
Ambiguity and Constraint in Mathematical Expression Recognition

Erik G. Miller and Paul A. Viola
Massachusetts Institute of Technology

Artificial Intelligence Laboratory
545 Technology Square, Office 707

Cambridge, MA 02139
emiller@ai.mit.edu viola@ai.mit.edu

Abstract

The problem of recognizing mathematical expressions
differs significantly from the recognition of standard
prose. While in prose significant constraints can be put
on the interpretation of a character by the characters im-
mediately preceding and following it, few such simple
constraints are present in a mathematical expression.
In order to make the problem tractable, effective meth-
ods of recognizing mathematical expressions will need
to put intelligent constraints on the possible interpreta-
tions. The authors present preliminary results on a sys-
tem for the recognition of both handwritten and type-
set mathematical expressions. While previous systems
perform character recognition out of context, the cur-
rent system maintains ambiguity of the characters until
context can be used to disambiguate the interpretation.
In addition, the system limits the number of potentially
valid interpretations by decomposing the expressions
into a sequence of compatible convex regions. The sys-
tem uses A-star to search for the best possible interpre-
tation of an expression. We provide a new lower bound
estimate on the cost to goal that improves performance
significantly.

To Appear in the Proceedings of AAAI-98

Introduction
Handwriting recognition has greatly improved in re-
cent years, in both the handprinting and cursive do-
mains, yielding commercial systems for a wide vari-
ety of applications (for example (Yaeger, Lyon, & Webb
1995)). It may appear that the problem of mathemat-
ical expression recognition is essentially equivalent to
the recognition of standard prose, but there are critical
differences which distinguish the two problems and
preclude us from applying the standard solutions of
handwriting recognition to mathematical expressions.

Mathematical Expression Recognition
A mathematical expression is a binary image in which
collections of black pixels represent symbols which are
at different scales and positions:

5ex –OR–

Copyright c©1998, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

Our goal is to take a mathematical expression and re-
turn a semantic interpretation:

5 * (e ˆ x)

This representation can be used for document retrieval
or an interactive algebraic manipulation system(Fate-
man & Tokuyasu 1996; Okamoto & Miyazawa 1992;
Lee & Wang 1997; Lee & Lee 1994; Lavirotte & Pottier
1997; Martin 1967).

We adopt a generative model approach for the
recognition of mathematical expressions. Several au-
thors (Winkler, Fahrner, & Lang 1995; Hull 1996; Chou
1989) have noted that stochastic context-free grammars
(SCFG’s) represent a good generative model for most
types of mathematical expressions1. SCFG’s enable
modeling of many types of relationships such as the
pairing of parentheses, braces, and brackets, and the
association of an integral sign (

R
) with its differential

such as dx. In order to model the spatial layout of
symbols in a mathematical expression, the spatial lay-
out rules for various productions (like exponentiation)
must be also specified, as in (Hull 1996). Recognition
inverts the generative process and produce the appro-
priate semantics2.

Context-free grammars have proven to be very
useful in the parsing of programming languages
(Hopcroft & Ullman 1979). Recently stochastic context
free grammars have also been applied successfully to
the parsing of natural languages (Charniak 1993). In a
programming language the symbols are perfectly un-
ambiguous and linearly ordered. But in an image of
a mathematical expression each symbol is ambiguous
and there is no natural ordering. As we will see, both
ambiguity and ordering are critical issues which, if not
handled effectively, will lead to algorithms which are
intractable.

In this paper we present a new approach for limit-
ing the number of possible parses. We also present

1A stochastic context free grammar associates a probabil-
ity with each production and as a result every valid expres-
sion can be assigned a non-zero probability.

2Others have used stochastic grammars as models of
generic problems in visual recognition (Mjolsness 1990).

a new method for dealing with character ambiguity
so that characters can be interpreted in context rather
than in isolation, and so that no probability thresh-
old must be applied in the character recognition pro-
cess. The search for the most likely interpretation is
performed using A-star search (following the work of
(Hull 1996)). We propose a new underestimate to the
goal that significantly reduces computation time.

