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Abstract— We propose an intelligent visuomotor system that
interacts with the environment and memorizes the consequences
of actions. As more memories are recorded and more in-
teractions are observed, the agent becomes more capable of
predicting the consequences of actions and is, thus, better
at planning sequences of actions to solve tasks. In previous
work, we introduced the aspect transition graph (ATG) which
represents how actions lead from one observation to another
using a directed multi-graph. In this work, we propose a
novel aspect representation based on hierarchical CNN features,
learned with convolutional neural networks, that supports
manipulation and captures the essential affordances of an object
based on RGB-D images. In a traditional planning system,
robots are given a pre-defined set of actions that take the
robot from one symbolic state to another. However symbolic
states often lack the flexibility to generalize across similar
situations. Our proposed representation is grounded in the
robot’s observations and lies in a continuous space that allows
the robot to handle similar unseen situations. The hierarchical
CNN features within a representation also allow the robot to
act precisely with respect to the spatial location of individual
features. We evaluate the robustness of this representation
using the Washington RGB-D Objects Dataset and show that
it achieves state of the art results for instance pose estimation.
We then test this representation in conjunction with an ATG
on a drill grasping task on Robonaut-2. We show that given
grasp, drag, and turn demonstrations on the drill, the robot is
capable of planning sequences of learned actions to compensate
for reachability constraints.

I. INTRODUCTION

In this work, we consider an agent that interacts with the
environment and memorizes the consequences of actions.
As more memories are recorded and more interactions are
observed, the agent becomes more capable of predicting the
consequences of actions and better at planning sequences of
actions to solve tasks. In previous work [1], we introduced
the aspect transition graph (ATG), which represents how
actions lead to new observations using a directed multi-graph
consisting of aspect nodes and action edges. An aspect is
defined as an observation that is memorized by the robot.
This concept is inspired by experiments done in the field of
human psychophysics and neurophysiology, which suggest
that humans memorize a set of canonical views of an object
instead of maintaining a single object-centered model [2]
[3]. We demonstrated that with an ATG model, the robot is
capable of executing a sequence of actions to solve tasks in a
simple environment consisting of boxes with fiducial mark-
ers. In this work, we propose a novel aspect representation
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Fig. 1. Architecture of two aspect nodes within an ATG. Each aspect node
x stores a set of hierarchical CNN features that captures the relationship
between filters in the conv-3, conv-4, and conv-5 layer of a pre-trained
CNN. This set of hierarchical CNN features are mapped to the point cloud
through backpropagation and supports action a as reference points for
relative movements.

that supports manipulation in more complicated scenarios
and captures the essential affordances of an object based on
RGB-D images.

The hierarchical CNN features applied in this work are
extracted from middle layer filters rather than the final layer
of a CNN. The positions of these features can be located
by backpropagating filter responses to the point cloud (See
Section III-A). Identifying 3D feature positions allows us to
plan precise actions relative to these local features and adjust
to small variations. Based on these feature locations a pose
descriptor that specifies the relative positions between these
features and a location descriptor that models the distance
between features and robot frames are created. These de-
scriptors allow us to distinguish observations generated by
different poses of an object.

In a traditional planning system, robots are given a pre-
defined set of actions that take the robot from one symbolic
state to another. However symbolic states often lack the flex-
ibility to generalize across similar situations. Our proposed
representation is grounded in the robot’s observations and
lies in a continuous space that allows the robot to handle



similar but new situations.
We test the robustness of this aspect representation using

the Washington RGB-D Objects Dataset and show that it
achieves state of the art results for instance pose estimation.
We further incorporate this representation with an ATG
model and test on a drill grasping task on Robonaut-2 [4].
Figure 1 shows part of this integrated architecture. We show
that given a small set of grasp, drag, and turn demonstrations
on the drill through teleoperation, the robot is capable of
planning learned actions to extend its reach in grasping and
manipulation tasks.

