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Abstract

This document is an introduction to entropy and mutual information
for discrete random variables. It gives their definitions in terms of prob-
abilities, and a few simple examples.



1 Entropy

The entropy of a random variable is a function which attempts to characterize
the “unpredictability” of a random variable. Consider a random variable X rep-
resenting the number that comes up on a roulette wheel and a random variable
Y representing the number that comes up on a fair 6-sided die. The entropy of
X is greater than the entropy of Y. In addition to the numbers 1 through 6,
the values on the roulette wheel can take on the values 7 through 36. In some
sense, it is less predictable.

But entropy is not just about the number of possible outcomes. It is also
about their frequency. For example, let Z be the outcome of a weighted six-
sided die that comes up 90% of the time as a “2”. Z has lower entropy than Y
representing a fair 6-sided die. The weighted die is less unpredictable, in some
sense.

But entropy is not a vague concept. It has a precise mathematical definition.
In particular, if a random variable X takes on values in aset X = {x1,x2, ...,y },
and is defined by a probability distribution P(X), then we will write the entropy
of the random variable as

H(X)=-Y" P(x)log P(z). (1)
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We may also write this as

If the log in the above equation is taken to be to the base 2, then the entropy
is expressed in bits. If the log is taken to be the natural log, then the entropy
is expressed in nats. More commonly, entropy is expressed in bits, and unless
otherwise noted, we will assume a logarithm with base 2.

Example 1. To compute the entropy of a fair coin, we first define its
distribution:

1 1
P(X = heads) = 5 P(X = tails) = 7
Using Equation (1), we have:

HP) = - Y Pl)logPlx) (2)
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Example 2. Let X be an unfair 6-sided die with probability distribution
defined by P(X = 1) = %, P(X =2)=1, P(X =3) =0, P(X =4) =0,



P(X =5) =%, and P(X = 6) = £. The entropy is

HPP) = - > P)lgP(x) (6)
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Notice that we have used 0log0 = 0. The justification for this is that the limit
of xlogx as x becomes small is 0.

2 Joint Entropy

Joint entropy is the entropy of a joint probability distribution, or a multi-valued
random variable. For example, one might wish to the know the joint entropy of
a distribution of people defined by hair color C' and eye color E, where C can
take on 4 different values from a set C and E can take on 3 values from a set £.
If P(E,C) defines the joint probability distribution of hair color and eye color,
then we write that their joint entropy is:

H(E,C)=H(P(E,C)) =~ P(e,c)log P(e,c). (10)
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In other words, joint entropy is really no different than regular entropy. We
merely have to compute Equation (1) over all possible pairs of the two random
variables.

Example 3. Let X represent whether it is sunny or rainy in a particular
town on a given day. Let Y represent whether it is above 70 degrees or below
seventy degrees. Compute the entropy of the joint distribution P(X,Y) given
by

P(sunny, hot) = % (11)
P(sunny, cool) = i (12)
P(rainy, hot) = i (13)
P(rainy, cool) = 0. (14)
Using Equation (10), or Equation (1), we obtain
HX,)Y) = - 1logl—l—llogl—i—llogl—&-mogo (15)
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3 Mutual Information

Mutual information is a quantity that measures a relationship between two
random variables that are sampled simultaneously. In particular, it measures
how much information is communicated, on average, in one random variable
about another. Intuitively, one might ask, how much does one random variable
tell me about another?

For example, suppose X represents the roll of a fair 6-sided die, and Y
represents whether the roll is even (0 if even, 1 if odd). Clearly, the value of Y
tells us something about the value of X and vice versa. That is, these variables
share mutual information.

On the other hand, if X represents the roll of one fair die, and Z represents
the roll of another fair die, then X and Z share no mutual information. The roll
of one die does not contain any information about the outcome of the other die.
An important theorem from information theory says that the mutual informa-
tion between two variables is 0 if and only if the two variables are statistically
independent.

The formal definition of the mutual information of two random variables X
and Y, whose joint distribution is defined by P(X,Y) is given by

1X:Y) =YY Pa,y)log }m.
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In this definition, P(X) and P(Y) are the marginal distributions of X and
Y obtained through the marginalization process described in the Probability
Review document.