Polynomial Time Parsing

The parsing of programming languages is a solved
problem. The Cocke-Younger-Kasami (CYK) algo-
rithm (Hopcroft & Ullman 1979), a dynamic program-
ming algorithm, is cubic in the number of characters.
The first step of CYK is to build a table (or “chart”)
with one entry for every sub-sequence of symbols.
Each sub-sequence can be indexed by its starting sym-
bol, a number between 1 and N, and its ending sym-
bol, also between 1 and N. There are approximately N2

2
such entries. The algorithm then attempts to find the
most likely interpretation for each sub-sequence, an in-
herently recursive process in which the interpretation
of a long sequence is dependent on the interpretation
of shorter constituent sub-sequences. The key to com-
putational efficiency is the observation that a particu-
lar sub-sequence will be the constituent of many larger
sub-sequences, yet the computation need only be done
once.

The computational efficiency afforded by the CYK
algorithm depends on the existence of a decompo-
sition of the problem into a polynomial number of
unique sub-problems. This polynomial nature is a di-
rect result of the linear ordering of text. If such a lin-
ear sequence exists we can with impunity limit the
set of sub-problems to the set of all consecutive sub-
sequences of characters. Mathematical expressions,
which are collections of symbols arranged in two di-
mensions, do not have a straightforward decomposi-
tion into a polynomial number of subsets.

Take for example the expression shown in Figure 1.
Written out in Matlab syntax, which relies on a linear
ordering of symbols, it would be “e ˆ x * (A / B)”. In the
linear form we can conclude that ’x’ is part of the ex-
ponential because it is separated from the fraction by a
parenthesis. In the graphical form ’x’ is equally close to
the ’A’ and the ’e’. There is almost no local information
from which we can conclude attachment. In this case
we must rely on contextual information, in the form of
a graphical SCFG, to make the attachment. Like CYK
parsing, in order to find the best possible parse of a
mathematical expression we must enumerate all pos-
sible subsets of symbols. Since there is no simple lin-
ear constraint we must find some other constraints on
the number of allowable subsets. Other authors have
dealt with this issue in several ways.

Figure 1: A simple expression which is difficult to de-
compose into a small number of subsets.

Rectilinear mathematical expressions
Chou (Chou 1989) presents a system in which expres-
sions are represented as rectangular arrays of terminal
symbols. He limits the number of potential parses dra-
matically by requiring that the baselines of characters
be within one pixel of their expected location. While
this works well for the simulated data presented, it
cannot be expected to extend to handwritten input,
since the variation in handwritten input is frequently
more than a pixel.

A recognizer with moderate positional
flexibility
Winkler et al. (Winkler, Fahrner, & Lang 1995) describe
a more flexible system in which two subexpressions
can be considered as part of a larger expression as long
as the second expression is within certain pre-defined
regions relative to the first expression. However, this
system imposes severe limits on the distance which a
symbol can be from another symbol while still being
part of a common subexpression. We wish to avoid
this type of limit, as we believe it will rule out the true
answer in some situations. This system also decides on
characters out of context, which has problems that are
discussed below.

Modeling positions of characters as Gaussian
variables
Hull (Hull 1996) comes closer to our desired goal, by
allowing more general positioning of terminals and
subexpressions relative to each other. The probability
that two subexpressions are in a particular relationship
relative to each other (e.g. one is the subscript of the
other) is defined by a two dimensional Gaussian dis-
tribution around the expected position of the second
expression. Hence, the further the second expression
is from the center of the Gaussian defining that rela-
tionship, the lower the probability of that particular
operation.

With this more flexible model of character positions,
there are no rigid geometric constraints which can
be used to automatically prune away the exponential
number of symbol subsets. Instead Hull’s algorithm
attempts to enumerate all possible subsets, and prunes
away those that are very unlikely. Because of the po-
tentially exponential number of subsets, Hull uses A-
star search to order the enumeration of subsets. Our

Figure 2: An expression where convex hulls are useful
for pruning interpretations. Note that the probability
that the enclosed characters are in fact the expression
A2 is reasonable. But this subset is eliminated because
their convex hull intersects the fraction symbol.

implementation also uses an implementation of A-star
search, explained below.