II. RELATED WORK

In this section, we first compare with related work in ob-
ject pose estimation based on RGB-D images and approaches
that use features extracted from layers beyond a CNN’s final
layer. We then discuss CNN applications in robotics and
previous work in learning from demonstration. Last, we talk
about research that have shown to extend the robot’s reach
through planning and our previous work with ATGs.

Because of the increased availability of inexpensive RGB-
D sensors, a great deal of research has been done to identify
the pose of an object using outputs from these sensors.
In [5], gradient and shape kernel descriptors are extracted
from RGB and depth images for an object pose tree to
determine the object pose. In [6], sparce coding is used to
learn hierarchical feature representations for intensity, RGB,
depth, and 3D surface normals. In [7], depth images are
colorized based on the depth and fed into a CNN trained
on RGB images; the pose is then determined based on
CNN features from both the RGB image and the colorized
depth image. These approaches all treat the depth image
as additional information that is concatenated to the RGB
image. In this work, we consider a more integrated approach
where features extracted from the RGB image are mapped
to a location using the point cloud generated from the depth
image. A descriptor of the relative positions of RGB features
is then generated.

Many authors have explored using filter activations other
than the final layer of a CNN. In [8], hypercolumns, which
are defined as the activation of all CNN units above a
pixel, are used on tasks such as simultaneous detection and
segmentation, keypoint localization, and part labeling. The
hierarchical CNN features used in this work group CNN
filters in different layers based on their hierarchical support
relations instead of spatial relationship. In [7], the last two
layers of two CNNs, one that takes an image as input and
one that takes depth as input, are used to identify object
category, instance, and pose. In our work, we locate mid-
layer CNN filters through backpropagation and determine
the object pose based on these feature positions.

Several authors have applied CNNs to robotics. In [9],
visuomotor policies are learned using an end-to-end neural
network that takes images and outputs joint torques. A three
layer CNN is used without any max pooling layer to maintain
spatial information. In [10], an autoencoder is used to learn
spatial information of features of a neural network. Our

approach finds the receptive field that causes a high-level
response in a particular image through backpropagation. In
[11], a CNN is used to learn what features are graspable
through 50 thousand trials collected using a Baxter robot.
The final layer is used to select 1 out of 18 grasp orientations.
Although end-to-end learning is an elegant approach, it is
often not practical to collect the same amount of training
data for grasping that is required by successful CNNs for
computer vision. Instead of training CNNs that output robot
actions directly based on image inputs, our approach learns
the relative position between features and end point goals for
arms and fingers, which makes it possible to learn compli-
cated end effector poses with very few demonstrations. This
work uses a CNN model similar to Alexnet [12] introduced
by Yosinski [13] that is implemented in Caffe [14] and
trained on ImageNet [15].

A great deal of work has been done on learning from
demonstration. In [16], human demonstrations are segmented
and interpreted as pre-defined symbolic subtasks under
macro operators and mapped to primitive robot actions on
a jar opening task with two arms. In [17], relevant features
based on joints, end effector positions, and relative positions
to the object are extracted from demonstrations and used for
generalization. In [18], the task is focused on extracting low-
level motor primitives to encode the demonstrated trajectory.
In [19], key frames of a trajectory are extracted from
demonstration and connected with spline during testing. Our
approach focuses on learning movements with respect to vi-
sual features and considers how actions change observations.

In [20] and [21], it is also shown that a robot’s reach can
be extended by planning non-prehensile actions. In [20], a
set of primitive actions and their effects are defined for a
sampling based planning algorithm. In [21] and [22], the set
of actions are learned through multiple stages based on pre-
defined rewards. In this work, the actions and their effects
are learned directly from demonstrations.

The aspect transition graph (ATG) used in this work was
first introduced in Sen’s work [23]. In [24], a mechanism for
learning these models without supervision and a method for
applying belief space planning on it is introduced. In [25]
and [26], the robustness of the ATG is further improved with
visual servoing and the ability to handle stochastic actions.

