
Assignment: Automatically Aligning the Plates

of Prokudin-Gorsky

October 17, 2014

As I discussed in class, the Prokudin-Gorsky plates are the result of 3 pho-
tographs of the same scene, each taken with a different color filter. This assign-
ment uses the Prokudin-Gorsky photos and asks the question, “Can we develop
an algorithm to automatically align the 3 color plates for each photo?” In an
attempt to do this, you will explore alignment by maximization of mutual infor-
mation. To produce good looking images, you will also have to figure out which
third of the templates correspond to the red, blue, and green channels (they are
not necessarily in order).

Please follow these steps.

1. As a warm-up exercise, write a Matlab “.m” file containing a function
called entropy that computes and returns the entropy of a discrete prob-
ability distribution. You should pass the distribution as a vector. Obvi-
ously, since the vector represents a probability distribution, each element
should be greater than or equal to zero and the elements should sum to 1.
You should calculate the entropy in bits. Don’t forget to handle the case
in which some probablities are 0.

2. Once you’ve done this, write another function, called mutInfo, which com-
putes and returns the mutual information of two variables given the joint
distribution. You should pass the joint distribution in as matrix each of
whose entries corresponds to a joint probability. You may want to have
support functions (in other .m files) that return a marginal distribution
given a joint distribution. Hint: producing a marginal distribution from a
joint distribution in Matlab can be done in one very short command. Look
up the sum command.

3. The next function you are going to write is another warm up. It will be
called distributionFromImage.m. It will take as an argument one layer of
an image (one third of a Prokudin-Gorsky photo), and another number
saying how many different bins you want to describe the brightness values
of the image. Since each filtered image has 256 values per pixel, you can
choose to bin these values in up to 256 bins, or as few as 2 bins. The
number of bins should be a power of 2. The function should simply return

1



the relative proportion of pixels from the image that fell into each bin. For
example, if you choose 2 bins, then the function should return a vector of
length 2. The first number in the vector would describe the proportion
of values that fell in the range 0-127. The second number would describe
the proportion of image values that fell in the range 128-255.

4. Now write a function called jointDistFromImages.m. The function takes
as arguments two images of the same size, and a number of bins B from 2
to 256 (for each image), again a power of 2. It returns a joint distribution
of brightness values in the two images in the form of a BxB matrix. In
this function, you consider pairs of pixels (p1, p2) from the same location
in the two different images. You should return a BxB matrix which gives
the proportion of pixel pairs that fall in each bin, where a bin defines one
range for the pixel from image 1, and another range for the pixel from
image 2. For example, if the number of bins was for each image was 128,
then one matrix element of the matrix should contain the proportional of
pixel pairs (p1, p2) in which p1 is 0 or 1 and p2 is 12 or 13.

5. You are now ready to do automatic alignment of images. First load the
full plates into matlab, and split them up into thirds, with each third
corresponding to one of the photographs. Pick one of the three filtered
images as a “base” that you will not change. Your first task will be to
align the second filtered image to the first. To do this, write a double loop
to shift the second image up to 15 pixels in each direction (+-15 in x, +-15
in y). For each new position, compute the mutual information between
the first filtered image and the second shifted filtered image. Use the final
position with the maximum mutual information between the two images.
Then do this with the third image with respect to the first image.

6. You should perform this task with at least 3 different values of B, which
defines the number of bins, and for each of the 8 images from problem set
2. Record how many of the automatic alignments worked well (out of 8)
for each value of B. Comment on the different success rates for different
values of B.

7. To visualize the full, aligned images, put each aligned image into one layer
of a color image array which is width by height by 3 layers, and then use
the Matlab command imagesc to display the color image. You should
experiment with which layer is red, which is green, and which is blue until
the final image looks as realistic as possible.

You should turn in all of the Matlab functions discussed above, and your
composited color images (8 of them).

2


