What is an image before we digitize it?

- Continuous range of wavelengths.
- 2-dimensional extent
- Continuous range of power at each point.
To simplify, consider only a brightness image:
- Two-dimensional (continuous range of locations)
- Continuous range of brightness values.

This is equivalent to a two-dimensional function over the plane.
Introduction to Computer Vision

An image as a surface
How do we represent this continuous surface efficiently?
Sampling strategies:
- Spatial sampling
 - How many pixels?
 - What arrangement of pixels?
- Brightness sampling
 - How many brightness values?
 - Spacing of brightness values?
- For video, also the question of time sampling.
Introduction to Computer Vision

Projection through a pixel

Digitized 35mm Slide or Film

Central Projection Ray

Image irradiance is the average of the scene radiance over the area of the surface intersecting the solid angle!
Goal: determine a mapping from a continuous signal (e.g. analog video signal) to one of K discrete (digital) levels.

\[I(x,y) = 0.1583 \text{ volts} \]

= ???? Digital value
- $I(x,y)$ = continuous signal: $0 \leq I \leq M$
- Want to quantize to K values $0, 1, \ldots, K-1$
- K usually chosen to be a power of 2:

<table>
<thead>
<tr>
<th>K</th>
<th>#Levels</th>
<th>#Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

- Mapping from input signal to output signal is to be determined.
- Several types of mappings: uniform, logarithmic, etc.
Introduction to Computer Vision

Choice of K

Original

Linear Ramp

K=2

K=4

K=16

K=32
Introduction to Computer Vision

Choice of K

K=2 (each color)

K=4 (each color)
Uniform sampling divides the signal range \([0-M]\) into \(K\) equal-sized intervals.

The integers 0,...\(K-1\) are assigned to these intervals.

All signal values within an interval are represented by the associated integer value.

Defines a mapping:
Signal is \(\log I(x,y) \).

Effect is:

- Detail enhanced in the low signal values at expense of detail in high signal values.
Introduction to Computer Vision

Logarithmic Quantization

Original

Logarithmic Quantization

Quantization Curve
Given a 24-bit color image (8 bits each for R, G, B)
- Turn on 3 subpixels with power proportional to RGB values:

Given a 24-bit color image (8 bits each for R,G,B)

- Turn on 3 subpixels with power proportional to RGB values:

Introduction to Computer Vision

“White” text on a color display

Introduction to Computer Vision
See movie.
8 bit image: 256 different values.

- Simplest way to display: map each number to a gray value:
 - 0-> (0.0, 0.0, 0.0)
 - 1->(0.0039, 0.0039, 0.0039) or (1,1,1)
 - 2->(0.0078, 0.0078, 0.0078) or (2,2,2)
 - ...
 - 255-> (1.0, 1.0, 1.0) or (255,255,255)

- This is called a grayscale image.
Introduction to Computer Vision

Lookup tables

- `im (24 bits)`
 - "true color"

- `im8 (8 bits)`
 - gray color look up table

Mathematical code examples:

```
grayscale = im2gray(im);  
ans = 
    428    500     3
```

```
>> imshow(im);  
>> size(im)
ans =
    428    500
```
We can also use other mappings:

- $0 \rightarrow (17, 25, 89)$
- $1 \rightarrow (45, 32, 200)$
- ...
- $255 \rightarrow (233, 1, 4)$

These are called look up tables.
Introduction to Computer Vision

More look up tables.
What can we do to “enhance” an image after it has already been digitized?

- We can make the information that is there *easier to visualize*.
- We can guess at data that is not there, but we cannot be sure, in general.
Introduction to Computer Vision

Can we “enhance” an image after digitization?
Brightness Equalization

Two methods:
- Change the data (histogram equalization)
- Use a look up table (brightness or color remapping)
An unequalized image
An unequalized image

Corresponding histogram
Introduction to Computer Vision

Histogram Equalization

An unequalized image

Corresponding histogram

Same image after histogram equalization

Corresponding histogram
Introduction to Computer Vision

Brightness Equalization

Two methods:
- Change the data (histogram equalization).
- Use a look up table (brightness equalization).

![Corresponding histogram](image_with_arrows.png)
Map lowest value in image to black, highest value to white.

- 0 -> (0, 0, 0)
- 1 -> (0, 0, 0)
- 2 -> (0, 0, 0)
- 3 -> (0, 0, 0)
- ...
- 130 -> (0, 0, 0)
- 131 -> (.01, .01, .01)
- 132 -> (.02,.02,.02)
- ...
- 229 -> (1,1,1)
- 230 -> (1,1,1)
- ...
- 255 -> (1, 1, 1)
Introduction to Computer Vision

Brightness Equalization

An unequalized image

An equalized image
Introduction to Computer Vision

Mixed Pixel Problem
Introduction to Computer Vision

Mixed Pixel Problem
Typical recognition problems:
- Recognize letters and words
- Recognize people
- Recognize classes of objects
- Recognize places
Introduction to Computer Vision

Recognizing Text
Introduction to
Computer Vision

Recognizing People
Introduction to Computer Vision

Classes of objects

- Labrador Retriever
- Cartoon dog
- Border Collie with a stick
Introduction to Computer Vision

Recognizing places
Introduction to Computer Vision

Recognizing Handwritten Digits
Supervised learning:
- Formalization of the idea of learning from examples.

2 elements:
- Training data
- Test data

Training data:
- Data in which the class has been identified.
 - Example: This is a “three”.

Test data:
- Data which the algorithm is supposed to identify.
- What is this?
Formally:

- n training data pairs:
 \[(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\]

x’s are “observations”
y’s are the class labels

- m test data samples:
 \[(x_{n+1}, x_{n+2}, \ldots, x_{n+m})\]