A-Star Search A-star search is similar to best-first
search, but in addition requires that one produce an
underestimate of the “distance” to the goal (a full
parse) from a given sub-parse. To apply A-star in a
probabilistic setting, one conventionally uses the neg-
ative log likelihood as the notion of distance. The prob-
ability of an interpretation of an image is the product of
the unconditional terminal probabilities multiplied by
the probabilities which stem from the geometry rules.
The unconditional terminal probabilities are an under-
estimate of the cost to achieve the final goal – an in-
terpretation of the entire image. This underestimate is
added to the negative log likelihood of a sub-parse in
order to evaluate whether the sub-parse is a good can-
didate for expansion.

We compute the A-star estimate by accumulat-
ing maximum likelihood estimates of the terminals.
Hence, the A-star penalty is computed as:

∑
c∈C

min
t∈T

(− lnPr (c = t))

where C is the set of uninterpreted connected com-
ponents (terminals) and T represents all possible char-
acters in the grammar.

Convex Hulls: A new pruning criterion
As a second method for pruning the search space of
parses, we attempt to prune away possible subsets
based on a simple geometric test: a subset of characters
is not allowed if the convex hull of the subset contains
a character that is not part of the subset3. We define
the convex hull of the character to be the smallest con-
vex polygon that contains all of the pixels which define
the character (for handwritten text the convex hull is
the smallest convex polygon which contains all of the
strokes defining the character). The convex hull of a
set of characters is the convex hull of the union of the
convex hulls of each character in the set (see Figure 2).

There are several justifications for this criterion:

3This rigid rule could be converted to a soft constraint in
our probabilistic framework.

• It is consistent with the layout rules for typeset ex-
pressions and is not violated for any of our test data.
In fact, we are unaware of a typeset expression for
which the constraint is violated.

• For linear text this criteria is identical to the con-
straint that subsets must contain consecutive sym-
bols. Any non-consecutive subset will have a con-
vex hull that contains a character which is not in the
set.

• The algorithms necessary for computing with con-
vex hulls are very efficient. A convex hull of a
point set can be computed in O(nlogn), where n is
the number of points (Cormen, Leiserson, & Rivest
1991). Computing the convex hull union of two con-
vex hulls is O(m+ l), where l and m are the number
of vertices in the convex hulls. The intersection of
two convex hulls can be found in O(m+ l) also.

Unfortunately it is possible to construct an artificial
arrangement of two dimensional symbols for which
this criterion yields no pruning4. But, for many two di-
mensional mathematical expressions there are roughly
N3 allowable subsets.

Furthermore, some valid expressions violate the
convex hull rule described above. This could be at
least partially remedied by eroding characters a small
amount before the convex hull test is performed. The
preliminary convex hull results are encouraging (See
Figure 8).

Maintaining ambiguity of character
identification

In addition to dealing with all of the possible arrange-
ments of symbols and deducing the operations based
on relative positions, we must tackle the problem of
disambiguating individual characters. As already sug-
gested, ambiguity makes recognition of the whole ex-
pression difficult. We categorize the problems caused
by ambiguity into three groups.

The first we call the “q-9” problem, and it is illus-
trated in Figure 3. There are pairs of characters which
are, without context, impossible to distinguish. Ac-
curate recognition requires that multiple character hy-
potheses be maintained until the ambiguity can be re-
solved from context. There are many examples of con-
fusable characters, even when the characters are writ-
ten quite carefully. For sloppily handwritten text the
overlap among character classes becomes quite large.

The second type of problem caused by ambiguity
we call the “threshold problem”. This is illustrated in
Figure 4. It shows an example of a situation in which
the constraints provided by the grammar could allow
us to successfully interpret the ’+’, even though out
of context, it would appear extremely unlikely to be a

4Take a set of very small symbols arranged uniformly on
the circumference of a very large circle. The convex hull of
every possible subset of symbols is allowable.