III. REPRESENTATION

This paper introduces a novel aspect representation based
on hierarchical CNN features that supports manipulation.
A primary step in this system is to match the current
observation to an aspect, which we defined to be a stored
observation in memory, so that the robot can apply learned
actions to the current situation. We represent an aspect as a
set of hierarchical CNN features, an appearance descriptor, a
pose descriptor, and a location descriptor. This representation
is used to identify the aspect that affords the same type
of interactions given the current observation and allows the
robot to manipulate the object based on the feature locations
when combined with an ATG. The following sections dis-
cuss how hierarchical CNN features are used to define this



representation.

A. Hierarchical CNN Features

Although CNNs have outperformed other approaches on
object recognition benchmarks, identifying the category of
an object is not enough for manipulation. Knowing visual
feature locations in 3D is also crucial for interacting with it
precisely. The hierarchical CNN features introduced in our
previous work [27] exploit the fact that CNNs are by nature
hierarchical; a filter in a higher layer with little location
information is a combination of lower level features with
higher spatial accuracy. Instead of representing a feature with
a single filter in a certain CNN layer, hierarchical CNN
features use a tuple of filter indices to represent a feature
such as (f5i , f

4
j , f

3
k ), where f5i , f4j , and f3k represent the ith

filter in the 5th convolutional layer, the jth filter in the 4th

convolutional layer, and the kth filter in the 3rd convolutional
layer respectively. The responses of a filter fmj are restricted
to the portion that contributes to the filter fm+1

i .
The key observation in our work is the following. A lower

layer CNN filter often represents a local structure of a more
complicated structure represented by a higher layer filter.
The hierarchical CNN feature identifies local structures at
each level that are related to a hierarchical “part-based”
representation of an object that each afford opportunities for
control and interaction.

For each observed point cloud, we segment the flat
supporting surface using Random Sample Consensus
(RANSAC) [28] and create a 2D mask that excludes pixels
that are not part of the object in the RGB image. This mask
is dilated to preserve the boundary of the object. During
the forward pass, for each convolution layer we check each
filter and zero out the responses that are not marked as part
of the object according to the mask. This approach removes
filter responses that are not part of the object. The masked
forward pass approach is used instead of directly segmenting
the object in the RGB image to avoid sharp edges caused by
segmentation.

During the backward pass, the top N j filters in the jth

convolutional (conv-j) layer that have the highest sum of
log responses are identified. For each of these filters we find
the maximum response of the activation map, zero out all
other responses and backpropagate this max unit reponse to
the conv-(j−1) layer. We then find the top N j−1 filters that
have the highest sum of log partial derivatives obtained from
backpropagation. For each of these N j−1 filters, we take the
gradient of backpropagation and zero out everything except
for the maximum partial derivative. The same procedure is
used recursively to find N j−2 filters in the conv-(j−2) layer.
This process back traces along a single path recursively and
yields a tree structure of hierarchical CNN features. In our
drill-grasping experiment we pick N5 = N4 = N3 = 3.
After identifying a set of hierarchical CNN features, we
further locate a feature in 3D by backpropagating to the
image and mapping the mean of the response location to
the corresponding 3D point in the point cloud. We define
the response of a hierarchical CNN feature as the maximum

partial derivative of the lowest layer filter in the feature tuple.
This response is proportional to the amount this lower layer
filter contributes to the higher layer filter activation in this
hierarchical CNN feature.

B. Descriptors

Based on the response and 3D location of the hierar-
chical CNN features extracted, our approach generates an
appearance descriptor r, a pose descriptor q, and a location
descriptor l for each aspect. The appearance descriptor r is
a set of hierarchical CNN feature responses based on the
feature tuple. Our assumption is that aspects similar to the
current observation have similar appearances and therefore
similar hierarchical CNN features and responses.

The pose descriptor q is a set of relative 3D positions in
the camera frame between each pair of hierarchical CNN
features. If H is the set of all possible hierarchical CNN
features and r contains |h| responses of a subset h ⊂ H
of hierarchical CNN features, then q contains |h| × |h −
1|/2 XYZ differences. Assuming that aspects similar to the
observation should have similar poses, we use the relative
location of the features to further distinguish aspects that
have the same features but are oriented differently.

