can be formulated
as minimizing the error function by tuning the segmentation
labels T (p). The labels are initialized by performing a k-means
clustering on the pixel colors, resulting in two clusters. We
begin by describing the case where there is no blurring.

Label Assignment with No Blur Suppose for now that there
is no blur. In this case from Equation 10 we have:

Ĩb(p) = Ĩ(p)

=

{
Ad,1(p)Cd,1 +As,1(p)Cs,1 if T (p) = 1;
Ad,0(p)Cd,0 +As,0(p)Cs,0 if T (p) = 0.

Thus |Ĩb(p)− I(p)| is minimized if for every pixel p we pick
its label T that results in the smallest error:

T (p) =

{
1 if |Ad,1(p)Cd,1 +As,1(p)Cs,1 − I(p)|

< |Ad,0(p)Cd,0 +As,0(p)Cs,0 − I(p)|;
0 otherwise.

Label Assignment with Blur Now consider the case with
blur. The above solution cannot apply directly, because in
general Ĩb(p) 6= Ĩ(p). However, we can replace the input

(a) input (b) segmentation (c) rendered

Fig. 2. Text segmentation results. (a) input images; (b) segmentation results;
(c) reconstructed (i.e. rendered) images using extracted parameters.

image I with a deblurred version Ideblur, and run the same
label assignment process as above. In other words, instead of
minimizing |Ĩb(p) − I(p)| we are now trying to minimize
|Ĩ(p) − Ideblur(p)|, where Ĩ is the non-blurred version of
the rendered image, and Ideblur(p) is approximately the non-
blurred ground truth of the input I(p). To compute Ideblur
we use blind deconvolution with a maximum likelihood al-
gorithm. Experimental results show that our approach works
well in practice. Notice that this is different from running the
deblurring algorithm as a pre-process to the whole pipeline,
which will degrade the performance of our algorithm because
of the ringing effects introduced by directly deblurring.

C. Blur Kernel Size

As described above, we model blur using a Gaussian
kernel. Since we don’t know the kernel size (i.e. σ in the
Gaussian function) a priori, we take a few samples of σ in
uniform steps, then run the EM algorithm to calculate the
lighting parameters and segmentation labels for each sampled
σ, and finally compare the reconstruction error E. Usually
the lowest reconstruction error is achieved when the kernel
size is close to ground truth. Therefore taking a sequence of
increasing σ values, we keep running the computation until
we observe an increase in the reconstruction error. This is
analogous to how the camera’s auto-focus works. To reduce the
overall computation cost we pass the output labels and lighting
parameters from the previous sampling step to the next one,
and use them for initialization.

D. Summary

To summarize: our algorithm starts by assuming no blur,
then gradually increases the σ of the Gaussian kernel from 1
to 10 in integer steps. During each step, we perform 3 EM
iterations for updating the segmentation labels and estimating
lighting parameters, except for when σ = 0 we perform 10
iterations of EM to allow for better convergence.

V. RESULTS

In this section we present experimental results. We ran the
experiments on a single core of an Intel i5 3.2GHz CPU. It
took a few seconds to a few minutes to segment one image,
depending on the image size.

To begin, we present the segmentation results by using
inverse rendering. Figure 2 shows selected examples. Note that

I

II

III

IV
(a) input (b) Mishra [1] (c) ours

Fig. 3. Comparing segmentation results between Mishra et al.’s method [1]
(b) and our method (c). Column (a) shows the input images.

ICDAR(FULL) ICDAR(50)
Mishra et al. [1] 67.30% 75.07%

Our method 69.29% 76.78%

TABLE I. COMPARISON OF WORD SPOTTING ACCURACY BETWEEN
MISHRA ET AL’S METHOD [1] AND OUR METHOD.

since our algorithm extracts the lighting parameters and blur
kernel size, we can reconstruct a rendered image. Figure 2
column (c) shows the reconstructed images. Note that they
look very similar to the input images in column (a).

While we could directly compare the segmentation results
of our approach to ground truth, in practice such ground truth is
difficult to obtain. Moreover, the effectiveness of segmentation
is ultimately measured by the accuracy of the final text
recognition. Therefore we compare our approach to other seg-
mentation methods in terms of the text recognition accuracy.
We do so by using a complete scene text recognition system
and varying the segmentation method used. In the following
experiments we focus specifically on word spotting [18], where
we are given a pre-specified lexicon guaranteed to contain the
ground truth, and the goal is to choose a word label from it.

Our recognition system uses a segmentation image to find
an initial word label and then finds the closest word to that
label in the lexicon. To find an initial label, we consider
each connected component in a segmentation image to be
a character, and we model the sequence of characters with
a linear-chain conditional random field (CRF) model. For
each character, we extract one histogram of oriented gradients
(HOG) descriptor, centered and covering the character as the
appearance features. We estimate the parameters of the CRF
model using maximum likelihood training by minimizing the
negative log-likelihood of the objective function. Then, we
use this model to find an initial word label using the Viterbi
decoding algorithm [19]. We use a software package for
graphical models by Mark Schmidt [20]. Next, we calculate
the edit distance between the initial label and each word in
the lexicon. The edit distance is the minimum number of
insertions, deletions or substitutions required to transform one
string into another. We choose the lexicon word with the
smallest edit distance as the final label.

We compare our text segmentation method to the state-of-
the-art text segmentation method by Mishra et al. [1] on the
ICDAR 2003 scene data set [21]. We use the scene version
of this data set because we were provided segmentations for
direct comparison. We compute the accuracy using a lexicon
containing all words in the test set (ICDAR FULL), and a
lexicon with the ground truth word for the image plus 50
random words (ICDAR 50). The word-spotting accuracy is
shown in Table I. From the results we can see that our method
achieves higher accuracy in both cases.