Figure 3: A. The isolated analysis of a character has inher-
ent ambiguities which cannot be resolved without context.
B. Clearly the context here suggests that the character is the
letter ’q’. C. The context in this figure suggests the character
is the digit ’9’.

’+’. Any system which discards hypotheses based on a
probability threshold runs the risk of missing a correct
recognition in such cases.

The third type of problem arising from ambiguity is
“interpretation explosion”. When multiple hypothe-
ses are maintained for a single character the number
of possible parses grows rapidly. For example, the
geometric measures of grammar classes such as “ex-
ponentiation expression” depend upon the baseline of
the base of the exponent. When we maintain ambi-
guity in the individual characters we must also main-
tain ambiguity in these dependent higher level classes.
This causes the size of the grammar to grow by a fac-
tor which is roughly equal to the number of charac-
ter classes for which we maintain ambiguity. This can
make the grammar impractically large. Below, we dis-
cuss a compromise between committing to a character
out of context (to be avoided) and maintaining all pos-
sible character hypotheses during the parsing process
(too complex).

Returning for a moment to previous work, we note
that Hull performs a pre-processing step that recog-
nizes each of the characters in the expression. Because
this recognition takes place before parsing, it does not
make use of available contextual information. He is
thus vulnerable to the “q-9” problem discussed above.

The following simple analysis demonstrates the ne-
cessity of maintaining multiple character hypotheses
in developing a robust system. Suppose we have a sys-
tem for which isolated character recognition is correct
with probability R. If an expression consists of t charac-
ters, we have probability Rt of correctly recognizing all
of the characters without contextual information. With
R= 0.95and t = 20, we obtain a surprisingly low prob-
ability, 0.9520≈ 0.36, of getting every character right.
This is an upper bound on the probability we will cor-
rectly parse the entire expression (it is possible that the
parse might fail for other reasons). Obviously, this up-
per bound will only shrink if we recognize larger ex-
pressions or allow a more varied set of characters.

The system described in (Chou 1989) maintains am-
biguity, but in a limited sense. For each character it re-

Figure 4: An example of an expression with a very
noisy character. The ’+’ is very difficult to interpret
correctly without the context, but with constraints pro-
vided by the grammar could potentially be correctly
identified.

tains only those interpretations which are above a cer-
tain likelihood. His character models are Gaussian; he
proposes a threshold at three standard deviations from
the mean. While this may seem like a conservative
threshold, a similar analysis shows that in a 20 char-
acter expression, on average one correct character will
be eliminated for more than 5 percent of expressions,
since 1−99.7420≈ 0.0507. Also, this scheme may lead
to keeping around large number of character hypothe-
ses in handwriting recognition, where the characters
have large variations.

A Compromise: Maintaining a Hypothesis for Each
Character Class Many of the terminals in our gram-
mar are in the same syntactic class. As a result a gram-
matical analysis can never resolve ambiguity between
them. So for example if a character is slightly more
likely to be a ’b’ than an ’h’ there is no syntactic infor-
mation that can resolve this ambiguity5. We can save
a lot of effort by simply deciding at the outset that the
terminal is a ’b’. On the other hand, as we saw in Fig-
ure 4 the ambiguity in the central symbol can be re-
solved through syntactical analysis. In this case it is
important that multiple hypotheses be maintained.

As a middle ground, between maintaining hypothe-
ses for all possible terminal symbols and committing
to the single most likely character, we define classes
of characters which play the same syntactic role in
the grammar. Since the characters in these classes
are grammatically equivalent, no constraint from the
SCFG can ever be used to disambiguate members of
the class. Only the single most likely interpretation for
each syntactic class need be maintained.