The location descriptor l is a set of distances from the
centroid of the hierarchical CNN features to a set of pre-
defined robot frames. In this work, the robot shoulder and
palm frames are used. The location descriptor captures the
object position and distinguishes aspects that are reachable.

Our goal is to find the aspect x in memory most likely to
match the current observation z based on the descriptors.
Let p(x|z) be the probability that aspect x is generated
from the same state that generates observation z. We can
then calculate this probability through Bayes’ rule p(x|z) ∝
p(z|x) · p(x), which the likelihood is modeled as

p(z|x) = p(rz|rx) · p(qz|qx) · p(lz|lx). (1)

Here rz and rx are the appearance descriptors of the obser-
vation z and the aspect x, qz and qx are the pose descriptor
of z and x, and lz and lx are the location descriptor of z
and x.

We model p(rz|rx) as the geometric mean of the probabil-
ities p(rzn|rxn) of individual appearance descriptor values rzn
and rxn. The probability p(rzn|rxn) is modeled as a Generalized
Gaussian Distribution (GGD) of the value difference between
rzn and rxn scaled by their sum.

p(rz|rx) =
( ∏

rxn∈r
x∨rzn∈r

z

p(rzn|rxn)
) 1
N
, (2)

p(rzn|rxn) = GGD(rxn − rzn;α = rxn + rzn), (3)

where N is the number of appearance descriptors. A missing
descriptor value rn 6∈ r is considered to be zero. Different
individual appearance descriptors rn refer to different hier-
archical CNN feature tuples. The GGD function is defined
as

GGD(y;µ, α, β) =
1

Z(α, β)
· e−(

|y−µ|
α )β , (4)



where µ is the mean parameter, α is the scale parameter, β is
the shape parameter, and Z(α, β) is the partition function. µ
is set to zero and β is set to 0.1 in this work. We found that
a shape parameter β that produces a heavier tail performs
better than a standard Gaussian on the Washington RGB-D
Objects dataset.

The pose descriptor likelihood p(qz|qx) is modeled simi-
larly, with

p(qz|qx) =
( ∏

qxn∈q
x∧qzn∈q

z

p(qzn|qxn)
) 1
N
, (5)

p(qzn|qxn) = GGD(qxn − qzn;α = Cq), (6)

where qxn and qzn are the individual pose descriptor values,
and N is the number of pose descriptors. Different individual
pose descriptors refer to different pairs of hierarchical CNN
features and XYZ coordinates in the camera frame. Cq is a
constant we set to 0.1.

The location descriptor likelihood p(lz|lx) is also modeled
as

p(lz|lx) =
( ∏

lxn∈l
x∧lzn∈l

z

p(lzn|lxn)
) 1
N
, (7)

p(lzn|lxn) = GGD(lxn − lzn;α = Cl), (8)

where lxn and lzn are the individual location descriptor values,
and N is the number of location descriptors. Different
individual location descriptors refer to different robot frames.
Cl is a constant set equal to Cq .

C. Aspect Transition Graph

Next we briefly review the formal definition of an ATG
from our prior work. An aspect transition graph (ATG)
object model in our work is represented using a directed
multigraph G = (X ,U), composed of a set of aspect nodes
X connected by a set of action edges U that capture the
probabilistic transition between aspect nodes. We define an
aspect as an observation that is stored in the model. An action
edge U is a triple (x1, x2, a) consisting of a source node
x1, a destination node x2 and an action a that transitions
between them. In this work, the aspect representation is used
to denote aspect nodes and action edges store the relative
positions between robot frames and the hierarchical CNN
features in aspect x1. An ATG models how an action that acts
relative to observed features would change the observation.
The hierarchical CNN features stored in an aspect node may
include features that are not on the object. For example, when
the robot places its fingers on top of an object, a feature
that is generated by both the fingers and the object may be
observed.