Fig. 5. Our method can be used to replace text in existing images. This is done by applying the lighting parameters extracted from the existing image to novel
text, producing new images (second row) that look similar in appearance to the input images (first row). Here the novel text we applied is ’ICDAR2013’.

I

II

III
(a) (b) (c)

Fig. 4. Failure cases. Column (a): input images; Column (b): segmentation
results; Column (c): reconstructed images.

Some selected results for comparison are shown in Fig-
ure 3. Note that Mishra et al’s method may fail to segment
small features (like the hole in the capital ‘A’ in Row I) while
our method can handle these cases well. Since we consider blur
estimation, our method is particularly effective in segmenting
blurred images, as shown in Row II and III. Row IV shows an
image where there is a smooth color transition due to lighting
effects. This leads to incorrect segmentation in their method,
while our method is able to handle it well.

Our method also has limitations in challenging scenes.
Figure 4 shows a few failure cases. Rows I and II show cases
where the foreground contains multiple colors, some of which
are similar to the background. This causes our algorithm to
incorrectly classify some foreground pixels into background.
Row III shows a case where there is very strong highlight,
which again causes some foreground pixels to have similar
color with the background and lead to incorrect segmentation.

In addition to text recognition, our method can be used to
synthesize new text images that look similar to existing images.
To do so, we simply replace the label image with novel text,
and render a new image with the same lighting parameters.
This allows us to replace text in place, as is shown in Figure 5.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduce a new method where an inverse
rendering approach is integrated into a text segmentation
pipeline. We compare our new segmentation algorithm with
previous methods by evaluating its accuracy on a word-spotting
task. We demonstrate that our model is effective for modeling
scene text images with single foreground material, single
background material, and blur effect.

There are several directions for future research. First, in
the current work we assume that the text image only contains
two uniform materials, which limits the use of our algorithm
to scenes with multiple materials. Thus an extension would
be to segment pixels into multiple groups and have one set of
reflectance parameters for each group. Another future research
direction would be to incorporate a global language model
into the pipeline, which will help in challenging scenes such

as those with similar foreground/background colors, or those
with a strong specularity that washes out part of the text.

Acknowledgments This work was supported in part by NSF
Grant IIS-0916555 and NSF Grant CCF-0746577.

REFERENCES

[1] A. Mishra, K. Alahari, and C. V. Jawahar, “An mrf model for binariza-
tion of natural scene text,” in ICDAR ’11, 2011, pp. 11–16.

[2] K. Wang, B. Babenko, and S. Belongie, “End-to-end scene text recog-
nition,” in ICCV ’11, 2011, pp. 1457–1464.

[3] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh, T. Wang,
D. Wu, and A. Ng, “Text detection and character recognition in scene
images with unsupervised feature learning,” in ICDAR ’11, 2011, pp.
440 –445.

[4] A. Mishra, K. Alahari, and C. Jawahar, “Top-down and bottom-up cues
for scene text recognition,” in CVPR ’12, 2012, pp. 2687–2694.

[5] L. Neumann and J. Matas, “A method for text localization and recog-
nition in real-world images,” in ACCV ’10, 2011, pp. 770–783.

[6] ——, “Text localization in real-world images using efficiently pruned
exhaustive search,” in ICDAR ’11, 2011, pp. 687–691.

[7] ——, “Real-time scene text localization and recognition,” in CVPR ’12,
2012, pp. 3538–3545.

[8] P. Stathis, E. Kavallieratou, and N. Papamarkos, “An evaluation tech-
nique for binarization algorithms.” J. UCS, vol. 14, no. 18, pp. 3011–
3030, 2008.

[9] K. Kita and T. Wakahara, “Binarization of color characters in scene
images using k-means clustering and support vector machines,” in ICPR
’10, 2010, pp. 3183–3186.

[10] X. Wang, L. Huang, and C. Liu, “A novel method for embedded text
segmentation based on stroke and color,” in ICDAR ’11, 2011, pp. 151–
155.

[11] B. T. Phong, “Illumination for computer generated pictures,” Commun.
ACM, vol. 18, no. 6, pp. 311–317, 1975.

[12] A. Ngan, F. Durand, and W. Matusik, “Experimental analysis of brdf
models,” in Proceedings of the Eurographics Symposium on Rendering,
2005, pp. 117–226.

[13] Y. Yu, P. Debevec, J. Malik, and T. Hawkins, “Inverse global illumina-
tion: recovering reflectance models of real scenes from photographs,”
in SIGGRAPH ’99, 1999, pp. 215–224.

[14] R. Ramamoorthi and P. Hanrahan, “A signal-processing framework for
inverse rendering,” in SIGGRAPH ’01, 2001, pp. 117–128.

[15] M. Chandraker and R. Ramamoorthi, “What an image reveals about
material reflectance,” in CVPR ’11, 2011, pp. 1–8.

[16] G. Patow and X. Pueyo, “A survey of inverse rendering problems,”
Comput. Graph. Forum, vol. 22, no. 4, pp. 663–688, 2003.

[17] K. Levenberg, “A method for the solution of certain non-linear problems
in least squares,” Quarterly Journal of Applied Mathmatics, vol. II,
no. 2, pp. 164–168, 1944.

[18] K. Wang and S. Belongie, “Word spotting in the wild,” in ECCV ’10,
2010, pp. 591–604.

[19] A. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Transactions on Information
Theory, 1967.

[20] M. Schmidt, “UGM: Matlab code for undirected graphical models,”
http://www.di.ens.fr/ mschmidt/Software/UGM.html, 2013.

[21] L. P. Sosa, S. M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong,
and R. Young, “Robust reading competitions,” in ICDAR ’03, 2003, pp.
682–687.