The concept of syntactic class must be expanded to
account for the fact that characters which are tradition-
ally considered syntactically equivalent (like ’p’ and
’P’) may behave differently with respect to the geomet-
ric aspects of the grammar. An example is shown in
Figure 5, where the most likely out of context interpre-
tation of the leftmost character is lowercase ’p’. There
is no advantage in maintaining the hypothesis that the
character is a ’q’; it has low probability and all of the
important spatial properties of the glyph as a ’p’ (its
baseline, for example) are the same as if it were a ’q’.

5Other forms of contextual information might be useful
for this sort of problem. We are currently exploring this
possibility.

Figure 5: The first character (a “p” or a “P”?) can only
be resolved by considering its relationship to the sub-
sequent character.

This is not true for the interpretation as a ’P’ however,
since the baseline under this interpretation would be
higher. And in this case, it turns out that the most
likely context-dependent interpretation is as a ’P’, not as
a ’p’.

This leads to four terminal classes of letters (a single
class traditionally) for which we maintain hypotheses
throughout the interpretation process. These classes
are ascending letters, descending letters, small letters
(neither ascending nor descending), and large letters
(both ascending and descending). “P”, “p”, “e”, and
“Q” represent examples from each respective class.
Other authors have used similar classes but not to
maintain different classification hypotheses (Winkler,
Fahrner, & Lang 1995).

In addition to these separate letter classes which
are based strictly on their geometric properties, other
classes were defined based on their non-spatial role
in the grammar. For example, other syntactic termi-
nal classes include: “zero”, non-zero digits, left paren-
theses, right parentheses, and fractions. Each of these
plays a distinctively different role in the grammar of a
mathematical expression. In all, a separate hypothesis
for each of the 14 different terminal classes is main-
tained.

A New Approach

Hence, our approach contains three innovations. The
first is the geometric convex hull constraint, which lim-
its the growth of the number of possible parses of the
expression. The second is a new (but still conserva-
tive) A-star completion estimate. The third is the book-
keeping necessary to maintain an hypothesis for each
character class, which allows us to interpret individual
characters using greater contextual information. We
now describe some implementation details of a prelim-
inary system.

Implementation
Certain assumptions were made in order to get a pre-
liminary system working. In the typeset version of
the system, it is assumed that all characters are dis-
tinct and do not overlap. We make no attempt to deal
with scanner distortion. In fact, all of the typeset ex-
amples in this paper were generated on-line and are
essentially distortion-free.

Overview

The typeset system takes a binary image as input.
A simple connected components algorithm is run on
the image, generating a list of terminals. A character
recognizer based on the Hausdorff distance (Hutten-
locher, Klanderman, & Rucklidge 1993) is used to gen-
erate probabilities that each connected component or
pair of connected components is a particular character.
The set of terminals for the initial system is, according
to class:

• ascender letters: b,d,h, i,k, l ,t,δ,A-Z (except Q),

• descender letters: g, p,q,y,γ,

• small letters: a,c,e,m,n,o, r,s,u,v,w,x,z,α,

• ascender/descenders: f , j,Q,β,

• binary operators: +,−,=,

• zero: 0,

• non-zero digits: 1-9,

• other symbols (each its own class): (,), [,],{,}, frac-
tion symbol.

While the grammar is much too large to include here
(80 classes, 200 productions), it is worth mentioning
the following:

• It is represented in Chomsky Normal Form. This fa-
cilitates the coding of the grammar.

• It contains productions supporting exponentiation,
subscripting, fractions, “loose” concatenation (mul-
tiplication), and “tight” concatenation (the append-
ing of digits in a number).

• The a priori probability of each operation is the same.
Probabilities of operations are assigned only accord-
ing to the geometry of the layout and the probability
of their sub-parses.

After the program has calculated the probability of
each character being in each class, the program starts
the dynamic programming process which is closely re-
lated to the CYK algorithm mentioned before. The first
step in this process is to build the previously men-
tioned “table” in which there is one entry for every
sub-sequence of characters. This can be done in order
from the shorter sequences to the longer sequences,
by first computing the probability of each sequence of
length 1, then from these computing the probability of
each sequence of length 2, and so on.