IV. EXPERIMENTAL RESULTS

We perform two sets of experiments. First, the proposed
aspect representation is evaluated on an object pose estima-
tion dataset. The major objective of this first set of experi-
ments is to obtain a quantitative measurement on the ability
to identify observations with similar affordances. Second,
the aspect representation integrated with ATG is tested on

a drill grasping task. We show that given a set of grasp,
drag, and turn examples, Robonaut-2 is capable of extending
its reach by planning a sequence of learned actions. This
demonstration is the first that extends our previous work to
a real world scenario and shows the robot’s ability to plan
using actions learned directly from observations.

A. Pose Estimation

The goal of the proposed aspect representation is to iden-
tify an observation in memory that is similar to the current
observation and, thus, affords similar actions. Therefore, we
test the proposed representation on instance pose recognition
on the Washington RGB-D Objects dataset [29] under the
assumption that an object’s pose and affordance are strongly
correlated; the same object usually supports the same set of
actions when placed in similar orientations. We show that
our approach achieves state of the art results in accuracy.

1) Experimental Settings: The Washington RGB-D
dataset contains RGB images, depth images, point clouds,
and masks for 300 objects. Each object is placed on a
turntable and approximately 250 frames are captured for each
elevation angle (30◦, 45◦, 60◦). Every 5th frame is labeled
with the approximated turntable angle. The 30◦ and 60◦

frames are used for training and the 45◦ frames are used for
testing. The goal of the instance pose estimation task is to
identify the turntable angles of frames taken at 45◦ elevation
angle. We did not experiment on category pose estimation
since we are mostly interested in identifying the aspect of
a specific object instance in this work. We preprocessed
the depth images to fill in empty values with the values of
the closest pixels and generated point clouds based on the
processed depth images.

2) Approach: During testing, we treat the frames in the
training set as aspects x and the test frame as observations
z. The prerecorded frame in memory that has the closest
turntable angle to the current observation should also afford
the most similar set of actions. Hence, the angle of the frame
in the training set that has the maximum posterior probability
p(x|z) given the test frame is chosen as the estimated angle.
For each frame that is labeled with the turntable angle,
we extract the hierarchical CNN features and generate the
appearance and pose descriptor. We set N5 = 30 and N4 = 5
as the number of extracted hierarchical CNN features in the
conv-5 and conv-4 layer. We do not include conv-3 layer
features to reduce the test time. The location descriptor is
not used in this experiment since there is no need to identify
the object location with respect to the robot.

3) Results: Since the distribution of angle differences
are skewed across objects, both the average error and the
median error are used for evaluation. We compare against
three other reported approaches, (a) object pose tree with
kernel descriptors [5], (b) hierarchical matching pursuit [6],
and (c) pre-trained CNN with RGB and depth image [7].
Our approach achieves a 38.1◦ average pose error and a
16.3◦ median pose error; both of these numbers achieve state
of the art results as shown in Table I. Note that while our
experiment evaluates every test frame in the test set, other



Fig. 2. Relative movements based on hierarchical CNN features for grasping a drill. The figures from left to right represent a sequence of actions moving
relative to a set of hierarchical CNN features. The yellow, cyan, and magenta dots represent the detected hierarchical CNN features in the conv-5, conv-4,
and conv-3 layers respectively. Most of the detected features are generated by the top of the drill, while in the second and third figure, some features are
generated by the visible part of the left hand. The red and green spheres represent the target positions for the robot palms and fingers. A target position is
calculated based on the mean of a set of feature positions plus the corresponding offsets. The blue spheres highlight the set of hierarchical CNN features
that the target position for the index finger is associated to.

works only evaluate on frames that are correctly classified
as the correct instance. Many of the errors are due to objects
in the dataset that have similar appearance across multiple
viewpoints. We argue that these objects often support the
same set of actions when they are oriented at visually similar
poses and only need to be represented by one aspect. For
example, the orientation of an orange is not important to the
robot as long as the robot learned to manipulate it from one
similar observation.