In our implementation, we limit the size of the parse
table using a very conservative restriction on the dis-
tance between sub-sequences as an initial filter and the
convex hull criterion described previously as a second
filter. When we finish building the table, the entry
which has the full number of characters and the high-
est probability represents the best legal parse of the
given mathematical expression.

Trmnl 1 Trmnl 2 Trmnl 3 Trmnls 1,2 Trmnls 2,3 Trmnls 1-3
Global prop-
erties of the con-
nected component
set

Min x, max x,
min y, max y,
centroid

Min x, max x,
min y, max y,
centroid

Min x, max x,
min y, max y,
centroid

Min x, max x,
min y, max y,
centroid

Min x, max x,
min y, max y,
centroid

Min x, max x,
min y, max y,
centroid

As a small letter Prob: 0.1
Baseline: 47
Pt-size: 12

Prob: 0.05
Baseline: 55
Pt-size: 13

Prob: 0.05
Baseline: 52
Pt-size: 10

Prob: 0.0
Baseline: 0.0
Pt-size: 0.0

Prob: 0.0
Baseline: 0.0
Pt-size: 0.0

Prob: 0.0
Baseline: 0.0
Pt-size: 0.0

As a large letter Prob: 0.01
Baseline: 45
Pt-size: 8

Prob: 0.02
Baseline: 53
Pt-size: 9

Prob: 0.01
Baseline: 50
Pt-size: 9

Prob: 0.0
Baseline: 0.0
Pt-size: 0.0

Prob: 0.0
Baseline: 0.0
Pt-size: 0.0

Prob: 0.0
Baseline: 0.0
Pt-size: 0.0

As a digit Prob: 0.03
Baseline: 47
Pt-size: 9

Prob: 0.02
Baseline: 55
Pt-size: 11

Prob: 0.01
Baseline: 52
Pt-size: 11

Prob: 0.0
Baseline: 0.0
Pt-size: 0.0

Prob: 0.0
Baseline: 0.0
Pt-size: 0.0

Prob: 0.0
Baseline: 0.0
Pt-size: 0.0

As an exponentia-
tion

Prob: 0.0
Baseline: 0.0
Pt-size: 0.0

Prob: 0.0
Baseline: 0.0
Pt-size: 0.0

Prob: 0.0
Baseline: 0.0
Pt-size: 0.0

Prob: 0.001
Baseline: 47
Pt-size: 12

Prob: 0.00007
Baseline: 55
Pt-size: 13

Prob: 0.0003
Baseline: 47
Pt-size: 12

As subscript Prob: 0.0
Baseline: 0.0
Pt-size: 0.0

Prob: 0.0
Baseline: 0.0
Pt-size: 0.0

Prob: 0.0
Baseline: 0.0
Pt-size: 0.0

Prob: 0.00005
Baseline: 47
Pt-size: 12

Prob: 0.002
Baseline: 55
Pt-size: 13

Prob: 0.00000043
Baseline: 47
Pt-size: 12

Figure 6: Part of a parse table used to do dynamic programming.

Building the Table

Figure 6 shows how the parse table is generated for
a sample mathematical expression show in Figure 7.
The table contains one column for each subset of ter-
minals, and one row for each possible interpretation
for that subset. The input to the parsing algorithm is
a set of connected components. Associated with each
component is a probability vector, containing the con-
ditional probability for each possible terminal symbol.
As a first step only the most likely terminal from each
syntactic class is retained. For example, the most likely
interpretation for the leftmost component is as an ’a’.
Nevertheless several other hypotheses are maintained:
as an ascender it is most likely to be an ’O’; as a
descender it is most likely to be a ’q’; as an ascen-
der/descender it is most likely to be a ’Q’6, and so on.
In addition to computing these probabilities, we com-
pute certain interpretation-dependent quantities of the
characters such as the baseline and the point size. They
are interpretation-dependent since they are different
for different rows of the table. Finally, we also compute
global properties of the current connected component
group. These properties include the minimum and
maximum coordinates, the centroid, the convex hull,
and so forth. These global properties only need to be
computed once per connected component group, since
they are invariant to the interpretation of the group.