Angular Error (◦)
Work MedPose(I) AvgPose(I)

OPTree, Lai et al. [5] 30.2 57.1
HMP, Bo et al. [6] 18.0 44.8

CNN: RGB-D, Schwarz et al. [7] 18.7 42.8
Hierarchical CNN feature (Our approach) 16.3 38.1

TABLE I
MEDIAN AND AVERAGE INSTANCE POSE ESTIMATION ERROR ON

WASHINGTON RGB-D OBJECTS DATASET.

B. Drill Manipulation

We test the proposed aspect representation with ATG on a
drill grasping task on Robonaut-2. We demonstrated that with
the proposed aspect representation the current observation
can be associated with the aspect that supports the same set
of actions. Through a few demonstrated manipulations on a
drill, the robot is able to grasp the drill, in a position that
is normally out of reach by combining learned actions in
sequence.

1) Experimental Settings: The goal of the task is to grasp
the drill handle correctly with the left robot hand based on
8 demonstrated manipulation action sequences on a drill on
Robonaut-2 through teleoperation. Three of the demonstrated
action sequences are grasp action sequences, where we place
the drill at three different orientations and teleoperate the
robot to hold the drill handle with its left hand. Four of the
demonstrated actions are drag action sequences, where we
place the drill at the right side of the robot and teleoperate

the right hand to drag the drill from the right side to the
center. The other demonstrated action sequence is a turn
action, where we place the drill such that the tip of the drill
is facing toward the right side of the robot and teleoperate
the right hand to turn the drill such that the tip of the drill
is facing away from the robot.

For each test trial, the drill is placed on the table in front
of the robot. The robot can manipulate the drill until it
successfully grasps it on the handle. For example, if the drill
is placed on the right side of the table and not reachable with
the left hand, the robot can drag the drill closer with its right
hand and grasp it with its left hand. If the drill ends up in a
pose that is no longer graspable or if the robot tries to grasp
and fails, we consider the trial a failure. The experiment is
evaluated based on the number of successful grasps where
the robot fingers surround the handle such that the tip of the
drill is facing outward from the wrist.

2) Learning From Demonstration: An ATG is generated
for each of the 8 demonstrations by indicating the start and
end of the actions executed during teleoperation; an aspect
node that stores the proposed aspect representation is created
between each action. For example, one demonstrated turn
example is a three action sequence of moving the hand to
a pre-turn pose, pushing the drill tip to turn the drill, and
moving the hand back. We define an action as a relative
movement to a set of features. In this experiment, we pick
the top three filters with the highest responses in the conv-5,
conv-4, and conv-3 layers (N5 = N4 = N3 = 3) for extract-
ing the hierarchical CNN features. Each aspect representation
is composed of an appearance descriptor with 39 hierarchical
CNN feature response values, a pose descriptor with 741
XYZ differences between these 39 features, and a location
descriptor with 4 distance values from the centroid of these
features to the robot’s palms and shoulders. An action edge
that connects from aspect xt to xt+1 in an ATG stores an
action that is configured by the position offset between the
robot end effectors and the set of corresponding hierarchical
CNN features in aspect xt. The top K features in xt that the
robot end effectors are closest to after executing the action
is chosen. We set K = 5 in this test.



Fig. 3. Sequence of actions in one grasping test trial. The images are ordered from left to right then top to bottom. The initial pose of the drill is at
an angle that is not graspable and is located too far right for the left hand to reach. Therefore the robot turns the drill then drags it to the center before
grasping with its left hand.

In this experiment, the arm controllers are associated with
the conv-4 layer hierarchical CNN features while the hand
controllers are associated with the conv-3 layer hierarchical
CNN features. We manually define this hierarchical corre-
spondence where higher level features are associated with
higher level actions that require less accuracy. We did not
compare with different mappings in this experiment but we
believe this design allows the robot to plan more efficiently in
different levels of abstraction based on the task requirement;
an action that does not require high precision would only
need a rough location reference. Figure 2 shows a sequence
of relative movements generated while grasping the drill.