In addition to the terminal classes there are rows in

6This is a very unlikely hypothesis, but it is the best in
that class.

the table for compound expressions made up of mul-
tiple terminals (e.g. exponentiation, fractions, binary
operations, etc.) There is zero probability that these
expressions can generate an output with a single com-
ponent.

The initial state of the system is shown in the first
three columns of the table. There is one entry for each
distinct component in the image. Parsing is a process
by which new columns are added to the table, each de-
scribing a valid subset of components from the original
image. The table is expanded toward the right, as large
collections of components are enumerated and evalu-
ated.

There are three possible two-character combinations
of the three characters. However, if the two characters
fail the convex hull test described above, as with the
“a” and the “d” in our example, then an entry in the ta-
ble will not be made. Since the two component groups
cannot be interpreted as a single terminal, these rows
are flagged as impossible. As new columns are added
to the table, the interpretation-dependent and global
properties of the group are computed.

The final column in the table shows probabilities
of interpretations of the entire expression. Column 6
shows that the correct interpretation (as an exponenti-
ation at the highest level) has the highest probability,
so in this case the procedure worked properly.

Experiments
To verify the basic functionality of the system, we per-
formed a simple series of tests. For each letter x in

Figure 7: The sample mathematical expression used in
the description of table building. Notice that no entry
was made in the table for the two-character combina-
tion of characters “a” and “d”. This is because the a-d
pair do not fit the convex hull criterion.

the system, the following expressions were used as in-
puts to the system: xx, xx, xxx, x

x. Where allowed by
the grammar, the digits were also used in these tests.
All of these test images were evaluated correctly by the
system.

We attempted to evaluate the effectiveness both of
the the convex hull pruning constraint and A-star
search using our underestimate of the distance to goal.
Without using either type of heuristic, parse times
were very long – on the order of minutes. Using both
criteria parse times are in the seconds. In order to
quantify this we created a series of expressions of vary-
ing complexity from 3 terminals to 20 terminals. On
the left of Figure 8 is the performance of the A-star sys-
tem with and without the convex hull constraint. On
the right is the performance using the convex hull con-
straint with and without the A-star heuristic7 . There
is significant improvement in performance using ei-
ther of these heuristics, and even greater improvement
when both are used. We collected data from the sys-
tem running without either heuristic, but this curve
quickly exists the top of the graph.

It is interesting to note how the system performed
on “illegal” images, for example the expression 000.
This input is considered illegal since our grammar pro-
vided no mechanism for subscripting a number. As a
result the system recognized the input as the expres-
sion “600”. This can be understood as follows: since
the system could not generate 00, it apparently con-
cluded that the last two zeroes were effectively the
same size. However, the output 000 would also be ille-
gal since a two digit number cannot begin with a 0. The
system’s fix was to consider all three digits as being ap-
proximately the same size, and then using a much less
likely, but legal interpretation of the first digit, it set-
tled on “600” as the best interpretation. This example
illustrates a good deal about the system’s flexibility in
generating reasonable answers in tough situations.

Anecdotal examples of expressions which the sys-

7The points on the two graphs are the same set of expres-
sions, the graph on the left contains fewer points because
the computation time for A-star without convex hull prun-
ing grows far too rapidly for us to measure. We simply gave
up after many minutes of run time.

Figure 8: The left graph shows the pruning of the
search space by the convex hull criterion. The right
graph shows the performance gained by adding the
A-star constraint. The algorithm reduces to best-first
search without the A-star constraint.

((t +m) +wt) bf pa

k9
2 +

3
2 +o5

e6 +z7

123

4567 +
2
4

a+b+cd

Figure 9: Some of the expressions successfully recog-
nized by the system.

tem successfully parsed are given in Figure 9. The ac-
tual time spent parsing these expressions on a 266MHz
Pentium Pro was approximately 4, 0.2, 16, and 25 sec-
onds. This does not include the time to generate char-
acter hypotheses for the connected components. These
examples are not difficult, but they validate the ba-
sic method and show that it is feasible to do the extra
bookkeeping which we have incorporated in this sys-
tem. The only failures in the current typeset system
were due to mis-recognition of characters.

Future Work
A major focus in developing this system was to pre-
pare for the migration to handwritten mathematical
expressions. Our preliminary work with handwritten
expressions is illustrated in Figure 10. We show three
examples, the first of which was parsed correctly, the
second of which contains a geometry-based error, and
the third of which contains a character-identification
error. We hope that by improving the character rec-
ognizer and learning the parameters of our geometry
models that we can significantly improve the perfor-
mance of the system in the future. While the accu-
racy of the current system needs great improvement,
we feel we have laid the groundwork for a practical
system’s implementation.

Figure 10: Some examples of handwriting and their
parses.

Acknowledgments
We would like to thank Tom Rikert and Nicholas Mat-
sakis for contributions and discussions related to this
work.

References
Charniak, E. 1993. Statistical Language Learning. Cam-
bridge, MA: MIT Press.
Chou, P. A. 1989. Recognition of equations using a
two-dimensional stochastic context-free grammar. In
SPIE Vol. 1199 Visual Communications and Image Pro-
cessing, SPIE, 852–863. Murray Hill, NJ: SPIE.
Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1991.
Introduction to Algorithms. Cambridge, Mass.: MIT
Press.
Fateman, R. J., and Tokuyasu, T. 1996. Progress in
recognizing typeset mathematics. In Document Recog-
nition III, SPIE Volume 2660, 37–50. Murray Hill, NJ:
SPIE.
Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to
Automata Theory, Languages, and Computation. Read-
ing, Mass.: Addison-Wesley.
Hull, J. F. 1996. Recognition of mathematics using
a two-dimensional trainable context-free grammar.
Master’s thesis, Massachusetts Institute of Technol-
ogy, Department of Electrical Engineering and Com-
puter Science.
Huttenlocher, D. P.; Klanderman, G. A.; and Ruck-
lidge, W. J. 1993. Comparing images using the haus-
dorff distance. IEEE Transactions on Pattern Analysis
and Machine Intelligence 15(9):850–863.
Lavirotte, S., and Pottier, L. 1997. Optical formula
recognition. In Fourth International Conference on Doc-
ument Analysis and Recognition, ICDAR, 357–361. Ulm,
Germany: IEEE.
Lee, H.-J., and Lee, M.-C. 1994. Understanding math-
ematical expressions using procedure-oriented trans-
formation. Pattern Recognition 27(3):447—457.

Lee, H.-J., and Wang, J.-S. 1997. Design of a math-
ematical expression understanding system. Pattern
Recognition Letters 18:289–298.
Martin, W. A. 1967. A fast parsing scheme for
hand-printed mathematical expressions. MIT AI
Project Memo 145, Massachusetts Institute of Tech-
nology, Computer Science Department, MIT, Cam-
bridge, MA.
Mjolsness, E. 1990. Bayesian inference on visual
grammars by neural nets that optimize. Technical Re-
port 854, Yale University, Department of Computer
Science, Computer Science Department, Yale Univer-
sity, New Haven, CT.
Okamoto, M., and Miyazawa, A. 1992. An exper-
imental implementation of a document recognition
system for papers containing mathematical expres-
sions. In Baird, H. S.; Bunke, H.; and Yamamoto,
K., eds., Structured Document Image Analysis. Berlin:
Springer-Verlag. 36–63.
Winkler, H. J.; Fahrner, H.; and Lang, M. 1995. A soft-
decision approach for structural analysis of handwrit-
ten mathematical expressions. In International Confer-
ence on Acoustics, Speech, and Signal Processing.
Yaeger, L.; Lyon, R.; and Webb, B. 1995. Effective
training of a neural network character classifier for
word recognition. In Mozer, M.; Jordan, M.; and
Petsche, T., eds., Advances in Neural Information Pro-
cessing, volume 9. Denver 1996: MIT Press, Cam-
bridge.