The 8 ATGs created from demonstration are combined
into one ATG that represents all the manipulations the robot
memorized for different aspects of the drill. Both the drag
and turn action sequences conclude in a state where the
drill is on the table with no contact with the robot; since
the orientation and location of the drill is uncertain after
these actions we connect the last aspect node of the ATGs
corresponding to these demonstrations to an intermediate
node, and connect this node to the first aspect of all of the
8 ATGs created. The three grasp action sequences end up
in a state where the drill is grasped correctly in the robot
hand; since our task is to reach such state, we connect
the last aspect nodes of the ATGs corresponding to these
demonstrations to an aspect that indicates that the drill is
grasped. The final ATG contains 31 aspect nodes and 32
action edges.

3) Approach: For each trial, we first identify the aspect
node x in the combined ATG that has the highest posterior
probability p(x|z) given the current observation z. The prior
probability p(x) is set to be uniform among aspect nodes that
are the first aspect of each demonstration. The maximum
a posteriori (MAP) aspect node p(x|z) can therefore be
determined by calculating p(z|x) · p(x). The next action is
then chosen based on the first action edge on the shortest
path from the MAP aspect node to the goal aspect node.

For each action, the target positions for the palms are
determined by the mean position of a set of conv-4 layer

Fig. 4. Initial drill poses that the robot succeeded and failed in grasping
with its left hand during testing. The green drill poses in the left figure
shows the succeeded poses and the red drill poses in the right figure shows
the failed poses. Our approach allows the robot to grasp drills located at
position that is normally out of reach.

features plus the corresponding offsets. The same approach is
used to determine target positions for the fingers and thumbs
from a set of conv-3 layer features plus their respective
offsets.

Each action is executed in two steps. First, the arm
controllers move the arms such that the distance from the
palms to their corresponding targets are minimized. Once
the arm controllers converge, the hand controllers move the
wrists and fingers to minimize the sum of distance from
the index finger tip, middle finger tip, and thumb tip to
their corresponding target. These controllers are based on
the control basis framework [30] and can be written in the
form φ|στ , where φ is a potential function that describes the
sum of distance to the targets, σ represents sensory resources
allocated, and τ represents the motor resources allocated. The
posterior probability p(x|z) is recursively updated based on
the Bayesian filtering algorithm [31] after each action and
observation. The next action is always chosen based on the
MAP aspect node after the update.

4) Experimental Results: We performed 22 grasping trials
in this experiment and our approach successfully grasped
the drill on the handle 16 times. Among 11 of the successful
trials, the robot turned or dragged the drill with its right hand
before grasping it with its left hand. Figure 3 shows one of
the trials that the robot executed both turning and dragging



before grasping the drill. The initial poses of the drill that the
robot succeeded or failed in grasping are shown in Figure 4.
Three of the failed trials are due to the robot trying to grasp
the drill while the drill is placed at a pose almost within
reach. We believe that adding more demonstrations or the
ability to recover from error would improve the performance
on this task. Calculating the aspect representation takes about
3 seconds on a desktop computer with the NVIDIA GTX 780
graphics card. Matching the current aspect to a memorized
aspect has a complexity of O(n), where n is the number of
memorized aspects; this matching process takes less then a
second in this experiment.

V. CONCLUSION

In this work, we introduce an aspect representation based
on hierarchical CNN features that supports manipulation and
allows generalization to similar observations. We evaluate
the robustness of this representation using the Washington
RGB-D Objects dataset for instance pose estimation. We
further combine this representation with the ATG model and
experiment on a drill grasping task on Robonaut-2, where
the goal is to grasp the drill placed in multiple poses based
on a small set of grasp, drag, and turn actions demonstrated
to the robot. This demonstration is a significant extension of
our previous work to a real world environment and shows the
robot’s ability to plan a sequence of actions learned directly
from observations.
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